Sumário 12 - Polímeros

Definição

- Peso Molecular médio
- Temperatura de transição vítrea

Mecanismos de polimerização

- Poliadição
- Policondensação

Propriedades dos polímeros

- Efeito das forças intermoleculares
- Efeito da estrutura

Modificação das Propriedades

- Reticulação (redes tridimensionais)
- Ligações cruzadas, resinas

Exemplos e aplicações

DEFINIÇÕES

Etileno

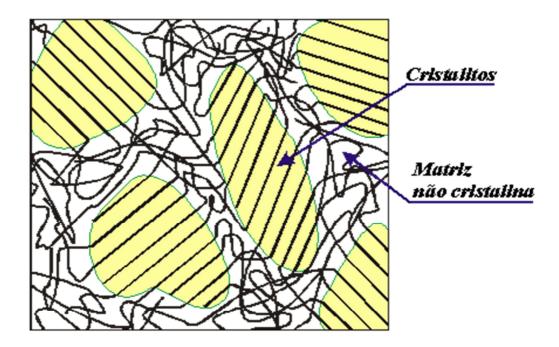
Polietileno

Monómero

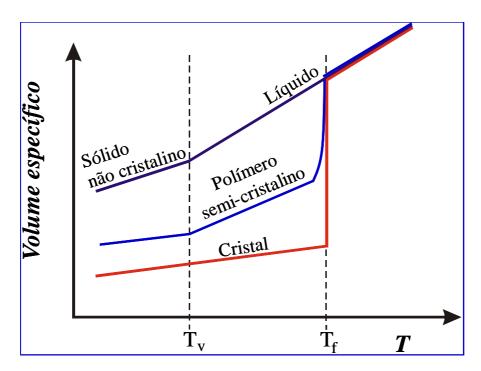
Polímero

GRAU DE POLIMERIZAÇÃO

número total de unidades repetitivas (monómeros), incluindo os grupos terminais (= n+2)


PESO MOLECULAR MÉDIO

(distribuição de pesos moleculares)


$$\overline{\boldsymbol{M}_{n}} = \sum_{i=1}^{\infty} \boldsymbol{x}_{i} \boldsymbol{M}_{i}$$

 N_i – número de moléculas com massa M_i x_i = N_i/N - fracção de moléculas com massa M_i \overline{M}_n - peso molecular médio (média numérica)

TEMPERATURA DE TRANSIÇÃO VÍTREA, T_V

Organização de macromoléculas num sólido semicristalino.

Variação do volume específico molar de um sólido com a temperatura: cristalino, amorfo, semicristalino.

MECANISMOS DE POLIMERIZAÇÃO POLIADIÇÃO

Massa do polímero = Massa dos reagentes

INICIAÇÃO

RO-OR
$$\xrightarrow{\Delta}$$
 2 °OR

RO-OR \xrightarrow{H} RO H

RO-OR \xrightarrow{H} RO-

PROPAGAÇÃO

TERMINAÇÃO

$$R^{\bullet} + R'^{\bullet} \longrightarrow R-R'$$

HOMOPOLÍMEROS DE ADIÇÃO

POLIPROPILENO

n
$$CH = CH_2$$
 \longrightarrow $CH = CH_2$ \cap CH_3

POLIESTIRENO

n
$$CH=CH_2$$
 \longrightarrow $CH-CH_2$

COPOLÍMEROS DE ADIÇÃO

A LIGAÇÃO DUPLA PERMITE INTRODUZIR "CROSS-LINKS"

POLICONDENSAÇÃO

Polimerização por Passos

Massa do polímero > Massa dos reagentes

Formação de sub-produtos

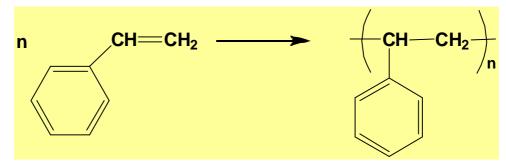
n
$$CI \longrightarrow Si \longrightarrow CI + n H_2O \longrightarrow (Si \longrightarrow R) + 2n HCI$$

Há eliminação de moléculas pequenas: H2O, ROH, HCl, ...

POLÍMEROS DE ADIÇÃO E APLICAÇÕES

POLIETILENO

n
$$CH_2=CH_2$$
 \longrightarrow CH_2-CH_2


- Isolador eléctrico
- Tubagens
- Empacotamento (filmes)
- Sacos
- Agricultura (cobertura de estufas)

POLIPROPILENO

n
$$CH = CH_2$$
 \longrightarrow $CH = CH_2$ CH_3

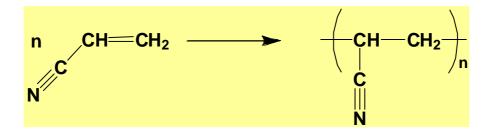
- Fibras (cordoaria, carpetes)
- Empacotamento (filmes e semi-rígidos)
- Tubagens

POLIESTIRENO

- 8- Plástico de uso geral
- Isolador térmico
- Empacotamento de artigos frágeis
- Plástico de engenharia (sindiotático)

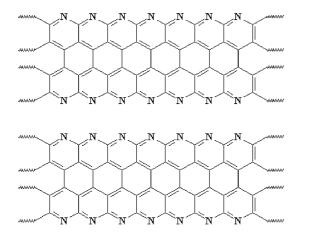
POLI(CLORETO DE VINILO)

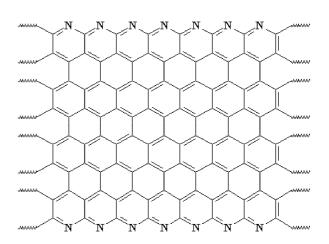
n
$$CH = CH_2$$
 \longrightarrow $CH = CH_2$ \longrightarrow $CH = CH_2$


- Tubagens
- Chão
- Empacotamento (garrafas, "tupperware", etc.)
- Mangueiras, impermeáveis, capas de assentos

POLI(TETRAFLUORETILENO) TEFLON

n
$$CF_2=CF_2$$
 \longrightarrow CF_2-CF_2


- Não dissolve em solventes orgânicos
- Termicamente estável
- Utensílios de cozinha (não colante)
- Revestimentos de frigideira
- Impermeabilizantes


POLI(ACRILONITRILO)

- Fibras acrílicas (Orlon)
- Insolúvel na maior parte dos solventes
- Percursor das fibras de carbono

FIBRAS DE CARBONO

Fibra de carbono

- Materiais estruturalmente duros
- Condutores eléctricos

POLÍMEROS CONJUGADOS SEMICONDUTORES

OPTOELECTRÓNICA

POLIVINILENO

POLIFENILENOVINILENO

POLITIOFENO

POLIFLUORENO

POLÍMEROS DE CONDENSAÇÃO E APLICAÇÕES POLIÉSTERES

POLI(ETILENO TEREFTALATO)

Etilenoglicol A

Ácido Tereftálico

Poliéster

- Principal polímero dos poliésteres (fibras têxteis)
- Garrafas de refrigerantes
- Plástico de engenharia (construção de moldes)

POLICARBONATOS

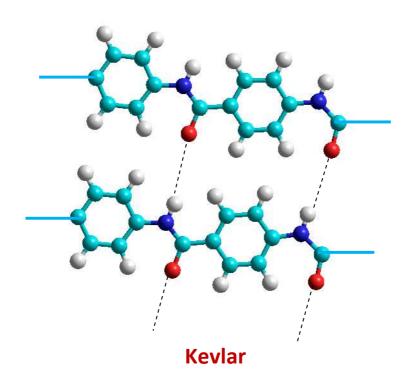
- Fabrico de lentes orgânicas
- Vidro de segurança
- Contentores de bebidas

POLI(SILOXANOS) (Silicones)

n
$$CI \longrightarrow Si \longrightarrow CI + n H_2O \longrightarrow K$$
 + 2n HCI

R= - alquilo

- cianoalquilo
- Borrachas (-30 a 200°C) (alto peso molecular)
- perfluoralquilofenilo
- Óleos (baixo peso molecular)

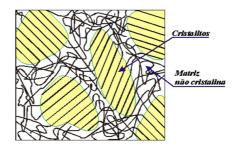

POLIAMIDAS

Di-ácido + Di-amina → Amida + H₂O

NYLON 66

KEVLAR

- Fibras resistentes

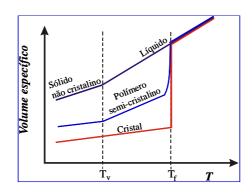


PROPRIEDADES dos POLÍMEROS

DEPENDEM: FORÇAS INTERMOLECULARES E ESTRUTURA DO POLÍMERO

1. Polímeros cristalinos ou Semi-cristalinos

PERCENTAGEM DE CRISTALITOS ELEVADA

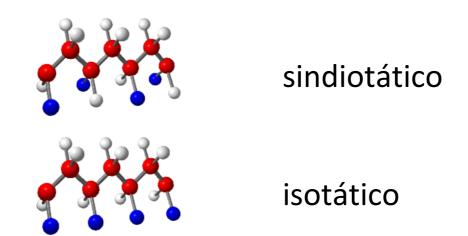


Caracterizam-se por uma temperatura de fusão - T_f

2. Polímeros amorfos

PERCENTAGEM DE CRISTALITOS BAIXA

Caracterizam-se por uma temperatura de transição vítrea-T_v



Elastómeros: $T_v < T_{ambiente}$

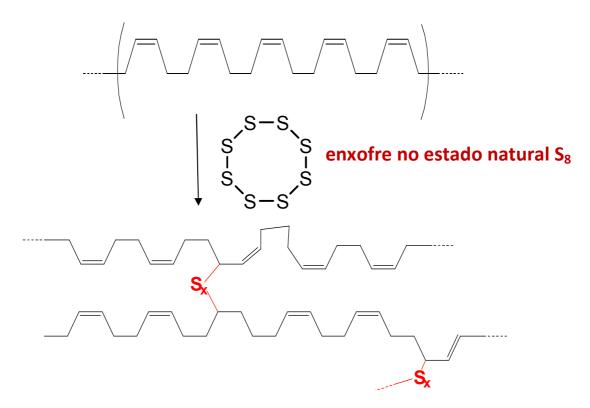
Termoplásticos: T_v > T_{ambiente}

Polímeros cristalinos ou Semi-cristalinos

1. Estruturas estereo-regulares

2. Forças intermoleculares direccionais

Keesom e Ligação de Hidrogénio


Poliamida (Nylon 6,6)

MODIFICAÇÃO DE PROPRIEDADES

RETICULAÇÃO

(formação de redes tridimensionais)

1. Vulcanização da borracha - Ligações cruzadas "cross-links"

1 ligação cruzada por 300 monómeros

 $x \approx 3$

2. Ligação de RESINAS EPOXÍDICAS

RESINA EPOXÍDICA

As extremidades epoxy reagem com:

para dar redes tridimensionais densas

- Colas de dois componentes (tipo ARALDITE®)*
- -"Fibras de vidro" para barcos de recreio, laminados, etc.

3. RESINAS FENOL-FORMALDEÍDO

pré-polímero polimerização em molde rede tridimensional

- Caixas e partes de material eléctrico
- Interruptores
- Telefones (antigos)
- Aquecedores, etc.
- Revestimentos de mobiliário (Formika[©])