Sumário 7 – Moléculas Poliatómicas 1

BeH₂, BH₃, CH₄, NH₃ e H₂O

Hidretos dos Elementos do 2º Período da T. P.

Teoria do Enlace de Valência - Hibridação de orbitais atómicas

Conceito de Orbital Híbrida

Hibridações sp, sp₂ e sp₃ (BeH₂, BH₃ e CH₄)

Geometria Molecular. Minimização da Repulsão dos Pares de Electrões (NH₃ e H₂O)

Pares Não-Ligantes

Momento Dipolar

Teoria: Capítulo 4

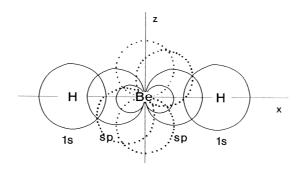
Problemas: 4.9 a 4.12

Hibridação sp: Molécula de BeH₂

H-Be-H (molécula linear)

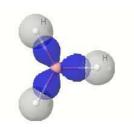
TOM-CLOA: 4 orbitais moleculares resultantes da interferência de 2 orbitais do Be (2s e $2p_x$) e das orbitais 1s dos 2 átomos de H

$$\Phi_i = c_{i1} \phi_{2s}$$
 (Be) + $c_{i2} \phi_{2px}$ (Be) + $c_{i3} \phi_{1s}$ (H₁) + $c_{i4} \phi_{1s}$ (H₂)
 $i = 1, 2, 3 e 4$


Teoria do Enlace de Valência (TEV):

a) hibridação

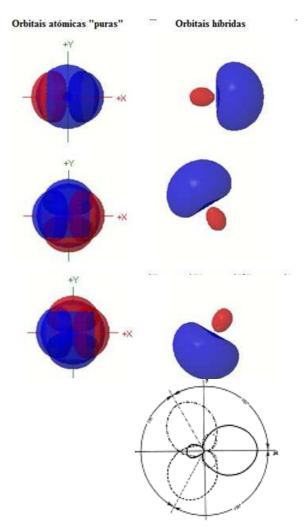
$$\Phi_{sp+} = \frac{1}{\sqrt{2}} \{ \psi_{2s} + \psi_{2p} \}$$


$$\Phi_{sp-} = \frac{1}{\sqrt{2}} \{ \psi_{2s} - \psi_{2p} \}$$

b) ligações: combinação de cada uma das sp do Be com a 1s de cada um dos átomos de H. Orbitais 2py e 2pz vazias (tracejado).

Hibridação sp₂: Molécula de BH₃

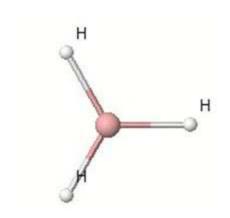
triangular plana


 $\psi_{i} = c_{i1} \ \varphi_{2s} \ (B) + c_{i2} \ \varphi_{2px} \ (B) + c_{i3} \ \varphi_{2py} \ (B) + c_{i4} \ \varphi_{1s} \ H_{(1)} + c_{i5} \ \varphi_{1s} H_{(2)} + c_{i6} \ \varphi_{1s} H_{(3)}$

a) hibridação

$$\Phi_{sp_2}^{1}(A) = \frac{1}{\sqrt{3}} \psi_{2s} + \sqrt{\frac{2}{3}} \psi_{2p_x} + 0 \times \psi_{2p_y}$$

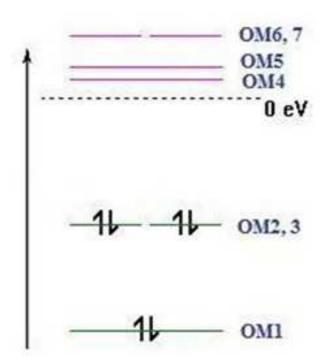
$$\Phi_{sp_2}^2(A) = \frac{1}{\sqrt{3}} \psi_{2s} - \frac{1}{\sqrt{6}} \psi_{2p_x} + \frac{1}{\sqrt{2}} \psi_{2p_y}$$


$$\Phi_{sp_2}^{3}(A) = \frac{1}{\sqrt{3}} \psi_{2s} - \frac{1}{\sqrt{6}} \psi_{2p_x} - \frac{1}{\sqrt{2}} \psi_{2p_y}$$

b) ligações: combinação de cada uma das 3 orbitais sp₂ do B com a orbital 1s de cada um dos átomos de H. Orbital 2pz vazia.

Três ligações σ

Ângulos de ligação 120º



Desvantagens da TEV

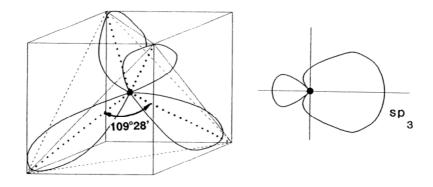
TEV - As 3 ligações B-H têm a mesma energia, e as respectivas orbitais moleculares também, o que é incorrecto.

TOM - As 3 ligações B-H têm a mesma energia mas as respectivas orbitais moleculares não: Uma orbital de menor energia (OM1) e duas degeneradas (OM2 e OM3).

Energia das orbitais moleculares do BH₃

Hibridação sp₃: Molécula de CH₄

TOM-CLOA


$$\psi_{i} = c_{i1} \, \varphi_{2s} \, (C) + c_{i2} \, \varphi_{2px} \, (C) + c_{i3} \, \varphi_{2py} \, (C) + c_{i4} \, \varphi_{2pz} \, (C) +$$

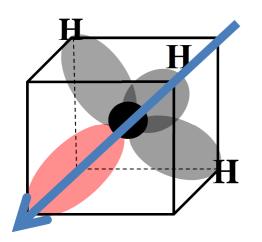
$$+ c_{i5} \, \varphi_{1s} \, (H_{1}) + c_{i6} \, \varphi_{1s} (H_{2}) \, + c_{i7} \, \varphi_{1s} (H_{3}) \, + c_{i8} \, \varphi_{1s} (H_{4})$$

$$i = 1, 2, 3 \, e \, 4$$

TEV

a) hibridação - 4 orbitais híbridas sp₃

b) ligações: combinação de cada uma das 4 orbitais sp₃ do C com a orbital 1s de cada um dos átomos de H.


Quatro ligações σ

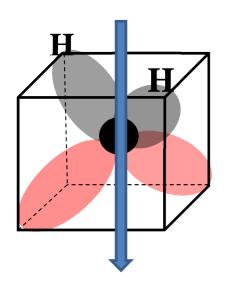
Ângulos de ligação: 109,47°

Momento dipolar nulo ($\mu = 0 D$)

Molécula de NH₃

⁷N (sp3): $1s^2 2sp_3^2 2sp_3^1 2sp_3^1 2sp_3^1$

3 ligações σ

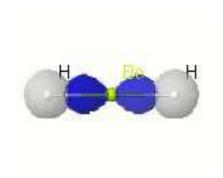

1 par eletrónico não partilhado

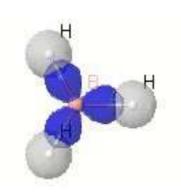
Ângulos de ligação: 107,8°

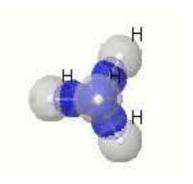
Momento dipolar \neq 0 (μ = 1,47 D)

Molécula de H₂O

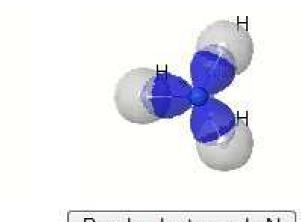
 $^{8}O(sp3): 1s^{2} 2sp_{3}^{2} 2sp_{3}^{2} 2sp_{3}^{1} 2sp_{3}^{1}$

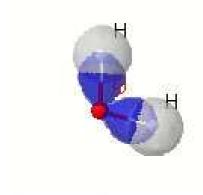

2 ligações σ


2 pares eletrónicos não partilhados


Ângulo de ligação: 104,5°

Momento dipolar \neq 0 (μ = 1,85 D)


Geometrias Moleculares


linear	triangular plana	tetraédrica
180°	120°	109,5°
sp	sp ₂	sp ₃

Par de electroes do N NH₃

piramidal

sp₃

Pares de electroes do O

 H_2O

angular 104° 20'

sp₃

RMRPE

REGRA DA MINIMIZAÇÃO DA REPULSÃO ENTRE PARES ELECTRÓNICOS

A geometria molecular de menor energia é aquela que minimiza a repulsão entre os pares electrónicos de valência

Número de Ligações	С	N	0	F
1	sp	sp	sp ₂	sp ₃
2	sp	sp ₂	sp ₃	
3	sp ₂	sp ₃	sp ₃	
4	sp ₃	sp ₃	sp ₃	

NH₄⁺ - tetraédrico

H₃O⁺ - tetraédrico

Sumário 8 - Moléculas Poliatómicas 2

Hidrocarbonetos: Alcanos, Alcenos e Alcinos

- Estrutura Molecular, Tipos e Ângulos de Ligação
- Noções de Nomenclatura
- Momento Dipolar

Grupos Funcionais: Álcool, Éter, Aldeído, Cetona, Ácido, Éster, Amina e Amida

- Estrutura Molecular, Tipos e Ângulos de Ligação, Pares Isolados
- Noções de Nomenclatura
- Momento Dipolar

HIDROCARBONETOS

Alcanos

Metano

Etano

$$C - C$$

Propano

$$H$$
 C
 C
 H
 H
 H
 H
 H

Butano

Alcenos

$$C = C$$

Propeno

$$\begin{array}{c} H \\ C = C \\ H \\ H \end{array}$$

1-buteno

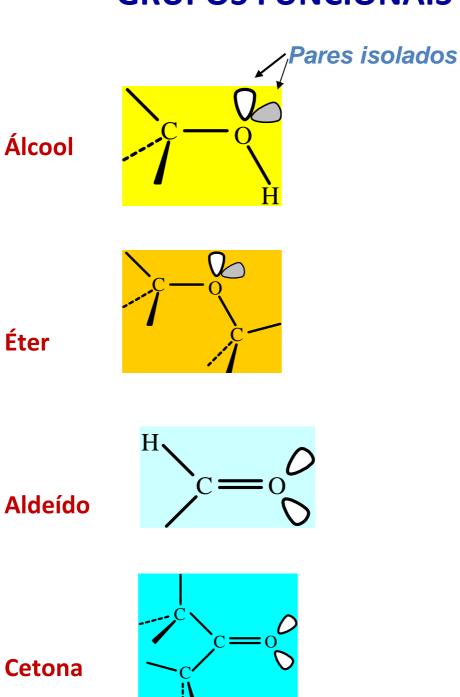
$$H \subset C \subset C \subset H$$

Alcinos

$$H - C = C - H$$

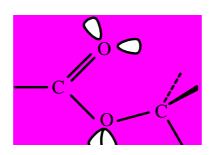
Propino

$$H - C = C - C$$

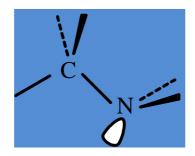

1-Butino

$$H - C = C - C$$

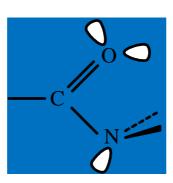
$$H$$


$$H$$

GRUPOS FUNCIONAIS



Ácido


Éster

Amina

Amida

Problemas Poliatómicas

Descreva as estruturas das seguintes moléculas, indicando hibridações dos átomos, pares de electrões não partilhados, ângulos de ligação e tipos de ligação.

- 1) CH₃CHCl₂
- 2) CH₂CHCHO
- 3) CH₃CH₂COOCH₃
- 4) (CH₃)₃CCH₂CHO
- 5) NH₂CH₂CH₂NH₂
- 6) CH₃COCH₃
- 7) CH₃OCHCHCOOH
- 8) HOOCCHCHCOOH
- 9) CH₃CONH₂
- 10) CH₃CONHCH₃

Sumário 9 - Revisão Integrada

Dualismo onda-corpúsculo

Estrutura do átomo

Propriedades periódicas

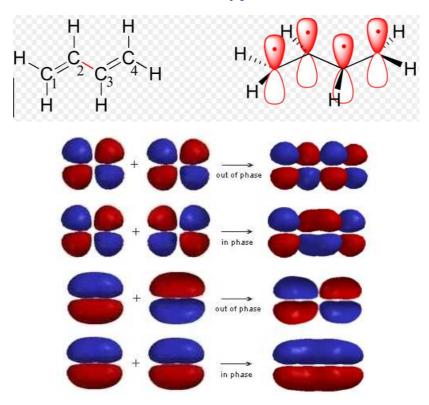
Moléculas diatómicas homonucleares

Moléculas diatómicas heteronucleares

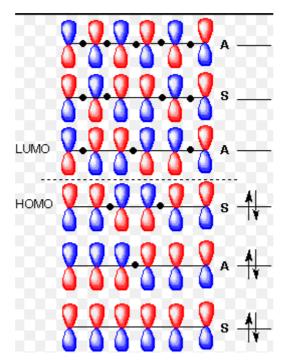
Sumário 10 - Moléculas Poliatómicas 3

Orbitais Moleculares Deslocalizadas π e σ

- Polienos conjugados
- Benzeno e polienos cíclicos conjugados
- Grafenos
- Grafite

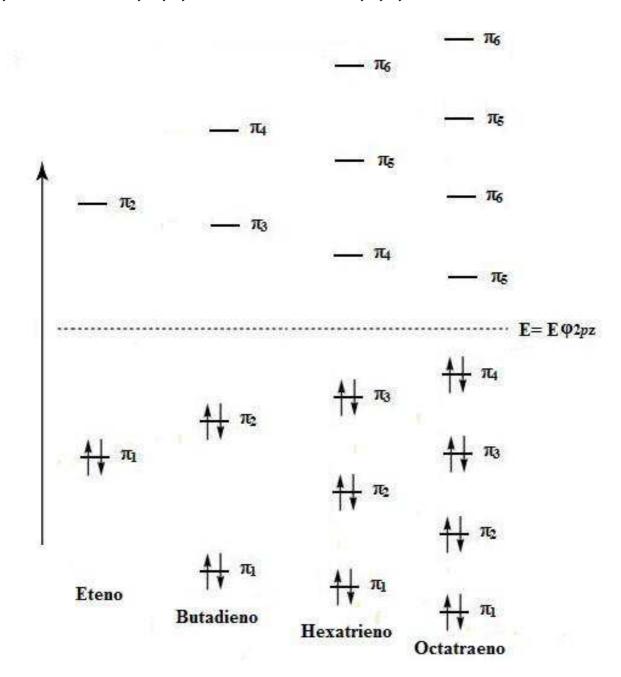

Cristais do 14º Grupo da Tabela Periódica

- Diamante
- Silício, Germânio, Estanho e Chumbo


Sílica (SiO₂)

Deslocalização π

Butadieno - 4 OM π deslocalizadas



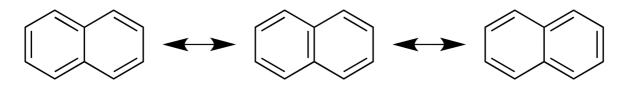
Hexatrieno - 6 OM π deslocalizadas

Polienos conjugados

Diagrama de energias das orbitais moleculares π para o eteno, 1,3-butadieno, 1,3,5-hexatrieno e 1,3,5,7-octatetraeno.

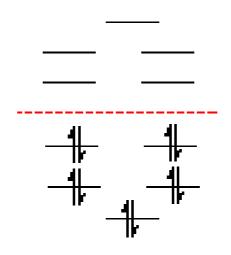


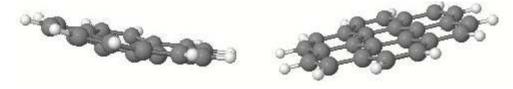
Polienos cíclicos conjugados

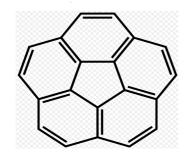

Benzeno (C₆H₆)

Estruturas de Kekulé para o benzeno

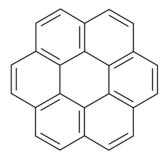
Orbitais moleculares π do benzeno

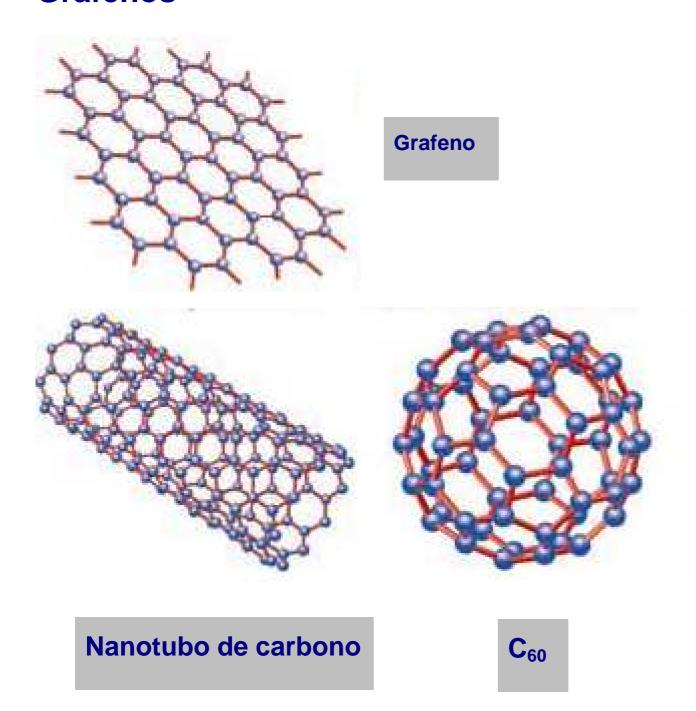



Outros polienos cíclicos conjugados

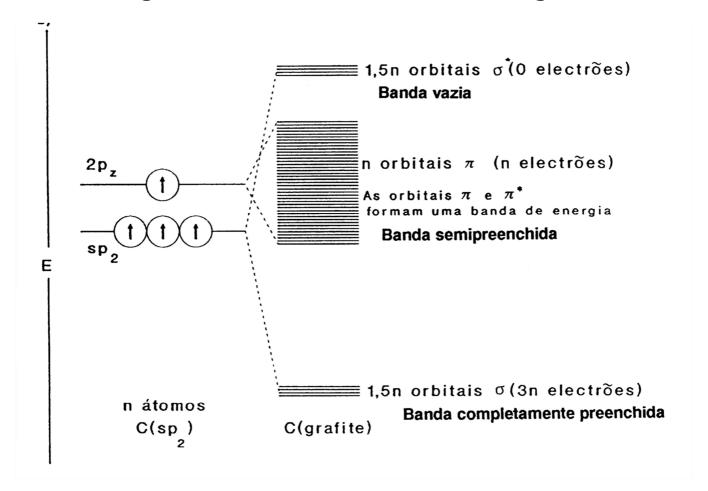


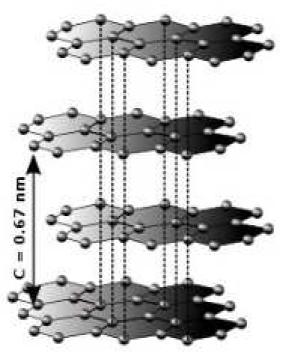
naftaleno, C₁₀H₈


As 10 orbitais moleculares π do naftaleno



coranuleno, $C_{20}H_{10}$


coroneno, C₂₄H₁₂


Grafenos

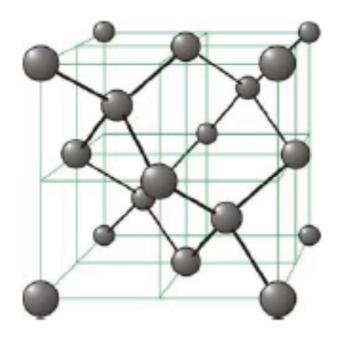
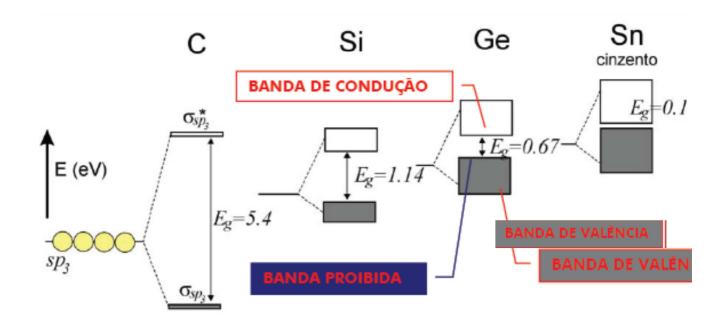

Grafite

Diagrama de bandas de uma folha de grafite



Cristais Covalentes

Estrutura do Diamante, C(sp₃)

Problemas

Descreva as estruturas das seguintes moléculas, indicando hibridações dos átomos, pares de electrões não partilhados, ângulos de ligação e tipos de ligação formada. Indique nos casos apropriados, a existência de orbitais deslocalizadas.

C₆H₅CN

C₆H₅COOH

(CH₃)₃CCH₂CHO

C₆H₅CHO

C₆H₅CHCH₂

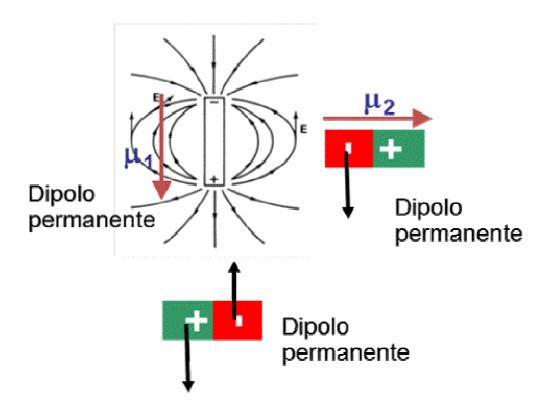
 $0-C_6H_4(CH_3)_2$

C₆H₅NNC₆H₅

Sumário 11 – Forças Intermoleculares

Forças de Van der Waals

- Interacções de Keesom (dip. permane.-d. perman.)
 - Factores condicionantes: μ , r, T
- Interacções de Debye (dip. permane.-d. induz.)
 - Factores condicionantes: μ , r, α
- Interacções de London (dip. inst..-d. inst.)
 - Factores condicionantes: α , r
- Importância relativa das Forças de van der Waals

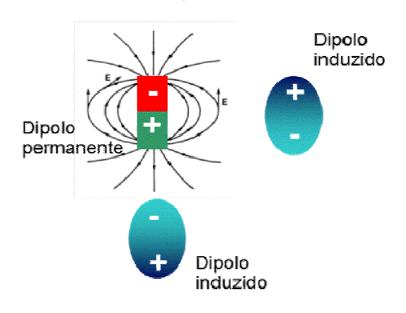

Ligação de Hidrogénio

Propriedades dos Compostos Moleculares

- Temperaturas de fusão e de ebulição
- Miscibilidade e solubilidade
- Viscosidade
- Tensão superficial

1. INTERACÇÕES DE KEESOM

Interação dipolo permanente-dipolo permanente



$$E_{K} = -\frac{1}{(4\pi\varepsilon_{0})^{2}} \times \frac{2}{3k_{B}T} \times \frac{\mu_{1}^{2}\mu_{2}^{2}}{r^{6}}$$

 $E_{\rm K}$ depende: momento dipolar, μ distância intermolecular, r temperatura, T

2. INTERACÇÕES DE DEBYE

Dipolo permanente-dipolo induzido

$$\vec{\mu}_i = \alpha \vec{E}$$

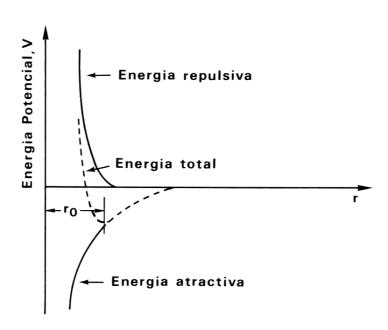
lpha - polarizabilidade

Gas raro	He	Ne	Ar	Kr	Xe
Número de electrões	2	10	18	36	54
α (Å ³)	0,203	0,392	1,63	2,46	4,01

$$E_D = -\frac{\alpha_i . \mu_j^2 + \alpha_j . \mu_i^2}{r^6}$$

3. INTERACÇÕES DE LONDON

Dipolo instantâneo-dipolo instantâneo


$$E_{L} = -\frac{3E_{i1}E_{i2}}{2(E_{i1} + E_{i2})} \frac{\alpha_{1}\alpha_{2}}{r^{6}}$$

4. Energia de Van der Waals

$$E_{P}(atract.) = -\frac{1}{r^{6}} \left[\frac{2}{3} \frac{\mu_{1}^{2} \mu_{2}^{2}}{k T} + \mu_{1}^{2} \alpha_{2} + \mu_{2}^{2} \alpha_{1} + \frac{3}{2} \frac{I_{1} I_{2}}{I_{1} + I_{2}} \alpha_{1} \alpha_{2} \right] = -\frac{a}{r^{6}}$$

$$E_{P}(repuls.) = \frac{b}{r^{n}}$$

$$E_{VW} = -\frac{a}{r^{6}} + \frac{b}{r^{n}}$$

 r_0 -raio de Van der Waals, r_{VW}

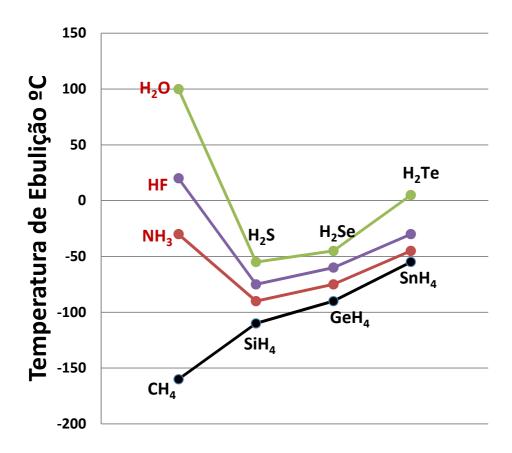
Raios de Van der Waals e covalentes para o Hidrogénio, Azoto e Oxigénio ($r_{VW} >> r_{cov}$).

	Н	N	0
r _{vw} (Å)	1.0	1.5	1.4
r _{cov} (Å)	0.30	0.70	0.66

Importância relativa das forças de Van der Waals

Composto	μ (D)	α (Å ³)	E _{Keesom} (kcal/mol)	E _{Debye} (kcal/mol)	E London (kcal/mol)	E _{Total} (kcal/mol)
Ar	0	1.63	-0.000	-0.000	-2.03	-2.03
CO	0.12	1.99	-0.0011	-0.002	-2.09	-2.09
HI	0.38	5.40	-0.006	-0.027	-6.18	-6.21
HBr	0.78	3.58	-0.164	-0.120	-5.24	-5.52
HCI	1.03	2.63	-0.79	-0.24	-4.02	-5.05
NH ₃	1.50	2.21	-3.18	-0.37	-3.52	-7.07
H ₂ O	1.84	1.48	-8.69	-0.44	-2.15	-11.30

Conclusões:

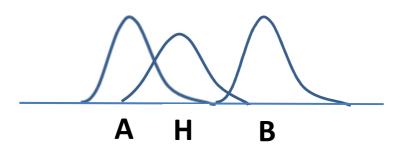

- 1. Interacções de Debye têm em geral pouca importância.
- 2. Interacções de Keesom são dominantes para moléculas de momento dipolar elevado e polarizabilidade baixa.

DICLOROBENZENOS

	α (Å ³)	μ (D)	T _{eb} (ºC)
CI HCC-L	15	2.50	180.5
	15	1.72	173
	15	0	174

3. Interacções de London são dominantes para moléculas de grande polarizabilidade, mesmo tendo momento dipolar elevado.

Ligação de Hidrogénio


Composto		α (Å ³)	μ (D)	T _{eb} (°C)
O H ₂ C CH ₂	Óxido de etileno	4.95	1,89	10.6
C ₂ H ₅ OH	Etanol	4,95	1,69	79
C ₂ H ₅ F	Fluoroetano	4.96	1,94	-37,6
CH₃OH	Metanol	3,29	1,70	64,6

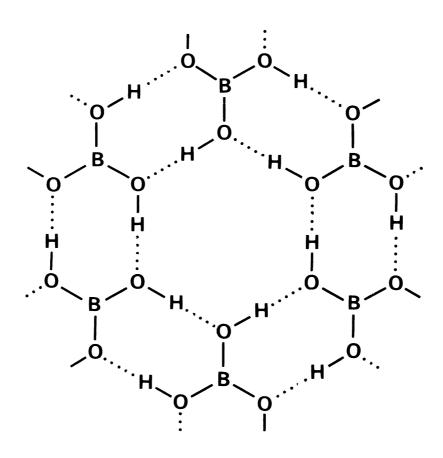
Teorias da Ligação de Hidrogénio

1. Teoria electrostática (Pauling: Keesom forte)

$$A^{\delta-} - H^{\delta+} - - - B^{\delta-} - R^{\delta+} = \begin{bmatrix} - & + \end{bmatrix} - + \begin{bmatrix} - & + \end{bmatrix}$$

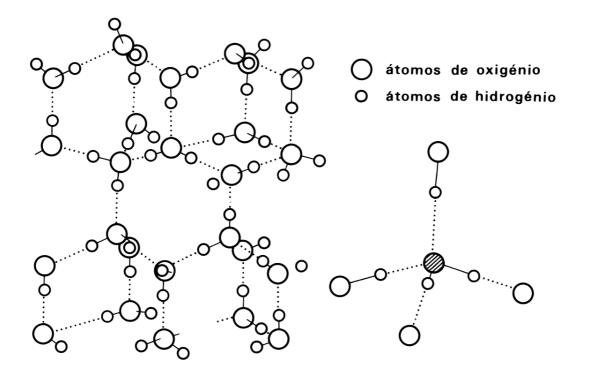
2. TOM aplicada à Ligação de H (carácter covalente)

ENERGIA DA LIGAÇÃO DE HIDROGÉNIO

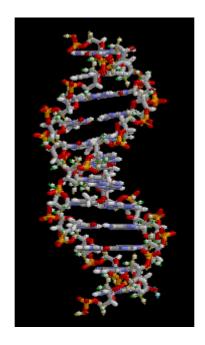

Ligação	Energia (kJ / mol)
O-H O	25
O-H N	20
N-H O	10
N-H N	25
N-H F	20
F-H F	30

A Ligação de Hidrogénio é direcional

Espectroscopia de Raios X

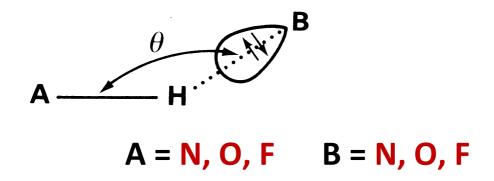

ÁCIDO FLUORÍDRICO (HF)

ÁCIDO BÓRICO (H₂BO₃)



ÁCIDO OXÁLICO (C₂O₄H₂)

GELO



DNA

Conclusões:

- 1. As forças intermoleculares são anormalmente altas quando a molécula tem um átomo de H ligado a um dos 3 átomos mais electronegativos: N, O ou F.
- 2. O efeito é explicado pela presença de LIGAÇÕES DE HIDROGÉNIO.
- 3. O ângulo θ é \approx 180º

Propriedades dos Compostos Moleculares

- Temperaturas de fusão e de ebulição
- Miscibilidade e solubilidade (Trabalho 2)
- Viscosidade
- Tensão superficial