Número:	Nome:	
	•	·

LEIC/LERC – 2009/10 2º Exame de Sistemas Operativos

2 de Fevereiro de 2010

Responda no enunciado, apenas no espaço fornecido. Identifique todas as folhas.

Duração: 2h30m

Grupo I [3 v.]

Considere um Sistema Operativo com um escalonamento com as seguintes características:

- Máquina mono-processador
- Multilista com 4 níveis de prioridade: 1 (menos prioritário) a 4 (mais prioritário)
- Preemptivo
- Cada nível é gerido em FIFO
- Sempre que um processo termina o seu time-slice a sua prioridade é decrementada de uma unidade.
- Sempre que um processo se bloqueia num semáforo a sua prioridade é incrementada de 1 unidade (limitada a 4).
- Com semáforos com fila de espera gerida em FIFO.
- Sincronização directa com as funções Supender e Acordar.

Lista esc	alonador	TS1	TS2	TS3	TS4	TS5	TS6
	Prio 4	P1					
	Prio 3	P2,	P2,				
	Prio 2						
	Prio 1	P3	P3				
Lista suspensos		nil	nil				
Semáforo	o S1						
	Contador	0	0				
	Lista	nil	P1				
Semáforo S2							
	Contador	1	1				
	Lista	nil	nil				

Considere que no sistema existem três processos e dois semáforos

- P1 com prioridade inicial de 4
- P2 prioridade inicial 3
- P3 prioridade inicial 1
- S1 com o valor 0 na sua variável de controlo
- S2 com o valor 1 na sua variável de controlo

Legenda

Na tabela a ordem dos processos representa a sua posição na estrutura de lista FIFO. PE é a abreviatura para Processo em Execução.

TSx – indica um timeslice sendo a representação na tabela a situação no início do timeslice. Num timeslice os processos podem executar o seu algoritmo mas apenas considerámos as operações de sincronização relevantes. O processo que fica em execução num dado timeslice executa-o até ao fim

(caso não se bloqueie entretanto); caso se bloqueie, o timeslice é considerado concluído nesse momento e começa o próximo timeslice (com novo processo em execução). Se um processo estiver em mais que uma lista represente-o em ambas.

Considere a evolução SEQUENCIAL do sistema descrita nas alíneas seguintes.

- 1. [0,75 v.]O preenchimento inicial da tabela inicial corresponde à seguinte sequência:
 - TS1 PE executa Esperar (S1)
 - TS2 PE executa Suspender P1 e Esperar (S2)

Preencha o estado no início de TS3.

- 2. [0,75 v.] Continue a evolução do sistema considerando que:
 - TS3 PE executa Esperar (S2)
- 3. [0,75 v.] Continue a evolução do sistema considerando que:
 - TS4 PE executa Assinalar (S1)
- 4. [0,75 v.] Continue a evolução do sistema considerando que:
 - TS5 PE executa Acordar (P1)

Grupo II [4 v.]

Considere um sistema que gere contas bancárias e que serve clientes que efectuam pedidos de transferência de dinheiro entre contas. Tais pedidos podem ocorrer concorrentemente, sendo cada pedido servido por uma thread diferente. Assuma os seguintes requisitos fundamentais:

Requisito A: Transferir uma dada quantia de uma conta origem, A, para uma conta destino, B, consiste em debitar essa quantia de A, e creditar B com a mesma quantia.

Requisito B: Uma dada transferência entre uma conta A e uma conta B deve parecer atómica do ponto de vista de outras transferências que observem o saldo de A ou de B.

Requisito C: Se, concorrentemente, um cliente pedir para transferir de A para B, e outro cliente pedir para transferir de C para D (em que A, B, C e D são contas diferentes), as duas transferências devem correr completamente em paralelo (i.e. sem que nenhuma seja obrigada a esperar pela outra).

Requisito D: O sistema não deve chegar a situações de interblocagem (deadlock).

Considere as seguintes implementações da função transfere (que cada thread executa para servir cada pedido de transferência):

```
I1:
transfere(int A, int B, int quantia) {
  saldo[A] -= quantia;
  saldo[B] += quantia;
}
```

Vúmero:		Página 3 of 10
---------	--	----------------

```
I2:
monitor mon;
transfere(int A, int B, int quantia) {
  mon.enter();
   saldo[A] -= quantia;
  saldo[B] += quantia;
  mon.exit();
I3:
monitor mon[NUM_CONTAS];
transfere(int A, int B, int quantia) {
  mon[A].enter();
  mon[B].enter();
   saldo[A] -= quantia;
   saldo[B] += quantia;
  mon[A].exit();
  mon[B].exit();
```

Assuma que a instrução alto-nível "A.saldo -= quantia" corresponde à seguinte sequência de instruções máquina:

```
mov AX, A.saldo
mov BX, quantia
sub AX, BX
mov A.saldo, AX
```

E que a instrução alto-nível "B.saldo += quantia" corresponde à seguinte sequência de instruções máquina:

mov AX, B.saldo mov BX, quantia add AX, BX mov B.saldo, AX

1. [3 v] Para cada implementação, qual ou quais dos requisitos não são satisfeitos. Ilustre com um exemplo cada requisito que afirmar nao ser satisfeito.

2.	[1 v] Estenda a solução I3 para que, no caso da conta de origem não ter saldo suficiente, a transferência se bloqueie até que tal aconteça. Mais uma vez, não utilize nem semáforos nem mutexes.

Grupo III [3,1 v]

Considere uma arquitectura paginada de 32 bits, com páginas de 4KB.

Não existe qualquer tipo de cache, nem TLB.

Existem **apenas 4 páginas** de memória física disponíveis para páginas de processos. A política de substituição é FIFO.

O tempo assume-se contínuo e crescente.

Num dado momento, um processo, P1, está em execução, tendo a sua tabela de páginas o seguinte estado:

	Presente	Permissões	Base	Instante de	Modificada
				carregamento	(dirty)
0	1	X	0x00000	1002	0
1	0	R	0x00000	700	0
2	1	RW	0x00001	2030	1
3	1	RW	0x00002	2300	0
4	1	R	0x00003	4023	0
5	0	R	0x00001	650	0
6	0	R	0x00003	800	0

1. [1,5 v] Partindo do estado inicial da tabela de páginas que é apresentado acima, P1 efectuou a seguinte sequência de acessos. Preencha a tabela seguinte:

Acesso pedido à mem. virtual	Tab. Páginas foi consultada?	Houve mudança para	Houve substituição de pág.? Se sim: (i) qual a página e	End. real calculado
		modo núcleo?	(ii) teve de ser escrita em disco?	
1. Execução de 0x00000003			disco.	
2. Leitura de 0x00005000				
3. Execução de 0x00000004				
4. Leitura de 0x00005500				
5. Execução de 0x00000005				

2. [0,6 v] Indique o estado da tabela de páginas de P1 após os acessos na alínea anterior.

	Presente	Permissões	Base	Instante de	Modificada
				carregamento	(dirty)
0					
1					
2					
3					
4					
5					
6					

3. [1 v] Proponha um melhoramento ao sistema que permita um desempenho melhor que o observado na alínea 1. Preencha a tabela de novo, assumindo que a mesma sequência de acessos se repete no sistema melhorado.

Melhoramento:	

Acesso pedido à mem. virtual	Tab. Páginas foi consultada?	Houve mudança para modo núcleo?	Houve substituição de pág.? Se sim: (i) qual a página e (ii) teve de ser escrita em disco?	End. real calculado
1. Execução de 0x00000003				
2. Leitura de 0x00005000				
3. Execução de 0x00000004				
4. Leitura de 0x00005500				
5. Execução de 0x00000005				

Analise cuidadosamente o sistema de ficheiros no qual o projecto se baseou, SNFS-server. O programa seguinte é um extrato simplificado da função fs write do sistema de ficheiros.

```
1. int fs_write(fs_t* fs, int fileInodeNumber, unsigned offset, unsigned count,
   char* buffer)
2. {
3. fs inode t* inode = lêDaTabeladeInodes(fileInodeNumber);
4.
5. int numBlocosUsados = numBlocos(inode->size);
6. int numNovosBlocosNecessarios =
7.
          MAX(numBlocos(offset+count), numBlocosUsados) - numBlocosUsados;
8.
9. if (numNovosBlocosNecessarios > 0) {
10.
            if(numNovosBlocosNecessarios > INODE_NUM_BLKS - numBlocosUsados) {
11.
12.
                  dprintf("[fs_write] no free block entries in inode.\n");
13.
                  return -1;
14.
            }
15.
16.
            for (int i = numBlocosUsados;
17.
                            i < numBlocosUsados + numNovosBlocosNecessarios; i++) {</pre>
18.
                  inode->blocks[i] = ProcuraBlocoLivreNoBlockBitMap();
19.
                  if (inode->blocks[i]==-1) {
20.
                         dprintf("[fs_write] there are no free blocks.\n");
21.
                         return -1;
22.
                  }
23.
                  ReservaBlockNoBlockBitMap(inode->blocks[i]);
24.
            }
25.
      }
26.
27.
      char block[BLOCK_SIZE];
      int num = 0, pos;
28.
29.
      int iblock = offset/BLOCK_SIZE;
30.
31.
      while (num < count && iblock < numBlocosUsados) {</pre>
32.
            block = block read(inode->blocks[iblock]);
33.
            int start = ((num == 0)?(offset % BLOCK_SIZE):0);
34.
            for (int i = start; i < BLOCK_SIZE && num < count; i++, num++) {
35.
                  block[i] = buffer[num];
36.
37.
            block_write(inode->blocks[iblock], block);
38.
            iblock++;
39.
      }
40.
41.
      while (num < count && iblock < numBlocosUsados + numNovosBlocosNecessarios) {
42.
            for (int i = 0; i < BLOCK_SIZE && num < count; i++, num++)
43.
                  block[i] = buffer[num];
44.
45.
            block_write(inode->blocks[iblock], block);
46.
            iblock++;
47.
48.
49.
      inode->size = MAX(offset + count, inode->size);
50.
      // update the inode in disk
51.
      escreveNaTabelaInodes(inode, fileInodeNumber);
52.
      return 0;
53.
```

	Νί	Vúmero: Pá	igina 7 of 10
1.	es	1,5 v] Identifique as regiões de código onde os seguintes passos fundamentais do alg scrita são implementadas (indique números de linhas de código, ou gamas de linhas . Obtenção do inode do ficheiro.	
	b.	. Reserva de blocos novos no caso da escrita ser para além da dimensão do ficheiro	
	c.	Escrita de novos dados em blocos já existentes do ficheiro.	
	d.	. Escrita de novos dados em novos blocos reservados para o ficheiro.	
	e.	. Actualização do inode do ficheiro com o novo tamanho e blocos.	
2.),8 v] Qual a dimensão máxima de um ficheiro neste sistema de ficheiros? Responda ódigo.	com base no
3.	do	0,8 v] É possível que uma escrita que obrigue a acrescentar novos blocos ao ficheiro fon ficheiro fon ficheiro não ter alcançado a dimensão máxima por ficheiro. O que pode levar a essutifique com referências a linha(s) do código.	-
4.	Inc	0,8 v] Suponha que dispõe de uma cache de blocos e de uma cache de inodes implen ndique todas as linhas de código antes das quais deveria consultar cada uma dessas o o caso de uma falta de cache é que essas linhas seriam executadas).	
Ca	che	e de blocos (linhas em que seria feita a consulta à cache):	
	ا	,	
Ca	che	e de inodes (linhas em que seria feita a consulta à cache):	
	ļ		

Grupo V [3,9 v]

O código abaixo permite a criação de um socket datagram para um processo servidor e é semelhante ao protótipo disponibilizado no trabalho da cadeira.

70:	d srv_init_socket(struct sockaddr_un* servaddr)	
ι	<pre>if ((sockfd = socket(AF_UNIX, SOCK_DGRAM, 0)) < 0){ printf("[snfs_srv] socket error: %s.\n", strerror(errno)); exit(-1); }</pre>	1
	<pre>bzero(servaddr, sizeof(*servaddr)); servaddr->sun_family = AF_UNIX; strcpy(servaddr->sun_path, SERVER_SOCK);</pre>	2
	<pre>if (unlink(servaddr->sun_path) < 0 && errno != ENOENT) { printf("[snfs_srv] unlink error: %s.\n", strerror(errno)); exit(-1); }</pre>	3
	<pre>if (bind(sockfd, (struct sockaddr *) servaddr, sizeof(*servaddr)) < 0){ printf("[snfs_srv] unbind error: %s.\n", strerror(errno)); exit(-1); }</pre>	4
L.	Suponha que pretende utilizar um socket no domínio TCP/IP.	
	a. [0,4 v] Que secções teria de modificar? Justifique.	
,	b. [0,4 v] Programe as modificações numa das secções que indicou anteriormente.	
	b. [0,4 v] Frograme as modificações numa das secções que muicou anteriormente.	
)	Suponha agora que pretende utilizar um socket tipo stream mas mantendo o domír	nio Unix
	a. [0,4 v] Que secções teria de modificar? Justifique.	no omx
	b. [0,4 v] Programe as modificações numa das secções que indicou anteriormente.	

	Número: Página 9 of 10
ſ	
	Das secções acima uma não é específica dos sockets e tem um âmbito mais abrangente. a. [0,3 v] Qual é?
Į. Ī	b. [0,4 v] Para que serve?
	No modelo datagram o socket depois de criado poderia ser usado para receber mensagens com esta função.
	<pre>reqsz = recvfrom(sockfd, (void*)req, sizeof(*req), 0, (struct sockaddr *)cliaddr, clilen);</pre>
ſ	a. [0,5 v] Com um socket tipo stream passa-se o mesmo? Justifique indicando quais as diferenças.
Ī	 b. [0,6 v] Num socket tipo stream pode receber mensagens utilizando a função read habitual da interface de ficheiros. Justifique a complexidade acrescida em termos de parâmetros da função recvfrom utilizada no exemplo acima.
Ī	c. [0,5 v] Relacione a resposta anterior com o modelo de comunicação "muitos para um".
ļ	

Grupo VI [2,1 v]

O programa seguinte envolve operações de Entrada/saída.

```
main()
{
  char c ;
  int count=0;

while ( ( c = getchar() ) != EOF )
     count ++ ;

printf( "%d characters\n" , count ) ;
}
```

1. [0,6 v] Para que periféricos se efectuam as E/S e quando foram efectuadas as aberturas do respectivo canal?			
2. [0,9 v] Ao chamar a função getchar, o processo chamador evolui para um/vários estado(s) diferente(s). Indique cada estado por onde o processo passa e indique sucintamente o que sucedeu para o processo passar a esse estado. Considere a situação em que nenhum input foi dado pelo utilizador.			
Na coluna "estado", assuma os seguintes estados possíveis: em execução em modo utilizador, em execução em modo núcleo, executável em modo utilizador, executável em modo núcleo, bloqueado e suspenso. (Nota: não tem de preencher todas as linhas disponíveis para resposta.)			
Estado inicial:			
Estado para onde transitou: O que sucedeu para transitar para o estado:			
3. [0,6 v] Suponha agora que depois de iniciar a sua execução o utilizador carrega nas seguintes teclas			
a "return"			
O acto de carregar nas teclas que componente do sistema de Entradas/Saídas vai activar? Justifique.			