
POV-Ray Reference

POV-Team

for POV-Ray Version 3.6 BETA

2

Contents

1 Scene Description Language 15
1.1 Language Basics . 16

1.1.1 Identifiers and Keywords . 16
1.1.2 Comments . 21
1.1.3 Float Expressions . 22
1.1.4 Vector Expressions . 32
1.1.5 Specifying Colors . 37
1.1.6 User-Defined Functions . 43
1.1.7 Strings . 48
1.1.8 Array Identifiers . 51
1.1.9 Spline Identifiers . 53

1.2 Language Directives . 55
1.2.1 Include Files and the #include Directive 56
1.2.2 The #declare and #local Directives 56
1.2.3 File I/O Directives . 60
1.2.4 The #default Directive . 63
1.2.5 The #version Directive . 64
1.2.6 Conditional Directives . 65
1.2.7 User Message Directives . 68
1.2.8 User Defined Macros . 70

2 Scene Settings 75
2.1 Command-line Options . 75

2.1.1 Animation Options . 76
2.1.2 General Output Options . 79
2.1.3 Display Output Options . 82
2.1.4 File Output Options . 86
2.1.5 Scene Parsing Options . 90
2.1.6 Shell-out to Operating System 93
2.1.7 Text Output . 98
2.1.8 Tracing Options . 102

2.2 Camera . 108
2.2.1 Placing the Camera . 109
2.2.2 Types of Projection . 114
2.2.3 Focal Blur . 116
2.2.4 Camera Ray Perturbation . 117
2.2.5 Camera Identifiers . 117

4 CONTENTS

2.3 Atmospheric Effects . 118
2.3.1 Atmospheric Media . 118
2.3.2 Background . 119
2.3.3 Fog . 119
2.3.4 Sky Sphere . 121
2.3.5 Rainbow . 122

2.4 Global Settings . 123
2.4.1 ADCBailout . 124
2.4.2 AmbientLight . 125
2.4.3 AssumedGamma . 125
2.4.4 HFGray 16 . 128
2.4.5 Irid Wavelength . 128
2.4.6 Charset . 129
2.4.7 MaxTraceLevel . 129
2.4.8 MaxIntersections . 130
2.4.9 NumberOf Waves . 130
2.4.10 Noisegenerator . 130
2.4.11 Radiosity Basics . 131

2.5 Radiosity . 131
2.5.1 How Radiosity Works . 131
2.5.2 Adjusting Radiosity . 132
2.5.3 Tips on Radiosity . 136

3 Objects 137
3.1 Finite Solid Primitives . 138

3.1.1 Blob . 138
3.1.2 Box . 141
3.1.3 Cone . 141
3.1.4 Cylinder . 142
3.1.5 Height Field . 143
3.1.6 Julia Fractal . 146
3.1.7 Lathe . 149
3.1.8 Prism . 151
3.1.9 Sphere . 153
3.1.10 Spheresweep . 154
3.1.11 Superquadric Ellipsoid . 155
3.1.12 Surface of Revolution . 156
3.1.13 Text . 159
3.1.14 Torus . 159

3.2 Finite Patch Primitives . 160
3.2.1 Bicubic Patch . 161
3.2.2 Disc . 162
3.2.3 Mesh . 163
3.2.4 Mesh2 . 164
3.2.5 Polygon . 166
3.2.6 Triangle and Smooth Triangle 167

3.3 Infinite Solid Primitives . 168
3.3.1 Plane . 168
3.3.2 Poly, Cubic and Quartic . 169
3.3.3 Quadric . 172

CONTENTS 5

3.4 Isosurface Object . 173
3.5 Parametric Object . 175
3.6 Constructive Solid Geometry . 176

3.6.1 Inside and Outside . 176
3.6.2 Union . 177
3.6.3 Intersection . 179
3.6.4 Difference . 179
3.6.5 Merge . 180

3.7 Light Sources . 181
3.7.1 Point Lights . 182
3.7.2 Spotlights . 182
3.7.3 Cylindrical Lights . 186
3.7.4 Parallel Lights . 186
3.7.5 Area Lights . 187
3.7.6 Shadowless Lights . 191
3.7.7 Lookslike . 191
3.7.8 ProjectedThrough . 191
3.7.9 Light Fading . 192
3.7.10 Atmospheric Media Interaction 193
3.7.11 Atmospheric Attenuation . 193

3.8 Light Groups . 193
3.9 Object Modifiers . 195

3.9.1 ClippedBy . 195
3.9.2 BoundedBy . 196
3.9.3 Material . 197
3.9.4 Inverse . 198
3.9.5 Hollow . 199
3.9.6 NoShadow . 199
3.9.7 NoImage, NoReflection 200
3.9.8 DoubleIlluminate . 200
3.9.9 Sturm . 200

4 Textures 203
4.1 Pigment . 205

4.1.1 Solid Color Pigments . 206
4.1.2 Color List Pigments . 207
4.1.3 Color Maps . 207
4.1.4 Pigment Maps and Pigment Lists 209
4.1.5 Image Maps . 210
4.1.6 Quick Color . 213

4.2 Normal . 213
4.2.1 Slope Maps . 215
4.2.2 Normal Maps and Normal Lists 218
4.2.3 Bump Maps . 219
4.2.4 Scaling normals . 221

4.3 Finish . 221
4.3.1 Ambient . 222
4.3.2 Diffuse Reflection Items . 223
4.3.3 Highlights . 224
4.3.4 Specular Reflection . 226

6 CONTENTS

4.3.5 Conserve Energy for Reflection 228
4.3.6 Iridescence . 228

4.4 Halo . 229
4.5 Patterned Textures . 229

4.5.1 Texture Maps . 230
4.5.2 Tiles . 231
4.5.3 Material Maps . 232

4.6 Layered Textures . 234
4.7 UV Mapping . 236

4.7.1 Supported Objects . 236
4.7.2 UV Vectors . 237

4.8 Triangle Texture Interpolation . 238
4.9 Interior Texture . 238
4.10 Cutaway Textures . 239
4.11 Patterns . 239

4.11.1 Agate . 240
4.11.2 Average . 241
4.11.3 Boxed . 242
4.11.4 Bozo . 242
4.11.5 Brick . 243
4.11.6 Bumps . 243
4.11.7 Cells . 244
4.11.8 Checker . 244
4.11.9 Crackle Patterns . 245
4.11.10 Cylindrical . 247
4.11.11 DensityFile . 247
4.11.12 Dents . 248
4.11.13 Facets . 248
4.11.14 Fractal Patterns . 249
4.11.15 Function as pattern . 251
4.11.16 Function Image . 252
4.11.17 Gradient . 253
4.11.18 Granite . 254
4.11.19 Hexagon . 254
4.11.20 Image Pattern . 255
4.11.21 Leopard . 256
4.11.22 Marble . 257
4.11.23 Object Pattern . 257
4.11.24 Onion . 258
4.11.25 Pigment Pattern . 258
4.11.26 Planar . 259
4.11.27 Quilted . 259
4.11.28 Radial . 262
4.11.29 Ripples . 262
4.11.30 Slope . 262
4.11.31 Spherical . 264
4.11.32 Spiral1 . 264
4.11.33 Spiral2 . 265
4.11.34 Spotted . 265
4.11.35 Waves . 265

CONTENTS 7

4.11.36 Wood . 266
4.11.37 Wrinkles . 266

4.12 Pattern Modifiers . 267
4.12.1 Transforming Patterns . 268
4.12.2 Frequency and Phase . 269
4.12.3 Waveforms . 270
4.12.4 Noise Generators . 270
4.12.5 Turbulence . 271
4.12.6 Warps . 271
4.12.7 Bitmap Modifiers . 280

5 Interior & Media & Photons 283
5.1 Interior . 283

5.1.1 Why are Interior and Media Necessary? 284
5.1.2 Empty and Solid Objects . 285
5.1.3 Scaling objects with an interior 285
5.1.4 Refraction . 287
5.1.5 Dispersion . 288
5.1.6 Attenuation . 289
5.1.7 Simulated Caustics . 289
5.1.8 Object-Media . 290

5.2 Media . 290
5.2.1 Media Types . 292
5.2.2 Sampling Parameters & Methods 294
5.2.3 Density . 296

5.3 Photons . 299
5.3.1 Overview . 299
5.3.2 Using Photon Mapping in Your Scene 300
5.3.3 Photons FAQ . 306
5.3.4 Photon Tips . 307
5.3.5 Advanced Techniques . 308

6 Include Files 311
6.1 arrays.inc . 311
6.2 chars.inc . 312
6.3 colors.inc . 313

6.3.1 Predefined colors . 313
6.3.2 Color macros . 314

6.4 consts.inc . 316
6.4.1 Vector constants . 316
6.4.2 Map type constants . 316
6.4.3 Interpolation type constants 316
6.4.4 Fog type constants . 316
6.4.5 Focal blur hexgrid constants 316
6.4.6 IORs . 317
6.4.7 Dispersion amounts . 317
6.4.8 Scattering media type constants 318

6.5 debug.inc . 318
6.6 finish.inc . 318
6.7 functions.inc . 319

8 CONTENTS

6.7.1 Common Parameters . 320
6.7.2 Internal Functions . 321
6.7.3 Pre defined functions . 335

6.8 glass.inc, glassold.inc . 336
6.8.1 Glass colors (with transparency) 336
6.8.2 Glass colors (without transparency, for fadecolor) 338
6.8.3 Glass finishes . 338
6.8.4 Glass interiors . 338
6.8.5 Glass interior macros . 338
6.8.6 glassold.inc . 338

6.9 math.inc . 339
6.9.1 Float functions and macros 339
6.9.2 Vector functions and macros 342
6.9.3 Vector Analysis . 344

6.10 metals.inc, golds.inc . 345
6.10.1 metals.inc . 345
6.10.2 golds.inc . 347

6.11 rand.inc . 347
6.11.1 Flat Distributions . 347
6.11.2 Other Distributions . 348

6.12 shapes.inc, shapesold.inc, shapes2.inc, shapesq.inc 351
6.12.1 shapes.inc . 351
6.12.2 shapesold.inc . 358
6.12.3 shapes2.inc . 359
6.12.4 shapesq.inc . 360

6.13 skies.inc, stars.inc . 362
6.13.1 skies.inc . 363
6.13.2 stars.inc . 364

6.14 stones.inc, stones1.inc, stones2.inc, stoneold.inc 364
6.14.1 stones1.inc . 364
6.14.2 stones2.inc . 369

6.15 stdinc.inc . 370
6.16 strings.inc . 370
6.17 textures.inc . 371

6.17.1 Stones . 371
6.17.2 Skies . 372
6.17.3 Woods . 373
6.17.4 Glass . 374
6.17.5 Metals . 374
6.17.6 Special textures . 375
6.17.7 Texture and pattern macros 376

6.18 transforms.inc . 377
6.19 woodmaps.inc, woods.inc . 379

6.19.1 woodmaps.inc . 380
6.19.2 woods.inc . 380

6.20 Other files . 381
6.20.1 logo.inc . 382
6.20.2 raddef.inc . 382
6.20.3 screen.inc . 383
6.20.4 stdcam.inc . 384

CONTENTS 9

6.20.5 stage1.inc . 384
6.20.6 sunpos.inc . 384
6.20.7 font files (*.ttf) . 385
6.20.8 colormap files (*.map) . 385
6.20.9 image files (*.png, *.pot, *.df3) 386

7 Quick Reference 387
7.1 Quick Reference Contents . 388
7.2 The Scene . 388
7.3 Language Basics . 388

7.3.1 Floats . 388
7.3.2 Vectors . 391
7.3.3 Colors . 392
7.3.4 User defined Functions . 392
7.3.5 Strings . 394
7.3.6 Arrays . 395
7.3.7 Splines . 396

7.4 Language Directives . 396
7.4.1 File Inclusion . 397
7.4.2 Identifier Declaration . 397
7.4.3 File Input/Output . 397
7.4.4 Default Texture . 398
7.4.5 Version Identfier . 398
7.4.6 Control Flow Directives . 399
7.4.7 Message Streams . 399
7.4.8 Macro . 399
7.4.9 Embedded Directives . 400

7.5 Transformations . 400
7.6 Camera . 401
7.7 Lights . 401

7.7.1 Lightgroup . 402
7.8 Objects . 402

7.8.1 Finite Solid Objects . 403
7.8.2 Finite Patch Objects . 406
7.8.3 Infinite Solid Objects . 409
7.8.4 Isosurface . 410
7.8.5 Parametric . 410
7.8.6 CSG . 411

7.9 Object Modifiers . 412
7.9.1 UV Mapping . 412
7.9.2 Material . 413
7.9.3 Interior . 413
7.9.4 Interior Texture . 413

7.10 Texture . 413
7.10.1 Plain Texture . 414
7.10.2 Layered Texture . 414
7.10.3 Patterned Texture . 414
7.10.4 Pigment . 415
7.10.5 Normal . 417
7.10.6 Finish . 418

10 CONTENTS

7.10.7 Pattern . 419
7.10.8 Pattern Modifiers . 420

7.11 Media . 422
7.12 Atmospheric Effects . 423

7.12.1 Background . 423
7.12.2 Fog . 424
7.12.3 Sky Sphere . 424
7.12.4 Rainbow . 424

7.13 Global Settings . 425
7.13.1 Radiosity . 425
7.13.2 Photons . 425

Figures

2.1 Display gamma test image. 84
2.2 Example of how the recursive super-sampling works. 107
2.3 The perspective camera. 110

3.1 The geometry of a box. 142
3.2 The geometry of a cone. 142
3.3 The geometry of a cylinder. 143
3.4 The size and orientation of an un-scaled height field. 144
3.5 Relationship of pixels and triangles in a height field. 144
3.6 The geometry of a sphere. 154
3.7 Points on a surface of revolution. 158
3.8 Major and minor radius of a torus. 160
3.9 Two overlapping objects. 177
3.10 The union of two objects. 178
3.11 The intersection of two objects. 179
3.12 The difference between two objects. 180
3.13 Merge removes inner surfaces. 181
3.14 The geometry of a spotlight. 183
3.15 Intensity multiplier curve with a fixed falloff angle of 45 degrees. . . . 184
3.16 Intensity multiplier curve with a fixed radius angle of 45 degrees. . . . 184
3.17 Intensity multiplier curve with fixed angle and falloff angles of 30 and

60 degrees respectively and different tightness values. 185
3.18 Intensity multiplier curve with a negative radius angle and different

tightness values. 185
3.19 4x4 Area light, location and vectors. 188
3.20 Area light adaptive samples. 189
3.21 Area light facing object . 190
3.22 Area light not facing object . 190
3.23 Light fading functions for different fading powers. 192
3.24 An object clipped by another object. 196

4.1 UV Boxmap . 237
4.2 The hexagon pattern. 254
4.3 Quilted pattern with c0=0 and different values for c1. 260
4.4 Quilted pattern with c0=0.33 and different values for c1. 260
4.5 Quilted pattern with c0=0.67 and different values for c1. 261
4.6 Quilted pattern with c0=1 and different values for c1. 261
4.7 Turbulence random walk. 278

12 FIGURES

5.1 The Mie . 293
5.2 The Mie . 294
5.3 The Rayleigh scattering function. 294
5.4 The Henyey-Greenstein scattering function for different eccentricity

values. 295
5.5 Reflective caustics . 300
5.6 Photons used for lenses and caustics 300
5.7 Example of the photon autostop option 308

6.1 Primary Colors . 313
6.2 Shades of Gray . 313
6.3 Shades of Gray . 314
6.4 Misc. Colors Part 1 . 314
6.5 Misc. Colors Part 2 . 315

Tables

1.1 Arithmetic expressions . 24
1.2 Relational expressions . 25
1.3 Logical expressions . 25
1.4 Conditional expressions . 25
1.5 All language directives . 55
1.6 All character escape sequences . 69

2.1 . 75
2.2 . 76
2.3 . 76
2.4 . 78
2.5 . 78
2.6 . 79
2.7 . 79
2.8 . 80
2.9 . 81
2.10 . 81
2.11 . 82
2.12 . 84
2.13 . 85
2.14 . 86
2.15 . 86
2.16 . 86
2.17 . 88
2.18 . 89
2.19 . 89
2.20 . 89
2.21 . 90
2.22 . 90
2.23 . 91
2.24 . 91
2.25 . 92
2.26 . 92
2.27 . 93
2.28 . 94
2.29 . 95
2.30 . 95
2.31 . 96

14 TABLES

2.32 . 96
2.33 . 97
2.34 . 97
2.35 . 98
2.36 . 100
2.37 . 101
2.38 . 102
2.39 . 102
2.40 . 103
2.41 . 103
2.42 . 103
2.43 . 104
2.44 . 105
2.45 . 107

3.1 Quaternion basis vector multiplication rules 148
3.2 Hypercomplex basis vector multiplication rules 148
3.3 Function Keyword Maps 4-D value of h 149
3.4 Cubic and quartic polynomial terms 171
3.5 Some quartic shapes . 172

6.1 glass.inc glass colors with transparency 336
6.2 glass.inc glass colors without transparency for fadecolor 337

7.1 Quick Reference Overview . 389

Chapter 1

Scene Description Language

The reference section describes the POV-Rayscene description language. It is sup-
posed to be used as a reference for looking up things. It does not contain detailed
explanations on how scenes are written or how POV-Ray is used. It just explains all
features, their syntax, applications, limits, drawbacks, etc.

The scene description language allows you to describe the world in a readable and
convenient way. Files are created in plain ASCII text using an editor of your choice.
The input file name is specified using theInput File Name=fileoption or+Ifileswitch.
By default the files have the extension.pov. POV-Ray reads the file, processes it by
creating an internal model of the scene and then renders the scene.

The overall syntax of a scene is shown below. See “Notation and Basic Assumptions”
for more information on syntax notation.

SCENE:

SCENE_ITEM...

SCENE_ITEM:

LANGUAGE_DIRECTIVES |

camera { CAMERA_ITEMS... } |

OBJECTS |

ATMOSPHERIC_EFFECTS |

global_settings { GLOBAL_ITEMS }

In plain English, this means that a scene contains one or more scene items and that
a scene item may be any of the five items listed below it. The items may appear
in any order. None is a required item. In addition to the syntax depicted above, a
LANGUAGEDIRECTIVEmay also appear anywhere embedded in other statements
between any two tokens. There are some restrictions on nesting directives also.

For details on those five items see section “Language Directives”, section “Objects”,
section “Camera”, section “Atmospheric Effects” and section “Global Settings” for
details.

16 Scene Description Language

1.1 Language Basics

The POV-Ray language consists of identifiers, reserved keywords, floating point ex-
pressions, strings, special symbols and comments. The text of a POV-Ray scene file
is free format. You may put statements on separate lines or on the same line as you
desire. You may add blank lines, spaces or indentations as long as you do not split any
keywords or identifiers.

1.1.1 Identifiers and Keywords

POV-Ray allows you to define identifiers for later use in the scene file. An identifier
may be 1 to 40 characters long. It may consist of upper and lower case letters, the digits
0 through 9 or an underscore character (“”). the first character must be an alphabetic
character. The declaration of identifiers is covered later.

POV-Ray has a number of reserved keywords which are listed below.

a

aa level

aa threshold

abs

absorption

accuracy

acos

acosh

adaptive

adc bailout

agate

agate turb

all

all intersections

alpha

altitude

always sample

ambient

ambient light

angle

aperture

append

arc angle

area light

array

asc

ascii

asin

asinh

assumed gamma

atan

atan2

atanh

autostop

average

b

b spline

background

bezier spline

bicubic patch

black hole

blob

blue

blur samples

bounded by

box

boxed

bozo

break

brick

brick size

brightness

brilliance

bump map

bump size

bumps

c

camera

case

caustics

ceil

cells

charset

checker

chr

circular

clipped by

clock

clock delta

clock on

collect

color

1.1 Language Basics 17

color map

colour

colour map

component

composite

concat

cone

confidence

conic sweep

conserve energy

contained by

control0

control1

coords

cos

cosh

count

crackle

crand

cube

cubic

cubic spline

cubic wave

cutaway textures

cylinder

cylindrical

d

debug

declare

default

defined

degrees

density

density file

density map

dents

df3

difference

diffuse

dimension size

dimensions

direction

disc

dispersion

dispersion samples

dist exp

distance

div

double illuminate

e

eccentricity

else

emission

end

error

error bound

evaluate

exp

expand thresholds

exponent

exterior

extinction

f

face indices

facets

fade color

fade colour

fade distance

fade power

falloff

falloff angle

false

fclose

file exists

filter

final clock

final frame

finish

fisheye

flatness

flip

floor

focal point

fog

fog alt

fog offset

fog type

fopen

form

frame number

frequency

fresnel

function

g

gather

gif

global lights

global settings

gradient

granite

gray

gray threshold

green

18 Scene Description Language

h

height field

hexagon

hf gray 16

hierarchy

hypercomplex

hollow

i

if

ifdef

iff

ifndef

image height

image map

image pattern

image width

include

initial clock

initial frame

inside

inside vector

int

interior

interior texture

internal

interpolate

intersection

intervals

inverse

ior

irid

irid wavelength

isosurface

j

jitter

jpeg

julia

julia fractal

l

lambda

lathe

leopard

light group

light source

linear spline

linear sweep

ln

load file

local

location

log

look at

looks like

low error factor

m

macro

magnet

major radius

mandel

map type

marble

material

material map

matrix

max

max extent

max gradient

max intersections

max iteration

max sample

max trace

max trace level

media

media attenuation

media interaction

merge

mesh

mesh2

metallic

method

metric

min

min extent

minimum reuse

mod

mortar

n

1.1 Language Basics 19

natural spline

nearest count

no

no bump scale

no image

no reflection

no shadow

noise generator

normal

normal indices

normal map

normal vectors

number of waves

o

object

octaves

off

offset

omega

omnimax

on

once

onion

open

orient

orientation

orthographic

p

panoramic

parallel

parametric

pass through

pattern

perspective

pgm

phase

phong

phong size

photons

pi

pigment

pigment map

pigment pattern

planar

plane

png

point at

poly

poly wave

polygon

pot

pow

ppm

precision

precompute

pretrace end

pretrace start

prism

prod

projected through

pwr

q

quadratic spline

quadric

quartic

quaternion

quick color

quick colour

quilted

r

radial

radians

radiosity

radius

rainbow

ramp wave

rand

range

ratio

read

reciprocal

recursion limit

red

reflection

reflection exponent

refraction

render

repeat

rgb

rgbf

rgbft

rgbt

right

ripples

rotate

roughness

s

20 Scene Description Language

samples

save file

scale

scallop wave

scattering

seed

select

shadowless

sin

sine wave

sinh

size

sky

sky sphere

slice

slope

slope map

smooth

smooth triangle

solid

sor

spacing

specular

sphere

sphere sweep

spherical

spiral1

spiral2

spline

split union

spotlight

spotted

sqr

sqrt

statistics

str

strcmp

strength

strlen

strlwr

strupr

sturm

substr

sum

superellipsoid

switch

sys

t

t

tan

tanh

target

text

texture

texture list

texture map

tga

thickness

threshold

tiff

tightness

tile2

tiles

tolerance

toroidal

torus

trace

transform

translate

transmit

triangle

triangle wave

true

ttf

turb depth

turbulence

type

u

u

u steps

ultra wide angle

undef

union

up

use alpha

use color

use colour

use index

utf8

uv indices

uv mapping

uv vectors

v

v

v steps

val

variance

vaxis rotate

vcross

vdot

version

vertex vectors

vlength

vnormalize

vrotate

vstr

vturbulence

w

1.1 Language Basics 21

warning

warp

water level

waves

while

width

wood

wrinkles

write

x

x

y

y yes

z

z

All reserved words are fully lower case. Therefore it is recommended that your identi-
fiers contain at least one upper case character so it is sure to avoid conflict with reserved
words.

1.1.2 Comments

Comments are text in the scene file included to make the scene file easier to read or
understand. They are ignored by the ray-tracer and are there for your information.
There are two types of comments in POV-Ray.

Two slashes are used for single line comments. Anything on a line after a double slash
(//) is ignored by the ray-tracer. For example:

// This line is ignored

You can have scene file information on the line in front of the comment as in:

object { FooBar } // this is an object

The other type of comment is used for multiple lines. It starts with “/*” and ends with
“*/”. Everything in-between is ignored. For example:

/* These lines

are ignored

by the

ray-tracer */

This can be useful if you want to temporarily remove elements from a scene file./*

... */ comments cancomment outlines containing other// comments and thus can be
used to temporarily or permanently comment out parts of a scene./* ... */ comments
can be nested, the following is legal:

/* This is a comment

// This too

/* This also */

*/

22 Scene Description Language

Use comments liberally and generously. Well used, they really improve the readability
of scene files.

1.1.3 Float Expressions

Many parts of the POV-Ray language require you to specify one or more floating point
numbers. A floating point number is a number with a decimal point. Floats may be
specified using literals, identifiers or functions which return float values. You may also
create very complex float expressions from combinations of any of these using various
familiar operators.

Where POV-Ray needs an integer value it allows you to specify a float value and it
truncates it to an integer. When POV-Ray needs a logical or boolean value it interprets
any non-zero float as true and zero as false. Because float comparisons are subject to
rounding errors POV-Ray accepts values extremely close to zero as being false when
doing boolean functions. Typically values whose absolute values are less than a preset
value epsilonare considered false for logical expressions. The value ofepsilon is
system dependent but is generally about 1.0e-10. Two floatsa andb are considered to
be equal ifabs(a-b)< epsilon.

The full syntax for float expressions is given below. Detailed explanations are given in
the following sub-sections.

FLOAT:

NUMERIC_TERM [SIGN NUMERIC_TERM]...

SIGN:

+ | -

NUMERIC_TERM:

NUMERIC_FACTOR [MULT NUMERIC_FACTOR]...

MULT:

* | /

NUMERIC_FACTOR:

FLOAT_LITERAL |

FLOAT_IDENTIFIER |

SIGN NUMERIC_FACTOR |

FLOAT_FUNCTION |

FLOAT_BUILT-IN_IDENT |

(FULL_EXPRESSION) |

! NUMERIC_FACTOR

VECTOR DECIMAL_POINT DOT_ITEM FLOAT_LITERAL:

[DIGIT...] [DECIMAL_POINT] DIGIT... [EXP [SIGN] DIGIT...]

DIGIT:

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

DECIMAL_POINT:

.

EXP:

e | E

DOT_ITEM:

x | y | z | t | u | v | red | blue | green | filter |

transmit | gray

FLOAT_FUNCTION:

abs(FLOAT) | acos(FLOAT) | acosh(FLOAT) | asc(STRING) |

asin(FLOAT) | asinh(FLOAT) | atan(FLOAT) | atanh(FLOAT) |

1.1 Language Basics 23

atan2(FLOAT , FLOAT) | ceil(FLOAT) | cos(FLOAT) |

cosh(FLOAT) | defined(IDENTIFIER) | degrees(FLOAT) |

dimensions(ARRAY_IDENTIFIER) |

dimension_size(ARRAY_IDENTIFIER , FLOAT) |

div(FLOAT , FLOAT) | exp(FLOAT) | file_exists(STRING) |

floor(FLOAT) | int(FLOAT) | ln(Float | log(FLOAT) |

max(FLOAT , FLOAT, ...) | min(FLOAT , FLOAT, ...) |

mod(FLOAT , FLOAT) | pow(FLOAT , FLOAT) |

radians(FLOAT) | rand(FLOAT) | seed(FLOAT) |

select(FLOAT, FLOAT, FLOAT [,FLOAT]) | sin(FLOAT) |

sinh(FLOAT) | sqrt(FLOAT) | strcmp(STRING , STRING) |

strlen(STRING) | tan(FLOAT) | tanh(FLOAT) |

val(STRING) | vdot(VECTOR , VECTOR) | vlength(VECTOR) |

FLOAT_BUILT-IN_IDENT:

clock | clock_delta | clock_on | false | final_clock |

final_frame | frame_number | initial_clock | initial_frame |

image_width | image_height | no | off | on | pi | true |

version | yes |

FULL_EXPRESSION:

LOGICAL_EXPRESSION [? FULL_EXPRESSION : FULL_EXPRESSION]

LOGICAL_EXPRESSION:

REL_TERM [LOGICAL_OPERATOR REL_TERM]...

LOGICAL_OPERATOR:

& | | (note: this means an ampersand or a vertical bar is a logical operator)

REL_TERM:

FLOAT [REL_OPERATOR FLOAT]...

REL_OPERATOR:

< | <= | = | >= | > | !=

INT:

FLOAT (note any syntax which requires a integer INT will accept a FLOAT and it will be truncated to an integer internally by POV-Ray).

Note: FLOAT IDENTIFIERSare identifiers previously declared to have float values.
TheDOT ITEM syntax is actually a vector or color operator but it returns a float value.
See “Vector Operators” or “Color Operators” for details. AnARRAYIDENTIFIER is
just the identifier name of a previously declared array, it does not include the[] braces
nor the index. The syntax forSTRINGis in the section “Strings”.

Literals

Float literals are represented by an optional sign (“+” or “-”) digits, an optional decimal
point and more digits. If the number is an integer you may omit the decimal point and
trailing zero. If it is all fractional you may omit the leading zero. POV-Ray supports
scientific notation for very large or very small numbers. The following are all valid
float literals:

-2.0 -4 34 3.4e6 2e-5 .3 0.6

Identifiers

Float identifiers may be declared to make scene files more readable and to parameterize
scenes so that changing a single declaration changes many values. An identifier is
declared as follows.

24 Scene Description Language

FLOAT_DECLARATION:

#declare IDENTIFIER = EXPRESSION; |

#local IDENTIFIER = EXPRESSION;

Where IDENTIFIER is the name of the identifier up to 40 characters long andEX-
PRESSIONis any valid expression which evaluates to a float value.

Note: there should be a semi-colon after the expression in a float declaration. If omit-
ted, it generates a warning and some macros may not work properly. See “ #declare vs.
#local” for information on identifier scope.

Here are some examples.

#declare Count = 0;

#declare Rows = 5.3;

#declare Cols = 6.15;

#declare Number = Rows*Cols;

#declare Count = Count+1;

As the last example shows, you can re-declare a float identifier and may use previously
declared values in that re-declaration. There are several built-in identifiers which POV-
Ray declares for you. See “Built-in Float Identifiers” for details.

Operators

Arithmetic expressions: Basic math expressions can be created from float literals,
identifiers or functions using the following operators in this order of precedence...

() expressions in parentheses first
+A -A !A unary minus, unary plus and logical “not”
A*B A/B multiplication and division
A+B A-B addition and subtraction

Table 1.1: Arithmetic expressions

Relational, logical and conditional expressions may also be created. However there is
a restriction that these types of expressions must be enclosed in parentheses first. This
restriction, which is not imposed by most computer languages, is necessary because
POV-Ray allows mixing of float and vector expressions. Without the parentheses there
is an ambiguity problem. Parentheses are not required for the unary logical not operator
“!” as shown above. The operators and their precedence are shown here.

Relational expressions:The operands are arithmetic expressions and the result is
always boolean with 1 for true and 0 for false. All relational operators have the same
precedence.

Logical expressions:The operands are converted to boolean values of 0 for false and 1
for true. The result is always boolean. All logical operators have the same precedence.

Note: these are not bit-wise operations, they are logical.

Conditional expressions:The operand C is boolean while operands A and B are any
expressions. The result is of the same type as A and B.

1.1 Language Basics 25

(A < B) A is less than B
(A <= B) A is less than or equal to B
(A = B) A is equal to B (actually abs(A-B)<EPSILON)
(A != B) A is not equal to B (actually abs(A-B)>=EPSILON)
(A >= B) A is greater than or equal to B
(A > B) A is greater than B

Table 1.2: Relational expressions

(A & B) true only if both A and B are true, false otherwise
(A | B) true if either A or B or both are true

Table 1.3: Logical expressions

Assuming the various identifiers have been declared, the following are examples of
valid expressions...

1+2+3 2*5 1/3 Row*3 Col*5

(Offset-5)/2 This/That+Other*Thing

((This<That) & (Other>=Thing)?Foo:Bar)

Expressions are evaluated left to right with innermost parentheses evaluated first, then
unary+, - or !, then multiply or divide, then add or subtract, then relational, then
logical, then conditional.

Functions

POV-Ray defines a variety of built-in functions for manipulating floats, vectors and
strings. Function calls consist of a keyword which specifies the name of the function
followed by a parameter list enclosed in parentheses. Parameters are separated by
commas. For example:

keyword(param1,param2)

The following are the functions which return float values. They take one or more float,
integer, vector, or string parameters. Assume thatA andB are any valid expression
that evaluates to a float;I is a float which is truncated to integer internally,S, S1, S2
etc. are strings, andV, V1, V2 etc. are any vector expressions.O is an object identifier
to a pre-declared object.

abs(A) Absolute value ofA. If A is negative, returns-A otherwise returnsA.

acos(A) Arc-cosine ofA. Returns the angle, measured in radians, whose cosine isA.

acosh(A) inverse hyperbolic cosine ofA.

asc(S) Returns an integer value in the range 0 to 255 that is the ASCII value of the
first character of the stringS. For example asc(‘‘ABC’’) is 65 because that is the
value of the character “A”.

(C ? A : B) if C then A else B

Table 1.4: Conditional expressions

26 Scene Description Language

asin(A) Arc-sine of A. Returns the angle, measured in radians, whose sine isA.

asinh(A) invers hyperbolic sine ofA

atan2(A,B) Arc-tangent of(A/B). Returns the angle, measured in radians, whose
tangent is (A/B). Returns appropriate value even ifB is zero. Useatan2(A,1) to
compute usual atan(A) function.

atanh(A) invers hyperbolic tangent ofA

ceil(A) Ceiling of A. Returns the smallest integer greater thanA. Rounds up to the
next higher integer.

cos(A) Cosine ofA. Returns the cosine of the angleA, whereA is measured in radians.

cosh(A) The hyperbolic cosine ofA.

defined(IDENTIFIER) Returns true if the identifier is currently defined,false
otherwise. This is especially useful for detecting end-of-file after a#read directive
because the file identifier is automatically undefined when end-of-file is reached. See
“The #read Directive” for details.

degrees(A) Convert radians to degrees. Returns the angle measured in degrees whose
value in radians isA. Formula isdegrees=A/pi*180.0.

dimensions(ARRAYIDENTIFIER) Returns the number of dimensions of a previ-
ously declared array identifier. For example if you do#declare MyArray=array[6][10]
then dimensions(MyArray) returns the value2.

dimension size(ARRAYIDENTIFIER, FLOAT) Returns the size of a given di-
mension of a previously declared array identifier. Dimensions are numbered left-to-
right starting with 1. For example if you do#declare MyArray=array[6][10] then
dimension size(MyArray,2) returns the value10.

div(A,B) Integer division. The integer part of(A/B).

exp(A) Exponential ofA. Returns the value ofe raised to the powerA wheree is
the base of the natural logarithm, i.e. the non-repeating value approximately equal to
2.71828182846.

file exists(S) Attempts to open the file specified by the stringS. The current direc-
tory and all library directories specified by theLibrary Path or +L options are also
searched. See “Library Paths” for details. Returns1 if successful and0 if unsuccess-
ful.

floor(A) Floor of A. Returns the largest integer less thanA. Rounds down to the next
lower integer.

inside(O,V) It returns either 0.0, when the vectorV is outside the object, specified by
the object-identifierO, or 1.0 if it is inside.

Note: inside does not accept object-identifiers to non-solid objects.

int(A) Integer part ofA. Returns the truncated integer part ofA. Rounds towards zero.

log(A) Logarithm ofA. Returns the logarithm base10of the valueA.

ln(A) Natural logarithm ofA. Returns the natural logarithm baseeof the valueA.

1.1 Language Basics 27

max(A,B,...) Maximum of two or more float values. ReturnsA if A larger thanB.
Otherwise returnsB.

min(A,B,...) Minimum of two or more float values. ReturnsA if A smaller than B.
Otherwise returnsB.

mod(A,B) Value of A modulo B. Returns the remainder after the integer division of
A/B. Formula ismod=((A/B)-int(A/B))*B.

pow(A,B) Exponentiation. Returns the value ofA raised to the powerB.

Note:For a negative A and a non-integer B the function has no defined return value.
The result then may depend on the platform POV-Ray is compiled on.

radians(A) Convert degrees to radians. Returns the angle measured in radians whose
value in degrees isA. Formula is radians=A*pi /180.0.

rand(I) Returns the next pseudo-random number from the stream specified by the
positive integerI. You must call seed() to initialize a random stream before calling
rand(). The numbers are uniformly distributed, and have values between0.0 and
1.0, inclusively. The numbers generated by separate streams are independent random
variables.

seed(I) Initializes a new pseudo-random stream with the initial seed valueA. The
number corresponding to this random stream is returned. Any number of pseudo-
random streams may be used as shown in the example below:

#declare R1 = seed(0);

#declare R2 = seed(12345);

sphere { <rand(R1), rand(R1), rand(R1)>, rand(R2) }

Multiple random generators are very useful in situations where you userand() to place
a group of objects, and then decide to userand() in another location earlier in the file to
set some colors or place another group of objects. Without separaterand() streams,
all of your objects would move when you added more calls torand(). This is very
annoying.

select(A, B, C [,D]). It can be used with three or four parameters.Select compares
the first argument with zero, depending on the outcome it will returnB, C or D. A,B,C,D
can be floats or funtions.
When used with three parameters, ifA < 0 it will return B, elseC (A >= 0).
When used with four parameters, ifA < 0 it will return B. If A = 0 it will return C.
Else it will returnD (A > 0).

Example:
If A has the consecutive values -2, -1, 0, 1, and 2 :

// A = -2 -1 0 1 2

select (A, -1, 0, 1) //returns -1 -1 0 1 1

select (A, -1, 1) //returns -1 -1 1 1 1

sin(A)AA A

sinh(A) The hyperbolic sine ofA.

strcmp(S1,S2) Compare stringS1 to S2. Returns a float value zero if the strings are
equal, a positive number ifS1 comes afterS2 in the ASCII collating sequence, else a
negative number.

28 Scene Description Language

strlen(S) Length ofS. Returns an integer value that is the number of characters in
the stringS.

sqrt(A) Square root ofA. Returns the value whose square isA.

tan(A) Tangent ofA. Returns the tangent of the angleA, whereA is measured in radians.

tanh(A) The hyperbolic tangent ofA.

val(S) Convert stringS to float. Returns a float value that is represented by the text in
stringS. For exampleval(‘‘123.45’’) is 123.45 as a float.

vdot(V1,V2) Dot product ofV1 and V2. Returns a float value that is the dot prod-
uct (sometimes called scalar product) ofV1 with V2. It is directly proportional to
the length of the two vectors and the cosine of the angle between them. Formula is
vdot=V1.x*V2.x+ V1.y*V2.y+ V1.z*V2.z.See the animated demo sceneVECT2.POV
for an illustration.

vlength(V) Length ofV. Returns a float value that is the length of vectorV. Formula
is vlength=sqrt(vdot(A,A)). Can be used to compute the distance between two points.
Dist=vlength(V2-V1).

See section “Vector Functions” and section “String Functions” for other functions
which are somewhat float-related but which return vectors and strings. In addition to
the above built-in functions, you may also define your own functions using the#macro

directive. See the section “User Defined Macros” for more details.

Built-in Constants

Constants are:

FLOAT_BUILT-IN_IDENT:

false | no | off | on | pi | true | yes

The built-in constants never change value. They are defined as though the following
lines were at the start of every scene.

#declare pi = 3.1415926535897932384626;

#declare true = 1;

#declare yes = 1;

#declare on = 1;

#declare false = 0;

#declare no = 0;

#declare off = 0;

The built-in float identifierpi is obviously useful in math expressions involving circles.
The built-in float identifiers on, off, yes, no, true, andfalse are designed for use as
boolean constants.

The built-in float constatson, off, yes, no, true, andfalse are most often used as
boolean values with object modifiers or parameters such assturm, hollow, hierarchy,
smooth, media attenuation, andmedia interaction. Whenever you see syntax of the
form keyword [Bool], if you simply specify the keyword without the optional boolean
then it assumeskeyword on. You need not use the boolean but for readability it is a
good idea. You must use one of the false booleans or an expression which evaluates to
zero to turn it off.

1.1 Language Basics 29

Note: some of these keywords areon by default, if no keyword is specified.

For example:

object { MyBlob } // sturm defaults off, but

// hierarchy defaults on

object { MyBlob sturm } // turn sturm on

object { MyBlob sturm on } // turn sturm on

object { MyBlob sturm off } // turn sturm off

object { MyBlob hierarchy } // does nothing, hierarchy was

// already on

object { MyBlob hierarchy off } // turn hierarchy off

Built-in Variables

There are several built-in float variables. You can use them to specify values or to
create expressions but you cannot re-declare them to change their values.

Clock-related are:

FLOAT_BUILT-IN_IDENT:

clock | clock_delta | clock_on | final_clock | final_frame

frame_number | initial_clock | initial_frame

These keywords allow to use the values of the clock which have been set in the com-
mand line switch options (or INI-file). They represent float or integer values, read from
the animation options. You cannot re-declare these identifiers.

clock

The built-in float identifierclock is used to control animations in POV-Ray. Unlike
some animation packages, the action in POV-Ray animated scenes does not depend
upon the integer frame numbers. Rather you should design your scenes based upon the
float identifier clock. For non-animated scenes its default value is 0 but you can set it
to any float value using the INI file optionClock=n.nor the command-line switch+Kn.n
to pass a single float value your scene file.

Other INI options and switches may be used to animate scenes by automatically loop-
ing through the rendering of frames using various values forclock. By default, the
clock value is 0 for the initial frame and 1 for the final frame. All other frames are
interpolated between these values.
For example if your object is supposed to rotate one full turn over the course of the
animation you could specifyrotate 360*clock*y. Then as clock runs from 0 to 1, the
object rotates about the y-axis from 0 to 360 degrees.

Although the value of clock will change from frame-to-frame, it will never change
throughout the parsing of a scene.

clock delta

The built-in float identifierclock delta returns the amount of time between clock val-
ues in animations in POV-Ray. While most animations only need the clock value itself,
some animation calculations are easier if you know how long since the last frame.
Caution must be used when designing such scenes. If you render a scene with too few
frames, the results may be different than if you render with more frames in a given time

30 Scene Description Language

period. On non-animated scenes,clock delta defaults to 1.0. See section “Animation
Options” for more details.

clock on

With this identifier the status of the clock can be checked: 1 is on, 0 is off.

#if(clock_on=0)

//stuff for still image

#else

//some animation

#end

frame number

If you rather want to define the action in POV-Ray animated scenes depending upon
the integer frame numbers, this identifier can be used.
It reads the number of the frame currently being rendered.

#if(frame_number=1)

//stuff for first image or frame

#end

#if(frame_number=2)

//stuff for second image or frame

#end

#if(frame_number=n)

//stuff for n th image or frame

#end

initial clock

This identifier reads the value set through the INI file optionInitial Clock=n.nor the
command-line switch+KIn.n.

final clock

This identifier reads the value set through the INI file optionFinal Clock=n.n or the
command-line switch+KFn.n.

initial frame

This identifier reads the value set through the INI file optionInitial Frame=n or the
command-line switch+KFIn.

final frame

This identifier reads the value set through the INI file optionFinal Frame=n or the
command-line switch+KFFn.

Note: that these values are the ones actually used. When the option ’cyclic animation’
is set, they could be different from the ones originally set in the options.

Image-size are:

FLOAT_BUILT-IN_IDENT:

image_width | image_height

image width

This identifier reads the value set through the INI file optionWidth=n or the command-
line switch+Wn.

image height

1.1 Language Basics 31

This identifier reads the value set through the INI file optionHeight=n or the command-
line switch+Hn.

You could use these keywords to set the camera ratio (up and right vectors) correctly.
The viewing angle of the camera covers the full width of the rendered image. The
camera ratio will always follow the ratio of the image width to height, regardless of the
set image size. Use it like this:

up y*image_height

right x*image_width

You could also make some items of the scene dependent on the image size:

#if (image_width < 300) crand 0.1 #else crand 0.5 #end

or:

image_map {

pattern image_width, image_width { //make pattern resolution

gradient x //dependent of render width

color_map { [0.0 ...] [1.0 ...] }

}

}

Version is:

FLOAT_BUILT-IN_IDENT:

version

The built-in float variable version contains the current setting of the version compat-
ibility option. Although this value defaults to the current POV-Ray version number,
the initial value of version may be set by the INI file optionVersion=n.nor by the
+MVn.n command-line switch. This tells POV-Ray to parse the scene file using syntax
from an earlier version of POV-Ray.

The INI option or switch only affects the initial setting. Unlike other built-in identifiers,
you may change the value ofversion throughout a scene file. You do not use#declare
to change it though. The#version language directive is used to change modes. Such
changes may occur several times within scene files.

Together with the built-in version identifier the #version directive allows you to
save and restore the previous values of this compatibility setting. The new#local

identifier option is especially useful here. For example supposemystuff.inc is in
version 1 format. At the top of the file you could put:

#local Temp_Vers = version; // Save previous value

#version 1.0; // Change to 1.0 mode

... // Version 1.0 stuff goes here...

#version Temp_Vers; // Restore previous version

Note: there should be a semi-colon after the float expression in a#version directive.
If omitted, it generates a warning and some macros may not work properly.

32 Scene Description Language

1.1.4 Vector Expressions

POV-Ray often requires you to specify avector. A vector is a set of related float values.
Vectors may be specified using literals, identifiers or functions which return vector
values. You may also create very complex vector expressions from combinations of
any of these using various familiar operators.

POV-Ray vectors may have from two to five components but the vast majority of vec-
tors have three components. Unless specified otherwise, you should assume that the
word “vector” means a three component vector. POV-Ray operates in a 3D x, y, z co-
ordinate system and you will use three component vectors to specify x, y and z values.
In some places POV-Ray needs only two coordinates. These are often specified by a
2D vector called anUV vector. Fractal objects use 4D vectors. Color expressions use
5D vectors but allow you to specify 3, 4 or 5 components and use default values for the
unspecified components. Unless otherwise noted, all 2, 4 or 5 component vectors work
just like 3D vectors but they have a different number of components.

The syntax for combining vector literals into vector expressions is almost identical to
the rules for float expressions. In the syntax for vector expressions below, some of the
syntax items are defined in the section for float expressions. See “Float Expressions”
for those definitions. Detailed explanations of vector-specific issues are given in the
following sub-sections.

VECTOR:

NUMERIC_TERM [SIGN NUMERIC_TERM]

NUMERIC_TERM:

NUMERIC_FACTOR [MULT NUMERIC_FACTOR]

NUMERIC_FACTOR:

VECTOR_LITERAL |

VECTOR_IDENTIFIER |

SIGN NUMERIC_FACTOR |

VECTOR_FUNCTION |

VECTOR_BUILT-IN_IDENT |

(FULL_EXPRESSION) |

! NUMERIC_FACTOR |

FLOAT

VECTOR_LITERAL:

< FLOAT , FLOAT , FLOAT >

VECTOR_FUNCTION:

min_extent (OBJECT_IDENTIFIER) |

max_extent (OBJECT_IDENTIFIER) |

trace(OBJECT_IDENTIFIER, VECTOR, VECTOR, [VECTOR_IDENTIFIER])|

vaxis_rotate(VECTOR , VECTOR , FLOAT) |

vcross(VECTOR , VECTOR) |

vrotate(VECTOR , VECTOR) |

vnormalize(VECTOR) |

vturbulence(FLOAT, FLOAT, FLOAT, VECTOR)

VECTOR_BUILT-IN_IDENT:

x | y | z | t | u | v

Note: VECTORIDENTIFIERSare identifiers previously declared to have vector val-
ues.

1.1 Language Basics 33

Literals

Vector literals consist of two to five float expressions that are bracketed by angle brack-
ets< and>. The terms are separated by commas. For example here is a typical three
component vector:

< 1.0, 3.2, -5.4578 >

The commas between components are necessary to keep the program from thinking
that the 2nd term is the single float expression3.2-5.4578 and that there is no 3rd
term. If you see an error message such as “Float expected but ’>’ found instead” then
you probably have missed a comma.

Sometimes POV-Ray requires you to specify floats and vectors side-by-side. The rules
for vector expressions allow for mixing of vectors with vectors or vectors with floats
so commas are required separators whenever an ambiguity might arise. For exam-
ple <1,2,3>-4 evaluates as a mixed float and vector expression where 4 is subtracted
from each component resulting in<-3,-2,-1>. However the comma in<1,2,3>,-4
means this is a vector followed by a float.

Each component may be a full float expression. For example<This+3,That/3,5*Other Thing>
is a valid vector.

Identifiers

Vector identifiers may be declared to make scene files more readable and to parameter-
ize scenes so that changing a single declaration changes many values. An identifier is
declared as follows.

VECTOR_DECLARATION:

#declare IDENTIFIER = EXPRESSION; |

#local IDENTIFIER = EXPRESSION;

Where IDENTIFIER is the name of the identifier up to 40 characters long andEX-
PRESSIONis any valid expression which evaluates to a vector value.

Note: there should be a semi-colon after the expression in a vector declaration. If
omitted, it generates a warning and some macros may not work properly. See “ #declare
vs. #local” for information on identifier scope.

Here are some examples....

#declare Here = <1,2,3>;

#declare There = <3,4,5>;

#declare Jump = <Foo*2,Bar-1,Bob/3>;

#declare Route = There-Here;

#declare Jump = Jump+<1,2,3>;

Note: you invoke a vector identifier by using its name without any angle brackets. As
the last example shows, you can re-declare a vector identifier and may use previously
declared values in that re-declaration. There are several built-in identifiers which POV-
Ray declares for you. See section “Built-in Vector Identifiers” for details.

34 Scene Description Language

Operators

Vector literals, identifiers and functions may also be combined in expressions the
same as float values. Operations are performed on a component-by-component basis.
For example<1,2,3> + <4,5,6> evaluates the same as<1+4,2+5,3+6> or <5,7,9>.
Other operations are done on a similar component-by-component basis. For example
(<1,2,3> = <3,2,1>) evaluates to<0,1,0> because the middle components are equal
but the others are not. Admittedly this isn’t very useful but it’s consistent with other
vector operations.

Conditional expressions such as(C ? A : B) require that C is a float expression butA
andB may be vector expressions. The result is that the entire conditional evaluates as
a valid vector. For example ifFoo and Bar are floats then(Foo < Bar ? <1,2,3>

: <5,6,7>) evaluates as the vector<1,2,3> if Foo is less than Bar and evaluates as
<5,6,7> otherwise.

You may use the dot operator to extract a single float component from a vector. Suppose
the identifier Spot was previously defined as a vector. ThenSpot.x is a float value
that is the first component of this x, y, z vector. SimilarlySpot.y andSpot.z reference
the 2nd and 3rd components. IfSpot was a two component UV vector you could use
Spot.u andSpot.v to extract the first and second component. For a 4D vector use.x,
.y, .z, and.t to extract each float component. The dot operator is also used in color
expressions which are covered later.

Operator Promotion

You may use a lone float expression to define a vector whose components are all the
same. POV-Ray knows when it needs a vector of a particular type and will promote
a float into a vector if need be. For example the POV-Rayscale statement requires a
three component vector. If you specifyscale 5 then POV-Ray interprets this asscale
<5,5,5> which means you want to scale by 5 in every direction.

Versions of POV-Ray prior to 3.0 only allowed such use of a float as a vector in various
limited places such asscale and turbulence. However you may now use this trick
anywhere. For example...

box{0,1} // Same as box{<0,0,0>,<1,1,1>}

sphere{0,1} // Same as sphere{<0,0,0>,1}

When promoting a float into a vector of 2, 3, 4 or 5 components, all components are set
to the float value, however when promoting a vector of a lower number of components
into a higher order vector, all remaining components are set to zero. For example if
POV-Ray expects a 4D vector and you specify9 the result is<9,9,9,9> but if you
specify<7,6> the result is <7,6,0,0>.

Functions

POV-Ray defines a variety of built-in functions for manipulating floats, vectors and
strings. Function calls consist of a keyword which specifies the name of the function
followed by a parameter list enclosed in parentheses. Parameters are separated by
commas. For example:

1.1 Language Basics 35

keyword(param1,param2)

The following are the functions which return vector values. They take one or more float,
integer, vector, or string parameters. Assume thatA andB are any valid expression that
evaluates to a vector; andF is any float expression.

min extent (OBJECT IDENTIFIER), max extent (OBJECT IDENTIFIER). Themin extent
andmax extent return the minimum and maximum coordinates of a #declared object’s
bounding box (Corner1 and Corner2), in effect allowing you to find the dimensions and
location of the object.

Note: this is not perfect, in some cases (such as CSG intersections and differences or
isosurfaces) the bounding box does not represent the actual dimensions of the object.

Example:

#declare Sphere =

sphere {

<0,0,0>, 1

pigment { rgb <1,0,0> }

}

#declare Min = min_extent (Sphere);

#declare Max = max_extent (Sphere);

object { Sphere }

box {

Min, Max

pigment { rgbf <1,1,1,0.5> }

}

trace(OBJECT IDENTIFIER, A, B, [VECTOR IDENTIFIER]). trace helps you finding
the exact location of a ray intersecting with an object’s surface. It traces a ray begin-
ning at the pointA in the direction specified by the vectorB. If the ray hits the specified
object, this function returns the coordinate where the ray intersected the object. If not,
it returns<0,0,0>. If a fourth parameter in the form of a vector identifier is provided,
the normal of the object at the intersection point (not including any normal perturba-
tions due to textures) is stored into that vector. If no intersection was found, the normal
vector is reset to<0,0,0>.

Note: Checking the normal vector for<0,0,0> is the only reliable way to determine
whether an intersection has actually occurred, intersections can and do occur anywhere,
including at<0,0,0>.

Example:

#declare MySphere = sphere { <0, 0, 0>, 1 }

#declare Norm = <0, 0, 0>;

#declare Start = <1, 1, 1>;

#declare Inter=

trace (MySphere, Start, <0, 0, 0>-Start, Norm);

object {

MySphere

texture {

pigment { rgb 1}

}

}

#if (vlength(Norm)!=0)

36 Scene Description Language

cylinder {

Inter, Inter+Norm, .1

texture {

pigment {color red 1}

}

}

#end

vaxis rotate(A,B,F) RotateA about B by F. Given the x,y,z coordinates of a point in
space designated by the vectorA, rotate that point about an arbitrary axis defined by the
vectorB. Rotate it through an angle specified in degrees by the float valueF. The result
is a vector containing the new x,y,z coordinates of the point.

vcross(A,B) Cross product ofA andB. Returns a vector that is the vector cross product
of the two vectors. The resulting vector is perpendicular to the two original vectors
and its length is equal to the area of the parallelogram defined by them. Or to put
in an other way, the cross product can also be formulated as:AxB = |A| * |B| *

sin(angle(A,B)) * perpendicular unit vector(A,B) So the length of the resulting
vector is proportional to the sine of the angle betweenA andB. See the animated demo
sceneVECT2.POV for an illustration.

vnormalize(A) Normalize vector A. Returns a unit length vector that is the same di-
rection as A. Formula isvnormalize(A)=A/vlength(A).

Note:vnormalize(<0,0,0>) will result in an error.

vrotate(A,B) Rotate A about origin by B. Given the x,y,z coordinates of a point
in space designated by the vectorA, rotate that point about the origin by an amount
specified by the vectorB. Rotate it about the x-axis by an angle specified in degrees by
the float value B.x. Similarly B.y andB.z specify the amount to rotate in degrees
about the y-axis and z-axis. The result is a vector containing the new x,y,z coordinates
of the point.

vturbulence(Lambda, Omega, Octaves, A) Turbulence vector at A. Given the x,y,z
coordinates of a point in space designated by the vector A, return the turbulence vector
for that point based on the numbers given for Lambda, Omega and Octaves. For the
meaning of the parameters, check out the Lambda, Omega and Octaves sections.
The amount of turbulence can be controlled by multiplying the turbulence vector by
a multiple. The frequency at which the turbulence vector changes can be controlled
by multiplying A with a multiple. The turbulence vector returned by the function can
be added to the original point A to obtain a turbulated version of the point A. Example :
#declare MyVector = MyVector + Amount*vturbulence(2, 0.5, 6,MyVector*Frequency

);

See section “Float Functions” for other functions which are somewhat vector-related
but which return floats. In addition to the above built-in functions, you may also define
your own functions using the#macro directive. See the section “User Defined Macros”
for more details.

Built-in Constants

There are several built-in vector identifiers. You can use them to specify values or to
create expressions but you cannot re-declare them to change their values. They are:

1.1 Language Basics 37

VECTOR_BUILT-IN_IDENT:

x | y | z | t | u | v

All built-in vector identifiers never change value. They are defined as though the fol-
lowing lines were at the start of every scene.

#declare x = <1, 0, 0>;

#declare y = <0, 1, 0>;

#declare z = <0, 0, 1>;

#declare t = <0, 0, 0, 1>;

#declare u = <1, 0>;

#declare v = <0, 1>;

The built-in vector identifiersx, y, and z provide much greater readability for your
scene files when used in vector expressions. For example....

plane { y, 1} // The normal vector is obviously "y".

plane { <0,1,0>, 1} // This is harder to read.

translate 5*x // Move 5 units in the "x" direction.

translate <5,0,0> // This is less obvious.

An expression like5*x evaluates to5*<1,0,0> or <5,0,0>.

Similarly u andv may be used in 2D vectors. When using 4D vectors you should use
x, y, z, and t and POV-Ray will promotex, y, and z to 4D when used where 4D is
required.

1.1.5 Specifying Colors

COLOR:

COLOR_BODY |

color COLOR_BODY | (this means the keyword color or

colour COLOR_BODY colour may optionally precede

 any color specification)

COLOR_BODY:

COLOR_VECTOR |

COLOR_KEYWORD_GROUP |

COLOR_IDENTIFIER

COLOR_VECTOR:

rgb <3_Term_Vector> |

rgbf <4_Term_Vector> |

rgbt <4_Term_Vector> |

[rgbft] <5_Term_Vector>

COLOR_KEYWORD_GROUP:

[COLOR_KEYWORD_ITEM]...

COLOR_KEYWORD_ITEM:

COLOR_IDENTIFIER |

red Red_Amount |

blue Blue_Amount |

green Green_Amount |

filter Filter_Amount |

transmit Transmit_Amount

Note: COLORIDENTIFIERSare identifiers previously declared to have color values.
The 3, 4, and 5 term vectors are usually vector literals but may be vector expressions

38 Scene Description Language

or floats promoted to vectors. See “Operator Promotion” and the sections below.

POV-Ray often requires you to specify a color. Colors consist of five values or color
components. The first three are calledred, green, andblue. They specify the intensity
of the primary colors red, green and blue using an additive color system like the one
used by the red, green and blue color phosphors on a color monitor.

The 4th component, calledfilter, specifies the amount of filtered transparency of a
substance. Some real-world examples of filtered transparency are stained glass win-
dows or tinted cellophane. The light passing through such objects is tinted by the
appropriate color as the material selectively absorbs some frequencies of light while
allowing others to pass through. The color of the object is subtracted from the light
passing through so this is called subtractive transparency.

The 5th component, calledtransmit, specifies the amount of non-filtered light that is
transmitted through a surface. Some real-world examples of non-filtered transparency
are thin see-through cloth, fine mesh netting and dust on a surface. In these examples,
all frequencies of light are allowed to pass through tiny holes in the surface. Although
the amount of light passing through is diminished, the color of the light passing through
is unchanged.

The color of the object and the color transmitted through the object together contribute
100% of the final color. So iftransmit is set to 0.9, the transmitted color contributes
90% and the color of the object contributes only 10%. This is also true outside of the
0-1 range, so for example iftransmit is set to 1.7, the transmitted color contributes
with 170% and the color of the object contributes with minus 70%. Usingtransmit

values outside of the 0-1 range can be used to create interesting special effects, but does
not correspond to any phenomena seen in the real world. An example:

#version 3.5;

global_settings {assumed_gamma 1.0}

camera {location -2.5*z look_at 0 orthographic}

box {

0,1

texture {

pigment {

gradient y

colour_map {

[0, red 1]

[1, blue 1]

}

}

finish{ambient 1}

}

texture {

pigment {

gradient x

colour_map {

[0, rgb 0.5 transmit -3]

[1, rgb 0.5 transmit 3]

}

}

finish{ambient 1}

}

1.1 Language Basics 39

translate <-0.5,-0.5,0>

scale <3,2,1>

}

When using thetransmit value for special effects, you can visualize it this way: The
transmit value means “contrast”. 1.0 is no change in contrast, 0.5 is half contrast, 2.0
is double contrast and so on. You could say thattransmit “scales” the colors. The
color of the object is the “center value”. All colors will get closer to the “center value”
if transmit is between 0 and 1, and all colors will spread away from the “center value”
if transmit is greater than 1. Iftransmit is negative the colors will be inverted around
the “center value”. Rgb 0.5 is common to use as “center value”, but other values can
be used for other effects. The “center value” really is a color, and non-gray colors
can be used for interesting effects. The red, green and blue components are handled
separately.

Note: early versions of POV-Ray used the keywordalpha to specify filtered trans-
parency. However that word is often used to describe non-filtered transparency. For
this reasonalpha is no longer used.

Each of the five components of a color are float values which are normally in the range
between 0.0 and 1.0. However any values, even negatives may be used.

Under most circumstances the keywordcolor is optional and may be omitted. We
also support the British or Canadian spellingcolour. Colors may be specified using
vectors, keywords with floats or identifiers. You may also create very complex color
expressions from combinations of any of these using various familiar operators. The
syntax for specifying a color has evolved since POV-Ray was first released. We have
maintained the original keyword-based syntax and added a short-cut vector notation.
Either the old or new syntax is acceptable however the vector syntax is easier to use
when creating color expressions.

The syntax for combining color literals into color expressions is almost identical to the
rules for vector and float expressions. In the syntax for vector expressions, some of the
syntax items are defined in the section for float expressions. See “Float Expressions”
for those definitions. Detailed explanations of color-specific issues are given in the
following sub-sections.

Color Vectors

The syntax for a color vector is...

COLOR_VECTOR:

rgb <3_Term_Vector> |

rgbf <4_Term_Vector> |

rgbt <4_Term_Vector> |

[rgbft] <5_Term_Vector>

...where the vectors are any valid vector expressions of 3, 4 or 5 components. For
example

color rgb <1.0, 0.5, 0.2>

This specifies a color whose red component is 1.0 or 100% of full intensity. The green
component is 0.5 or 50% of full intensity and the blue component is 0.2 or 20% of full

40 Scene Description Language

intensity. Although the filter and transmit components are not explicitly specified, they
exist and are set to their default values of 0 or no transparency.

Thergbf keyword requires a four component vector. The 4th component is the filter
component and the transmit component defaults to zero. Similarly thergbt keyword
requires four components where the 4th value is moved to the 5th component which is
transmit and then the filter component is set to zero.

Thergbft keyword allows you to specify all five components. Internally in expressions
all five are always used.

Under some circumstances, if the vector expression is a 5 component expression or
there is a color identifier in the expression then thergbtf keyword is optional.

Color Keywords

The older keyword method of specifying a color is still useful and many users prefer it.

COLOR_KEYWORD_GROUP:

[COLOR_KEYWORD_ITEM]...

COLOR_KEYWORD_ITEM:

COLOR_IDENTIFIER |

red Red_Amount | blue Blue_Amount | green Green_Amount |

filter Filter_Amount | transmit Transmit_Amount

Although thecolor keyword at the beginning is optional, it is more common to see it
in this usage. This is followed by any of five additional keywordsred, green, blue,
filter, or transmit. Each of these component keywords is followed by a float expres-
sion. For example

color red 1.0 green 0.5

This specifies a color whose red component is 1.0 or 100% of full intensity and the
green component is 0.5 or 50% of full intensity. Although the blue, filter and transmit
components are not explicitly specified, they exist and are set to their default values
of 0. The component keywords may be given in any order and if any component is
unspecified its value defaults to zero. ACOLORIDENTIFIER can also be specified
but it should always be first in the group. See “Common Color Pitfalls” for details.

Color Identifiers

Color identifiers may be declared to make scene files more readable and to parameterize
scenes so that changing a single declaration changes many values. An identifier is
declared as follows.

COLOR_DECLARATION:

#declare IDENTIFIER = COLOR; |

#local IDENTIFIER = COLOR;

WhereIDENTIFIER is the name of the identifier up to 40 characters long andCOLOR
is any valid specification.

1.1 Language Basics 41

Note: there should be a semi-colon at the end of the declaration. If omitted, it generates
a warning and some macros may not work properly. See “ #declare vs. #local” for
information on identifier scope.

Here are some examples....

#declare White = rgb <1,1,1>;

#declare Cyan = color blue 1.0 green 1.0;

#declare Weird = rgb <Foo*2,Bar-1,Bob/3>;

#declare LightGray = White*0.8;

#declare LightCyan = Cyan red 0.6;

As theLightGray example shows you do not need any color keywords when creating
color expressions based on previously declared colors. The last example shows you
may use a color identifier with the keyword style syntax. Make sure that the identifier
comes first before any other component keywords.

Like floats and vectors, you may re-define colors throughout a scene but the need to do
so is rare.

Color Operators

Color vectors may be combined in expressions the same as float or vector values.
Operations are performed on a component-by-component basis. For examplergb

<1.0,0.5,0.2>*0.9 evaluates the same asrgb<1.0,0.5,0.2>*<0.9,0.9,0.9> or
rgb<0.9,0.45,0.18>. Other operations are done on a similar component-by-component
basis.

You may use the dot operator to extract a single component from a color. Suppose the
identifier Shade was previously defined as a color. ThenShade.red is the float value
of the red component ofShade. Similarly Shade.green, Shade.blue, Shade.filter
andShade.transmit extract the float value of the other color components.shade.gray

returns the gray value of the color vector.

Common Color Pitfalls

The variety and complexity of color specification methods can lead to some common
mistakes. Here are some things to consider when specifying a color.

When using filter transparency, the colors which come through are multiplied by the
primary color components. For example if gray light such asrgb<0.9,0.9,0.9>
passes through a filter such asrgbf<1.0,0.5,0.0,1.0> the result is rgb<0.9,0.45,0.0>
with the red let through 100%, the green cut in half from 0.9 to 0.45 and the blue totally
blocked. Often users mistakenly specify a clear object by

color filter 1.0

but this has implied red, green and blue values of zero. You’ve just specified a totally
black filter so no light passes through. The correct way is either

color red 1.0 green 1.0 blue 1.0 filter 1.0

or

42 Scene Description Language

color transmit 1.0

In the 2nd example it doesn’t matter what the rgb values are. All of the light passes
through untouched. Another pitfall is the use of color identifiers and expressions with
color keywords. For example...

color My_Color red 0.5

this substitutes whatever was the red component ofMy Color with a red component of
0.5 however...

color My_Color + red 0.5

adds 0.5 to the red component ofMy Color and even less obvious...

color My_Color * red 0.5

that cuts the red component in half as you would expect but it also multiplies the green,
blue, filter and transmit components by zero! The part of the expression after the
multiply operator evaluates torgbft<0.5,0,0,0,0> as a full 5 component color.

The following example results in no change toMy Color.

color red 0.5 My_Color

This is because the identifier fully overwrites the previous value. When using identifiers
with color keywords, the identifier should be first. Another issue to consider: some
POV-Ray syntax allows full color specifications but only uses the rgb part. In these
cases it is legal to use a float where a color is needed. For example:

finish { ambient 1 }

The ambient keyword expects a color so the value1 is promoted to<1,1,1,1,1>which
is no problem. However

pigment { color 0.4 }

is legal but it may or may not be what you intended. The0.4 is promoted to<0.4,0.4,0.4,0.4,0.4>
with the filter and transmit set to 0.4 as well. It is more likely you wanted...

pigment { color rgb 0.4 }

in which case a 3 component vector is expected. Therefore the0.4 is promoted to
<0.4,0.4,0.4,0.0,0.0> with default zero for filter and transmit. Finally there is an-
other problem which arises when using color dot operators in#declare or #local
directives. Consider the directive:

#declare MyColor = rgb <0.75, 0.5, 0.75>;

#declare RedAmt = MyColor.red;

Now RedAmt should be a float but unfortunately it is a color. POV-Ray looks at the first
keyword after the equals to try to guess what type of identifier you want. It sees the
color identifier MyColor and assumes you want to declare a color. It then computes
the float value as 0.75 then promotes that intorgbft<0.75,0.75,0.75,0.75,0.75>.
It would take a major rewrite to fix this problem so we’re just warning you about it.
Any of the following work-arounds will work properly.

#declare RedAmt = 0.0+MyColor.red;

#declare RedAmt = 1.0*MyColor.red;

#declare RedAmt = (MyColor.red);

1.1 Language Basics 43

1.1.6 User-Defined Functions

Some objects allow you to specify functions that will be evaluated while rendering to
determine the surface of these objects. In this respect functions are quite different to
macros, which are evaluated at parse time but do not otherwise affect rendering. Addi-
tionally you may call these functions anywhere a Float Function is allowed, even during
parsing. The syntax is identical to Float Expressions, however, only float functions that
apply to float values may be used. Excluded are for examplestrlen or vlength. You
find a full list of supported float functions in the syntax definition below.

FLOAT:

LOGIC_AND [OR LOGIC_AND]

OR:

|

LOGIC_AND:

REL_TERM [AND REL_TERM]

AND:

&

REL_TERM:

TERM [REL_OPERATOR TERM]

REL_OPERATOR:

< | <= | >= | > | = | !=

TERM:

FACTOR [SIGN FACTOR]

SIGN:

+ | -

FACTOR:

MOD_EXPRESSION [MULT MOD_EXPRESSION]

MULT:

* | /

EXPRESSION:

FLOAT_LITERAL |

FLOAT_IDENTIFIER |

FLOAT_FUNCTION |

FLOAT_BUILT-IN_IDENT |

FUNCTION_IDENTIFIER |

(FLOAT) |

IDENTIFIER |

SIGN EXPRESSION

FLOAT_FUNCTION:

abs(FLOAT) | acos(FLOAT) | acosh(FLOAT) | asin(FLOAT) |

asinh(FLOAT) | atan(FLOAT) | atanh(FLOAT) |

atan2(FLOAT , FLOAT) | ceil(FLOAT) | cos(FLOAT) |

cosh(FLOAT) | degrees(FLOAT) | exp(FLOAT) |

floor(FLOAT) | int(FLOAT) | ln (Float) | log(FLOAT) |

max(FLOAT , FLOAT, ...) | min(FLOAT , FLOAT, ...) |

mod(FLOAT , FLOAT) | pow(FLOAT , FLOAT) |

radians(FLOAT) | sin(FLOAT) | sinh(FLOAT) |

sqrt(FLOAT) | tan(FLOAT) | tanh(FLOAT) |

select(FLOAT , FLOAT , FLOAT [, FLOAT])

FUNCTION_IDENTIFIER:

#local FUNCTION_IDENTIFIER = function { FLOAT } |

#declare FUNCTION_IDENTIFIER = function { FLOAT } |

#local FUNCTION_IDENTIFIER = function(IDENT_LIST) { FLOAT } |

44 Scene Description Language

#declare FUNCTION_IDENTIFIER = function(IDENT_LIST) { FLOAT } |

#local FUNCTION_IDENTIFIER = function{SPECIAL_FLOAT_FUNCTION} |

#local VECTOR_IDENTIFIER = function{SPECIAL_VECTOR_FUNCTION} |

#local COLOR_IDENTIFIER = function { SPECIAL_COLOR_FUNCTION } |

IDENT_LIST:

IDENT_ITEM [, IDENT_LIST]

IDENT_ITEM:

x | y | z | u | v | IDENTIFIER

(Note: x = u and y = v)

SPECIAL_FLOAT_FUNCTION:

pattern { PATTERN_BLOCK }

SPECIAL_VECTOR_FUNCTION:

TRANSFORMATION_BLOCK | SPLINE

SPECIAL_COLOR_FUNCTION:

PIGMENT

PATTERN_BLOCK:

PATTERN

Note: Only the above mentioned items can be used in user-defined functions. For
example the rand() function is not available.

All of the above mentioned float functions are described in the section Float Functions.

Sum and Product functions

prod(i, b, n, a) The product function.

n∏
i=b

a

Equation 1.1: product function

sum(i, b, n, a) The sum function.

n∑
i=b

a

Equation 1.2: sum function

For bothprod andsum: i is any variable name anda is any expression, usually depend-
ing oni. b andn are also any expression.
Example:

#declare factorial = function(C) { prod(i, 1, C, i) }

#declare A = factorial(5);

The first parameter is the name of the iteration variable. The second is the initial
value expression and the third is the final value expression. Those may not depend
on the iteration variable but the iteration variable may still be used inside those two

1.1 Language Basics 45

expressions (because it happens to already have been defined) but its value is undefined.
The last expression is the actual expression which will be iterated through. It may use
any variable in scope.

The scope of an iteration variable is the sequence operation function. That is, a iteration
variable is only defined when used inside thesum/prod function. Of coursesum/prod
functions may be nested. However, there is one limit of a maximum of 56 local variable
defined simultaneously, which essentially means that in any combinationsum/prod

functions cannot be nested deeper than 56 levels.

The iteration variable is incremented by one for each step, but its initial and final value
may be any value. The iteration will be continued as long as the iteration value is less
or equal to the final value.

Note: because the iteration value is a floating-point variable, adding one will add a
certain bias in a long iterations and thus the floating-point precision will be an issue
in such a case and needs to be considered by allowing a reasonable error for the final
value!

If the expression to be added has a negative sign it will of course in effect be substracted.
Thus changing the sign will allow to generate negative values in the sum function.
Equally multiplying by1/expression effectively creates a division when used in the
prod function.

Obviously to work in the first place the initial value of the result is the neutral element
of the operation. That is, a sum calculation starts with0 and a product calculation starts
with 1 just like it is assumed in the sum and product functions in ’regular’ math.

It should be noted that mathematically either sum or product are redundant because:

log10(prod(i, b, n, a)) = sum(i, b, n, log10(a))

Functions and Macros

You can use macros in functions, but the macros will be called only once when the
function is defined, not every time the function is called. You cannot pass function
variables to the macros.

You can pass functions to macros, how to do this is best explained by an example:

#macro Foo(Bar, X)

#declare Y = Bar(X);

#declare Z = Bar(Y);

#end

#declare FUNC=function(n){n+2}

Foo(FUNC, 1)

#debug str(Y,5,5)

#debug "\n"

#debug str(Z,5,5)

#debug "\n"

46 Scene Description Language

Declaring User-Defined Float Functions

You declare a user defined function using the#declare or #local directives. By de-
fault a function takes three parameters and you do not have to explicitly specify the
parameter names. The default three parameters arex, y andz. For example:

#declare foo = function { x + y * z }

If you need fewer or more parameters you have to explicitly specify the parameter list.

Note: x andu as well asy andv are equivalent so you may not specify both parameter
names. You may not specify two or more parameters with the same name either. Doing
so may result in a parse error or undefined function results.

The following are valid functions with parameters:

#declare foo2 = function(x, y, z) { x + y * z }

#declare foo3 = function(k1, k2, z, y) { x + y * z + k1 * y + k2 }

#declare foo4 = function(h) { h * h + h }

#declare foo4 = function(u, v) { x + y * v } //=u + v*v

#declare foo4 = function(x, v, z) { u + y * v + z } //=x + v*v + z

Limits:

• The minimum number of parameters per function is 1.

• The maximum number of allowed parameters per function is 56.

• The maximum number offunction blocks per scene is 1048575.

• The maximum number of operators per function is about 200000. Individual
limits will be different depending on the types of operators used in the function.

• The maximum depth for nesting functions is 1024.

• The maximum number of constants in all functions 1048575.

Note: Redeclaring functions, directly, is not allowed. The way to do this is toundef it
first.

There is one special float function type. You may declare apattern function.

Note: the syntax is identical to that of patterns, however, you may not specify colors.
Its result is always a float and not a color vector, as returned by a function containing a
pigment.

#declare foo = function {

pattern {

checker

}

}

Note: the number of parameters of special function types is determined automatically,
so you do not need to specify parameter names.

1.1 Language Basics 47

Declaring User-Defined Vector Functions

Right now you may only declare vector functions using one of the special function
types. Supported types aretransform andspline functions. For example:

#declare foo = function {

transform {

rotate <90, 0, 0>

scale 4

}

}

#declare myvector = foo(4, 3, 7);

#declare foo2 = function {

spline {

linear_spline

0.0, <0,0,0>

0.5, <1,0,0>

1.0, <0,0,0>

}

}

#declare myvector2 = foo2(0.7);

Function splines take the vector size into account. That is, a function containing a
spline with five components will also return a five component vector (aka a color), a
function containing a spline with two components will only return a two component
vector and so on.

Note: the number of parameters of special function types is determined automatically,
so you do not need to specify parameter names.

Declaring User-Defined Color Functions

Right now you may only declare color functions using one of the special function types.
The only supported type is thepigment function. You may use every validpigment.
This is a very simple example:

#declare foo = function {

pigment {

color red 1

}

}

#declare Vec = foo(1,2,3)

An example using a pattern:

#declare foo = function {

pigment {

crackle

color_map {

[0.3, color Red]

48 Scene Description Language

[1.0, color Blue]

}

}

}

#declare Val = foo(2,3,4).gray

Note: the number of parameters of special function types is determined automatically,
so you do not need to specify parameter names.

Internal Pre-Defined Functions

Several functions are pre-defined. These internal functions can be accessed through the
“functions.inc”, so it should be included in your scene.
The number of required parameters and what they control are also given in the include
file, but the “functions.inc” chapter in the “Standard Include File” section gives more
information.

1.1.7 Strings

The POV-Ray language requires you to specify a string of characters to be used as a
file name, text for messages or text for a text object. Strings may be specified using
literals, identifiers or functions which return string values. See “String Functions”
for details on string functions. Although you cannot build string expressions from
symbolic operators such as are used with floats, vectors or colors, you may perform
various string operations using string functions. Some applications of strings in POV-
Ray allow for non-printing formatting characters such as newline or form-feed.

STRING:

STRING_FUNCTION |

STRING_IDENTIFIER |

STRING_LITERAL STRING_LITERAL:

"up to 256 ASCII characters"

STRING_FUNCTION:

str(FLOAT , INT , INT) |

concat(STRING , STRING , [STRING ,...]) | chr(INT) |

substr(STRING , INT , INT) | strupr(STRING) |

strlwr(STRING) | vstr(INT, VECTOR, STRING, INT, INT)

String Literals

String literals begin with a double quote mark ’“’ which is followed by up to 256 char-
acters and are terminated by another double quote mark. You can change the character
set of strings using theglobal settings charset option. The following are all valid
string literals:

”Here“ ”There“ ”myfile.gif“ ”textures.inc“

Note: if you need to specify a quote mark in a string literal you must precede it with a
backslash.

1.1 Language Basics 49

Example

"Joe said \"Hello\" as he walked in."

is converted to

Joe said "Hello" as he walked in.

If you need to specify a backslash, you will have to specify two. For example:

"This is a backslash \\ and this is two \\\\"

Is converted to:

This is a backslash \ and this is two \\

Windows users need to be especially wary about this as the backslash is also the win-
dows path separator. For example, the following code does not produce the intended
result:

#declare DisplayFont = "c:\windows\fonts\lucon.ttf"

text { ttf DisplayFont "Hello", 2,0 translate y*1.50 }

New users might expect this to create a text object using the font ”c:\windows\fonts\lucon.ttf”.
Instead, it will give an error message saying that it cannot find the font file ”c:windowsontslucon.ttf”.

The correct form of the above code is as follows:

#declare DisplayFont = "c:\\windows\\fonts\\lucon.ttf"

text { ttf DisplayFont "Hello", 2,0 translate y*1.50 }

The escaping of backslashes occurs in all POV-Ray string literals. There are also other
formatting codes such as\n for new line. See ”Text Formatting” for details.

String Identifiers

String identifiers may be declared to make scene files more readable and to parameter-
ize scenes so that changing a single declaration changes many values. An identifier is
declared as follows.

STRING_DECLARATION:

#declare IDENTIFIER = STRING |

#local IDENTIFIER = STRING

WhereIDENTIFIERis the name of the identifier up to 40 characters long andSTRING
is any valid string specification.

Note: unlike floats, vectors, or colors, there need not be a semi-colon at the end of the
declaration. See ”#declare vs. #local” for information on identifier scope.

Here are some examples...

#declare Font_Name = "ariel.ttf"

#declare Inc_File = "myfile.inc"

#declare Name = "John"

#declare Name = concat(Name," Doe")

As the last example shows, you can re-declare a string identifier and may use previously
declared values in that re-declaration.

50 Scene Description Language

String Functions

POV-Ray defines a variety of built-in functions for manipulating floats, vectors and
strings. Function calls consist of a keyword which specifies the name of the function
followed by a parameter list enclosed in parentheses. Parameters are separated by
commas. For example:

keyword(param1,param2)

The following are the functions which return string values. They take one or more
float, integer, vector, or string parameters. Assume thatA is any valid expression that
evaluates to a float;B, L, andP are floats which are truncated to integers internally,S,
S1, S2 etc are strings.

chr(B) Character whose character value isB. Returns a single character string. The
character value of the character is specified by an integerB which must be in the range
0 to 65535 if you specifiedcharset utf8 in theglobal settings and 0 to 127 if you
specifiedcharset ascii. Refer to your platform specific documentation if you speci-
fiedcharset sys. For examplechr(70) is the string ”F”. When rendering text objects
you should be aware that the characters rendered are dependent on the (TTF) font being
used.

concat(S1,S2,...) Concatenate stringsS1 and S2. Returns a string that is the
concatenation of all parameter strings. Must have at least 2 parameters but may have
more. For example:

concat("Value is ", str(A,3,1), " inches")

If the float valueA was 12.34321 the result is"Value is 12.3 inches" which is a
string.

str(A,L,P): Convert float A to a formatted string. Returns a formatted string repre-
sentation of float valueA. The integer parameterL specifies the minimum length of the
string and the type of left padding used if the string’s representation is shorter than the
minimum. If L is positive then the padding is with blanks. IfL is negative then the
padding is with zeros. The overall minimum length of the formatted string isabs(L).
If the string needs to be longer, it will be made as long as necessary to represent the
value.

The integer parameterP specifies the number of digits after the decimal point. IfP is
negative then a compiler-specific default precision is use. Here are some examples:

str(123.456, 0, 3) "123.456"

str(123.456, 4, 3) "123.456"

str(123.456, 9, 3) " 123.456"

str(123.456,-9, 3) "00123.456"

str(123.456, 0, 2) "123.46"

str(123.456, 0, 0) "123"

str(123.456, 5, 0) " 123"

str(123.000, 7, 2) " 123.00"

str(123.456, 0,-1) "123.456000" (platform specific)

strlwr(S) Lower case ofS. Returns a new string in which all upper case letters in the
string S1 are converted to lower case. The original string is not affected. For example

1.1 Language Basics 51

strlwr("Hello There!") results in ”hello there!”.

substr(S,P,L) Sub-string fromS. Returns a string that is a subset of the characters
in parameter S starting at the position specified by the integer valueP for a length
specified by the integer valueL. For example substr("ABCDEFGHI",4,2) evaluates to
the string ”DE”. If P+L-1>strlen(S)an error occurs.

strupr(S) Upper case ofS. Returns a new string in which all lower case letters in the
stringS are converted to upper case. The original string is not affected. For example
strupr("Hello There!") results in ”HELLO THERE!”.

vstr(N,A,S,L,P) Convert vector A to a formatted string. Returns a formatted string
representation of vectorA where the elements of the vector are separated by the string
parameterS. The integer parameterN specifies the amount of dimensions in vectorA. N
is autoclipped to the range of 2 to 5, without warning. Specifying a vectorA with more
dimensions than given byN will result in an error.
The integer parameterL specifies the minimum length of the string and the type of left
padding used if the string’s representation is shorter than the minimum. The integer
parameterP specifies the number of digits after the decimal point. IfP is negative then
a compiler-specific default precision is use. The function ofL andP is the same as in
str. Here are some examples:

vstr(2, <1,2>, ", ", 0,1) "1.0, 2.0"

vstr(5, <1,2,3,4,5>, ", ", 0,1) "1.0, 2.0, 3.0, 4.0, 5.0"

vstr(1, 1, ", ", 0,1) "1.0, 1.0"

vstr(2, 1, ", ", 0,1) "1.0, 1.0"

vstr(5, 1, ", ", 0,1) "1.0, 1.0, 1.0, 1.0, 1.0"

vstr(7, 1, ", ", 0,1) "1.0, 1.0, 1.0, 1.0, 1.0"

vstr(3, <1,2>, ", ", 0,1) "1.0, 2.0, 0.0"

vstr(5, <1,2,3>, ", ", 0,1) "1.0, 2.0, 3.0, 0.0, 0.0"

vstr(3, <1,2,3,4>, ", ", 0,1) error

See section ”Float Functions” for other functions which are somewhat string-related
but which return floats. In addition to the above built-in functions, you may also define
your own functions using the#macro directive. See the section ”User Defined Macros”
for more details.

1.1.8 Array Identifiers

You may declare arrays of identifiers of up to five dimensions. Any item that can be
declared as an identifier can be declared in an array.

Declaring Arrays

The syntax for declaring an array is as follows:

ARRAY_DECLARATION:

#declare IDENTIFIER = array[INT][[INT]]..[ARRAY_INITIALIZER] |

#local IDENTIFIER = array[INT][[INT]]..[ARRAY_INITIALIZER]

ARRAY_INITIALIZER:

{ARRAY_ITEM, [ARRAY_ITEM,]... }

ARRAY_ITEM:

52 Scene Description Language

RVALUE | ARRAY_INITIALIZER

Where IDENTIFIER is the name of the identifier up to 40 characters long and INT is
a valid float expression which is internally truncated to an integer which specifies the
size of the array. The optionalARRAYINITIALIZER is discussed in the next section
”Array Initializers”. Here is an example of a one-dimensional, uninitialized array.

#declare MyArray = array[10]

This declares an uninitialized array of ten elements. The elements are referenced as
MyArray[0] throughMyArray[9]. As yet, the type of the elements are undetermined.
Once you have initialized any element of the array, all other elements can only be
defined as that type. An attempt to reference an uninitialized element results in an
error. For example:

#declare MyArray = array[10]

#declare MyArray[5] = pigment{White} //all other elements must

//be pigments too.

#declare MyArray[2] = normal{bumps 0.2} //generates an error

#declare Thing = MyArray[4] //error: uninitialized array element

Multi-dimensional arrays up to five dimensions may be declared. For example:

#declare MyGrid = array[4][5]

declares a 20 element array of 4 rows and 5 columns. Elements are referenced from
MyGrid[0][0] to MyGrid[3][4]. Although it is permissible to reference an entire array
as a whole, you may not reference just one dimension of a multi-dimensional array.
For example:

#declare MyArray = array[10]

#declare MyGrid = array[4][5]

#declare YourArray = MyArray //this is ok

#declare YourGrid = MyGrid //so is this

#declare OneRow = MyGrid[2] //this is illegal

The#ifdef and#ifndef directives can be used to check whether a specific element of
an array has been declared. For methods to determine the size of an array look in the
float section fordimensions anddimension size

Large uninitialized arrays do not take much memory. Internally they are arrays of
pointers so they probably use just 4 bytes per element. Once initialized with values,
they consume memory depending on what you put in them.

The rules for local vs. global arrays are the same as any other identifier.

Note: this applies to the entire array. You cannot mix local and global elements in the
same array. See ”#declare vs. #local” for information on identifier scope.

Array Initializers

Because it is cumbersome to individually initialize the elements of an array, you may
initialize it as it is created using array initializer syntax. For example:

#include "colors.inc"

#declare FlagColors = array[3] {Red,White,Blue}

1.1 Language Basics 53

Multi-dimensional arrays may also be initialized this way. For example:

#declare Digits =

array[4][10]

{

{7,6,7,0,2,1,6,5,5,0},

{1,2,3,4,5,6,7,8,9,0},

{0,9,8,7,6,5,4,3,2,1},

{1,1,2,2,3,3,4,4,5,5}

}

The commas are required between elements and between dimensions as shown in the
example.

1.1.9 Spline Identifiers

Splines give you a way to define ’pathways’ through your scenes. You specify a series
of points, and POV-Ray interpolates to make a curve connecting them. Every point
along the spline has a numerical value. A good example of a spline is the path of a
moving object: the spline itself would be the path traced out by the object and the ’pa-
rameter’ would be time; as time changes the object’s position moves along the spline.
Therefore, given a time reference you could use this spline to find the position of the
object. In fact, splines are very well suited to animation.

The syntax is:

SPLINE_DECLARATION:

#declare IDENTIFIER =

spline {

[SPLINE_IDENTIFIER] |

[SPLINE_TYPE] |

[Val_1, <Point_1>[,]

Val_2, <Point_2>[,]

...

Val_n, <Point_n>]

}

SPLINE_TYPE:

linear_spline | quadratic_spline | cubic_spline | natural_spline

SPLINE_USAGE:

MySpline(Val) | MySpline(Val, SPLINE_TYPE)

The first item gives the type of interpolation.
In alinear spline, straight lines connect each point.
In aquadratic spline, a smooth curve defined by a second-order polynomial connects
each point.
In cubic spline andnatural spline, a smooth curve defined by a third-order polyno-
mial connects each point.
The default islinear spline.

Following this are a number of float values each followed by a position vector, all
separated by commas.Val 1, Val 2, etc, are the value of the spline parameter at each
specific point. The points need not be in order of their parameter values. If two points

54 Scene Description Language

have the same parameter value, the second point will replace the first. Beyond the range
of the lowest and highest parameter values, the spline position is fixed at the endpoints.

Note: Because of the way cubicsplines are defined: the first and last points are tan-
gents rather than points on the spline, cubicspline interpolation is only valid between
the second and next-to-last points. For all other spline types, interpolation is valid from
the first point to the last point. For t-values outside the valid range, POV-Ray returns
the value of the nearest valid point.

To use a spline, you place the spline identifier followed by the parameter (in paren-
theses) wherever you would normally put a vector, similar to a macro. Splines behave
mostly like three-dimensional vectors.
Here is an example:

camera { location <0,2,-2> look_at 0 }

light_source { <-5,30,-10> 1 }

#declare MySpline =

spline {

cubic_spline

-.25, <0,0,-1>

0.00, <1,0,0>

0.25, <0,0,1>

0.50, <-1,0,0>

0.75, <0,0,-1>

1.00, <1,0,0>

1.25, <0,0,1>

}

#declare ctr = 0;

#while (ctr < 1)

sphere {

MySpline(ctr),.25

pigment { rgb <1-ctr,ctr,0> }

}

#declare ctr = ctr + 0.01;

#end

You can also have POV-Ray evaluate a spline as if it were a different type of spline by
specifying the type of spline after the value to interpolate at, for example:

sphere{ <2,0,2>, .25 pigment{rgb MySpline(clock, linear_spline)}}

Splines are ’intelligent’ when it comes to returning vectors. The vector with the most
components in the spline determines the size of the returned vector. This allows vectors
from two to five components to be returned by splines.

Also, function splines take the vector size into account. That is, a function containing
a spline with five components will also return a five component vector (aka a color),
a function containing a spline with two components will only return a two component
vector and so on.

1.2 Language Directives 55

Splines and Macros

You can pass functions to macros, how to do this is best explained by an example

#macro Foo(Bar, Val)

#declare Y = Bar(Val).y;

#end

#declare myspline = spline {

1, <4,5>

3, <5,5>

5, <6,5>

}

Foo(myspline, 2)

#debug str(Y,5,5)

#debug "\n"

1.2 Language Directives

The POV Scene Language contains several statements calledlanguage directiveswhich
tell the file parser how to do its job. These directives can appear in almost any place
in the scene file - even in the middle of some other statements. They are used to
include other text files in the stream of commands, to declare identifiers, to define
macros, conditional, or looped parsing and to control other important aspects of scene
file processing.

Each directive begins with the hash character# (often called a number sign or pound
sign). It is followed by a keyword and optionally other parameters.

In versions of POV-Ray prior to 3.0, the use of this# character was optional. Language
directives could only be used between objects, camera or lightsource statements and
could not appear within those statements. The exception was the#include which
could appear anywhere. Now that all language directives can be used almost anywhere,
the# character is mandatory. The following keywords introduce language directives.

#break

#case

#debug

#declare

#default

#else

#end

#error

#fclose

#fopen

#if

#ifdef

#ifndef

#include

#local

#macro

#range

#read

#render

#statistics

#switch

#undef

#version

#warning

#while

#write

Table 1.5: All language directives

56 Scene Description Language

Earlier versions of POV-Ray considered the keyword#max intersections and the key-
word #max trace level to be language directives but they have been moved to the
global settings statement and should be placed there without the# sign. Their use as
a directive still works but it generates a warning and may be discontinued in the future.

1.2.1 Include Files and the #include Directive

The language allows include files to be specified by placing the line

#include "filename.inc"

at any point in the input file. The filename may be specified by any valid string ex-
pression but it usually is a literal string enclosed in double quotes. It may be up to 40
characters long (or your computer’s limit), including the two double-quote characters.

The include file is read in as if it were inserted at that point in the file. Using include is
almost the same as cutting and pasting the entire contents of this file into your scene.

Include files may be nested. You may have at most 10 nested include files. There is no
limit on un-nested include files.

Generally, include files have data for scenes but are not scenes in themselves. By
convention scene files end in.pov and include files end with.inc.

It is legal to specify drive and directory information in the file specification however
it is discouraged because it makes scene files less portable between various platforms.
Use of full lower case is also recommended but not required.

Note: if you ever intend to distribute any source files you make for POV-Ray, remember
that some operating systems have case-sensitive file names).

It is typical to put standard include files in a special sub-directory. POV-Ray can only
read files in the current directory or one referenced by theLibrary Path option or+L
switch. See section ”Library Paths”.

You may use the#local directive to declare identifiers which are temporary in duration
and local to the include file in scope. For details see ”#declare vs. #local”.

1.2.2 The #declare and #local Directives

Identifiers may be declared and later referenced to make scene files more readable
and to parameterize scenes so that changing a single declaration changes many values.
There are several built-in identifiers which POV-Ray declares for you. See section
”Built-in Float Identifiers” and ”Built-in Vector Identifiers” for details.

Declaring identifiers

An identifier is declared as follows.

DECLARATION:

#declare IDENTIFIER = RVALUE |

#local IDENTIFIER = RVALUE

1.2 Language Directives 57

RVALUE:

FLOAT; | VECTOR; | COLOR; | STRING | OBJECT | TEXTURE |

PIGMENT | NORMAL | FINISH | INTERIOR | MEDIA | DENSITY |

COLOR_MAP | PIGMENT_MAP | SLOPE_MAP | NORMAL_MAP |

DENSITY_MAP | CAMERA | LIGHT_SOURCE | FOG | RAINBOW |

SKY_SPHERE | TRANSFORM

WhereIDENTIFIERis the name of the identifier up to 40 characters long andRVALUE
is any of the listed items. They are called that because they are values that can appear
to theright of the equals sign. The syntax for each is in the corresponding section of
this language reference. Here are some examples.

#declare Rows = 5;

#declare Count = Count+1;

#local Here = <1,2,3>;

#declare White = rgb <1,1,1>;

#declare Cyan = color blue 1.0 green 1.0;

#declare Font_Name = "ariel.ttf"

#declare Rod = cylinder {-5*x,5*x,1}

#declare Ring = torus {5,1}

#local Checks = pigment { checker White, Cyan }

object{ Rod scale y*5 } // not "cylinder { Rod }"

object {

Ring

pigment { Checks scale 0.5 }

transform Skew

}

Note: that there should be a semi-colon after the expression in all float, vector and
color identifier declarations. This semi-colon is introduced in POV-Ray version 3.1. If
omitted, it generates a warning and some macros may not work properly. Semicolons
after other declarations are optional.

Declarations, like most language directives, can appear almost anywhere in the file -
even within other statements. For example:

#declare Here=<1,2,3>;

#declare Count=0; // initialize Count

union {

object { Rod translate Here*Count }

#declare Count=Count+1; // re-declare inside union

object { Rod translate Here*Count }

#declare Count=Count+1; // re-declare inside union

object { Rod translate Here*Count }

}

As this example shows, you can re-declare an identifier and may use previously de-
clared values in that re-declaration.

Note: object identifiers use the generic wrapper statementobject{ ... }. You do not
need to know what kind of object it is.

Declarations may be nested inside each other within limits. In the example in the
previous section you could declare the entire union as a object. However for technical
reasons there are instances where you may not use any language directive inside the

58 Scene Description Language

declaration of floats, vectors or color expressions. Although these limits have been
loosened somewhat since POV-Ray 3.1, they still exist.

Identifiers declared within#macro ... #end blocks are not created at the time the macro
is defined. They are only created at the time the macro is actually invoked. Like all
other items inside such a #macro definition, they are ignored when the macro is defined.

#declare vs. #local

Identifiers may be declared either global using#declare or local using the#local
directive.

Those created by the#declare directive are permanent in duration and global in scope.
Once created, they are available throughout the scene and they are not released until all
parsing is complete or until they are specifically released using#undef. See ”Destroy-
ing Identifiers”.

Those created by the#local directive are temporary in duration and local in scope.
They temporarily override any identifiers with the same name. See ”Identifier Name
Collisions”.

If #local is used inside a#macro then the identifier is local to that macro. When the
macro is invoked and the#local directive is parsed, the identifier is created. It persists
until the#end directive of the macro is reached. At the#end directive, the identifier is
destroyed. Subsequent invocations of the macro create totally new identifiers.

Use of#local within an include file but not in a macro, also creates a temporary iden-
tifier that is local to that include file. When the include file is included and the#local

directive is parsed, the identifier is created. It persists until the end of the include file is
reached. At the end of file the identifier is destroyed. Subsequent inclusions of the file
create totally new identifiers.

Use of #local in the main scene file (not in an include file and not in a macro) is
identical to#declare. For clarity sake you should not use#local in a main file except
in a macro.

There is currently no way to create permanent, yet local identifiers in POV-Ray.

Local identifiers may be specifically released early using#undef but in general there is
no need to do so. See ”Destroying Identifiers”.

Identifier Name Collisions

Local identifiers may have the same names as previously declared identifiers. In this
instance, the most recent, most local identifier takes precedence. Upon entering an
include file or invoking a macro, a new symbol table is created. When referencing
identifiers, the most recently created symbol table is searched first, then the next most
recent and so on back to the global table of the main scene file. As each macro or
include file is exited, its table and identifiers are destroyed. Parameters passed by value
reside in the same symbol table as the one used for identifiers local to the macro.

1.2 Language Directives 59

The rules for duplicate identifiers may seem complicated when multiple-nested in-
cludes and macros are involved, but in actual practice the results are generally what
you intended.

Consider this example: You have a main scene file calledmyscene.pov and it contains

#declare A = 123;

#declare B = rgb<1,2,3>;

#declare C = 0;

#include "myinc.inc"

Inside the include file you invoke a macro calledMyMacro(J,K,L). It isn’t important
where MyMacro is defined as long as it is defined before it is invoked. In this example,
it is important that the macro is invoked from withinmyinc.inc.

The identifiersA, B, and C are generally available at all levels. If eithermyinc.inc
or MyMacro contain a line such as#declare C=C+1; then the valueC is changed
everywhere as you might expect.

Now suppose insidemyinc.inc you do...

#local A = 546;

The main version ofA is hidden and a newA is created. This newA is also available in-
side MyMacro becauseMyMacro is nested insidemyinc.inc. Once you exitmyinc.inc,
the local A is destroyed and the originalA with its value of123 is now in effect. Once
you have created the localA insidemyinc.inc, there is no way to reference the original
globalA unless you#undef A or exit the include file. Using#undef always undefines
the most local version of an identifier.

Similarly if MyMacro contained...

#local B = box{0,1}

then a new identifierB is created local to the macro only. The original value ofB
remains hidden but is restored when the macro is finished. The localB need not have
the same type as the original.

The complication comes when trying to assign a new value to an identifier at one level
that was declared local at an earlier level. Suppose insidemyinc.inc you do...

#local D = 789;

If you are insidemyinc.inc and you want to incrementD by one, you might try to do...

#local D = D + 1;

but if you try to do that insideMyMacro you’ll create a newD which is local toMyMacro
and not the D which is external toMyMacro but local to myinc.inc. Therefore you’ve
said ”create aMyMacro D from the value ofmyinc.inc’s D plus one”. That’s probably
not what you wanted. Instead you should do...

#declare D = D + 1;

You might think this creates a newD that is global but it actually increments the my-
inc.inc version ofD. Confusing isn’t it? Here are the rules:

60 Scene Description Language

1. When referencing an identifier, you always get the most recent, most local ver-
sion. By ”referencing” we mean using the value of the identifier in a POV-
Ray statement or using it on the right of an equals sign in either a#declare or
#local.

2. When declaring an identifier using the#local keyword, the identifier which is
created or has a new value assigned, is ALWAYS created at the current nesting
level of macros or include files.

3. When declaring a NEW, NON-EXISTANT identifier using#declare, it is cre-
ated as fully global. It is put in the symbol table of the main scene file.

4. When ASSIGNING A VALUE TO AN EXISTING identifier using#declare, it
assigns it to the most recent, most local version at the time.

In summary,#local always means ”the current level”, and#declare means ”global”
for new identifiers and ”most recent” for existing identifiers.

Destroying Identifiers with #undef

Identifiers created with#declare will generally persist until parsing is complete. Iden-
tifiers created with#local will persist until the end of the macro or include file in
which they were created. You may however un-define an identifier using the#undef

directive. For example:

#undef MyValue

If multiple local nested versions of the identifier exist, the most local most recent ver-
sion is deleted and any identically named identifiers which were created at higher levels
will still exist.

See also ”The #ifdef and #ifndef Directives”.

1.2.3 File I/O Directives

You may open, read, write, append, and close plain ASCII text files while parsing
POV-Ray scenes. This feature is primarily intended to help pass information between
frames of an animation. Values such as an object’s position can be written while parsing
the current frame and read back during the next frame. Clever use of this feature could
allow a POV-Ray scene to generate its own include files or write self-modifying scripts.
We trust that users will come up with other interesting uses for this feature.

Note: some platform versions of POV-Ray (e.g. Windows) provide means to restrict
the ability of scene files to read & write files.

The #fopen Directive

Users may open a text file using the#fopen directive. The syntax is as follows:

FOPEN_DIRECTIVE:

#fopen IDENTIFIER "filename" OPEN_TYPE

OPEN_TYPE:

1.2 Language Directives 61

read | write | append

WhereIDENTIFIERis an undefined identifier used to reference this file as a file handle,
”filename” is any string literal or string expression which specifies the file name. Files
opened with theread are open for read only. Those opened withwrite create a new
file with the specified name and it overwrites any existing file with that name. Those
opened withappend opens a file for writing but appends the text to the end of any
existing file.

The file handle identifier created by#fopen is always global and remains in effect (and
the file remains open) until the scene parsing is complete or until you#fclose the file.
You may use #ifdef FILE HANDLE IDENTIFIERto see if a file is open.

The #fclose Directive

Files opened with the#fopen directive are automatically closed when scene parsing
completes however you may close a file using the#fclose directive. The syntax is as
follows:

FCLOSE_DIRECTIVE:

#fclose FILE_HANDLE_IDENTIFIER

WhereFILE HANDLE IDENTIFIERis previously opened file opened with the#fopen
directive. See ”The #fopen Directive”.

The #read Directive

You may read string, float or vector values from a plain ASCII text file directly into
POV-Ray variables using the #read directive. The file must first be opened in ”read”
mode using the #fopen directive. The syntax for #read is as follows:

READ_DIRECTIVE:

#read (FILE_HANDLE_IDENTIFIER, DATA_IDENTIFIER[,DATA_IDENTIFIER]..)

DATA_IDENTIFIER:

UNDECLARED_IDENTIFIER | FLOAT_IDENTIFIER | VECTOR_IDENTIFIER |

STRING_IDENTIFIER

WhereFILE HANDLE IDENTIFIER is the previously opened file. It is followed by
one or moreDATA IDENTIFIERs separated by commas. The parentheses around the
identifier list are required. ADATA IDENTIFIER is any undeclared identifier or any
previously declared string identifier, float identifier, or vector identifier. Undefined
identifiers will be turned into global identifiers of the type determined by the data which
is read. Previously defined identifiers remain at whatever globa/õcal status they had
when originally created. Type checking is performed to insure that the proper type data
is read into these identifiers.

The format of the data to be read must be a series of valid string literals, float literals,
or vector literals separated by commas. Expressions or identifiers are not permitted in
the data file however unary minus signs and exponential notation are permitted on float
values.

62 Scene Description Language

If you attempt to read past end-of-file, the file is automatically closed and theFILE HANDLE IDENTIFIER
is deleted from the symbol table. This means that the boolean functiondefined(IDENTIFIER)
can be used to detect end-of-file. For example:

#fopen MyFile "mydata.txt" read

#while (defined(MyFile))

#read (MyFile,Var1,Var2,Var3)

...

#end

The #write Directive

You may write string, float or vector values to a plain ASCII text file from POV-Ray
variables using the#write directive. The file must first be opened in eitherwrite or
append mode using the#fopen directive. The syntax for#write is as follows:

WRITE_DIRECTIVE:

#write(FILE_HANDLE_IDENTIFIER, DATA_ITEM[,DATA_ITEM]...)

DATA_ITEM:

FLOAT | VECTOR | STRING

WhereFILE HANDLE IDENTIFIER is the previously opened file. It is followed by
one or moreDATA ITEMs separated by commas. The parentheses around the identifier
list are required. ADATA ITEM is any valid string expression, float expression, or
vector expression. Float expressions are evaluated and written as signed float literals.
If you require format control, you should use thestr(VALUE,L,P) function to convert
it to a formatted string. See ”String Functions” for details on thestr function. Vector
expressions are evaluated into three signed float constants and are written with angle
brackets and commas in standard POV-Ray vector notation. String expressions are
evaluated and written as specified.

Note: data read by the#read directive must have comma delimiters between values
and quotes around string data but the#write directive does not automatically output
commas or quotes.

For example the following#read directive reads a string, float and vector.

#read (MyFile,MyString,MyFloat,MyVect)

It expects to read something like:

"A quote delimited string", -123.45, <1,2,-3>

The POV-Ray code to write this might be:

#declare Val1 = -123.45;

#declare Vect1 = <1,2,-3>;

#write(MyFile,"\"A quote delimited string\",",Val1,",",Vect1,"\n")

See ”String Literals” and ”Text Formatting” for details on writing special characters
such as quotes, newline, etc.

1.2 Language Directives 63

1.2.4 The #default Directive

POV-Ray creates a default texture when it begins processing. You may change those
defaults as described below. Every time you specify atexture statement, POV-Ray
creates a copy of the default texture. Anything you put in the texture statement over-
rides the default settings. If you attach apigment, normal, or finish to an object
without any texture statement then POV-Ray checks to see if a texture has already been
attached. If it has a texture then the pigment, normal or finish will modify the existing
texture. If no texture has yet been attached to the object then the default texture is
copied and the pigment, normal or finish will modify that texture.

You may change the default texture, pigment, normal or finish using the language di-
rective#default as follows:

DEFAULT_DIRECTIVE:

#default {DEFAULT_ITEM }

DEFAULT_ITEM:

TEXTURE | PIGMENT | NORMAL | FINISH

For example:

#default {

texture {

pigment { rgb <1,0,0> }

normal { bumps 0.3 }

finish { ambient 0.4 }

}

}

This means objects will default to red bumps and slightly high ambient finish. Also
you may change just part of it like this:

#default {

pigment {rgb <1,0,0>}

}

This still changes the pigment of the default texture. At any time there is only one
default texture made from the default pigment, normal and finish. The example above
does not make a separate default for pigments alone.

Note: the special texturestiles and material map or a texture with atexture map
may not be used as defaults.

You may change the defaults several times throughout a scene as you wish. Subsequent
#default statements begin with the defaults that were in effect at the time. If you wish
to reset to the original POV-Ray defaults then you should first save them as follows:

//At top of file

#declare Original_Default = texture {}

later after changing defaults you may restore it with...

#default {texture {Original_Default}}

If you do not specify a texture for an object then the default texture is attached when the
object appears in the scene. It is not attached when an object is declared. For example:

64 Scene Description Language

#declare My_Object =

sphere{ <0,0,0>, 1 } // Default texture not applied

object{ My_Object } // Default texture added here

You may force a default texture to be added by using an empty texture statement as
follows:

#declare My_Thing =

sphere { <0,0,0>, 1 texture {} } // Default texture applied

The original POV-Ray defaults for all items are given throughout the documentation
under each appropriate section.

1.2.5 The #version Directive

As POV-Ray has evolved from version 1.0 through 3.5 we have made every effort to
maintain some amount of backwards compatibility with earlier versions. Some old or
obsolete features can be handled directly without any special consideration by the user.
Some old or obsolete features can no longer be handled at all. Howeversomeold fea-
tures can still be used if you warn POV-Ray that this is an older scene. The#version

directive can be used to switch version compatibility to different setting several times
throughout a scene file. The syntax is:

VERSION_DIRECTIVE:

#version FLOAT;

Note: there should be a semi-colon after the float expression in a#version directive.
This semi-colon is introduced in POV-Ray version 3.1. If omitted, it generates a warn-
ing and some macros may not work properly.

Additionally you may use theVersion=n.noption or the+MVn.nswitch to establish the
initial setting. See ”Language Version” for details. For example one feature introduced
in 2.0 that was incompatible with any 1.0 scene files is the parsing of float expressions.
Using #version 1.0 turns off expression parsing as well as many warning messages
so that nearly all 1.0 files will still work. Naturally the default setting for this option is
#version 3.5.

Note: Some obsolete or re-designed featuresare totally unavailable in POV-Ray 3.5
REGARDLES OF THE VERSION SETTING.Details on these features are noted through-
out this documentation.

The built-in float identifierversion contains the current setting of the version com-
patibility option. See ”Built-in Float Identifiers”. Together with the built-inversion
identifier the#version directive allows you to save and restore the previous values of
this compatibility setting. The new#local identifier option is especially useful here.
For example supposemystuff.inc is in version 1 format. At the top of the file you
could put:

#local Temp_Vers = version; // Save previous value

#version 1.0; // Change to 1.0 mode

... // Version 1.0 stuff goes here...

#version Temp_Vers; // Restore previous version

1.2 Language Directives 65

Future versions of POV-Ray may not continue to maintain full backward compatibility
even with the#version directive. We strongly encourage you to phase in 3.5 syntax as
much as possible.

1.2.6 Conditional Directives

POV-Ray allows a variety of language directives to implement conditional parsing of
various sections of your scene file. This is especially useful in describing the motion
for animations but it has other uses as well. Also available is a#while loop directive.
You may nest conditional directives 200 levels deep.

The #if...#else...#end Directives

The simplest conditional directive is a traditional#if directive. It is of the form...

IF_DIRECTIVE:

#if (Cond) TOKENS... [#else TOKENS...] #end

TheTOKENSare any number of POV-Ray keyword, identifiers, or punctuation and(

Cond) is a float expression that is interpreted as a boolean value. The parentheses are
required. The#end directive is required. A value of 0.0 is false and any non-zero value
is true.

Note: extremely small values of about 1e-10 are considered zero in case of round off

errors.

If Cond is true, the first group of tokens is parsed normally and the second set is
skipped. If false, the first set is skipped and the second set is parsed. For example:

#declare Which=1;

#if (Which)

box { 0, 1 }

#else

sphere { 0, 1 }

#end

The box is parsed and the sphere is skipped. Changing the value ofWhich to 0 means
the box is skipped and the sphere is used. The#else directive and second token group
is optional. For example:

#declare Which=1;

#if (Which)

box { 0, 1 }

#end

Changing the value ofWhich to 0 means the box is removed.

At the beginning of the chapter ”Language Directives” it was stated that ”These direc-
tives can appear in almost any place in the scene file....”. The following is an example
where it will not work, it will confuse the parser:

#if(#if(yes) yes #end) #end

66 Scene Description Language

The #ifdef and #ifndef Directives

The #ifdef and#ifndef directive are similar to the#if directive however they are
used to determine if an identifier has been previously declared.

IFDEF_DIRECTIVE:

#ifdef (IDENTIFIER) TOKENS... [#else TOKENS...] #end

IFNDEF_DIRECTIVE:

#ifndef (IDENTIFIER) TOKENS... [#else TOKENS...] #end

If the IDENTIFIER exists then the first group of tokens is parsed normally and the
second set is skipped. If false, the first set is skipped and the second set is parsed. This
is especially useful for replacing an undefined item with a default. For example:

#ifdef (User_Thing)

// This section is parsed if the

// identifier "User_Thing" was

// previously declared

object{User_Thing} // invoke identifier

#else

// This section is parsed if the

// identifier "User_Thing" was not

// previously declared

box{<0,0,0>,<1,1,1>} // use a default

#end

// End of conditional part

The #ifndef directive works the opposite. The first group is parsed if the identifier
is not defined. As with the #if directive, the#else clause is optional and the#end
directive is required.

The#ifdef and#ifndef directives can be used to determine whether a specific element
of an array has been assigned.

#declare MyArray=array[10]

//#declare MyArray[0]=7;

#ifdef(MyArray[0])

#debug "first element is assigned\n"

#else

#debug "first element is not assigned\n"

#end

The #switch, #case, #range and #break Directives

A more powerful conditional is the#switch directive. The syntax is as follows...

SWITCH_DIRECTIVE:

#switch (Switch_Value) SWITCH_CLAUSE... [#else TOKENS...] #end

SWITCH_CLAUSE:

#case(Case_Value) TOKENS... [#break] |

#range(Low_Value , High_Value) TOKENS... [#break]

TheTOKENSare any number of POV-Ray keyword, identifiers, or punctuation and(

SwitchValue) is a float expression. The parentheses are required. The#end directive
is required. TheSWITCHCLAUSEcomes in two varieties. In the#case variety, the

1.2 Language Directives 67

floatSwitchValueis compared to the floatCaseValue. If they are equal, the condition
is true.

Note: that values whose difference is less than 1e-10 are considered equal in case of
round off errors.

In the#range variety,Low ValueandHigh Valueare floats separated by a comma and
enclosed in parentheses. IfLow Value<=SwitchValueand SwitchValue<=High Value
then the condition is true.

In either variety, if the clause’s condition is true, that clause’s tokens are parsed nor-
mally and parsing continues until a#break, #else or #end directive is reached. If the
condition is false, POV-Ray skips until another#case or #range is found.

There may be any number of#case or #range clauses in any order you want. If a
clause evaluates true but no#break is specified, the parsing will fall through to the
next #case or #range and that clause conditional is evaluated. Hitting#break while
parsing a successful section causes an immediate jump to the#end without processing
subsequent sections, even if a subsequent condition would also have been satisfied.

An optional#else clause may be the last clause. It is only executed if the clause before
it was a false clause.

Here is an example:

#switch (VALUE)

#case (TEST_1)

// This section is parsed if VALUE=TEST_1

#break //First case ends

#case (TEST_2)

// This section is parsed if VALUE=TEST_2

#break //Second case ends

#range (LOW_1,HIGH_1)

// This section is parsed if (VALUE>=LOW_1)&(VALUE<=HIGH_1)

#break //Third case ends

#range (LOW_2,HIGH_2)

// This section is parsed if (VALUE>=LOW_2)&(VALUE<=HIGH_2)

#break //Fourth case ends

#else

// This section is parsed if no other case or

// range is true.

#end // End of conditional part

The #while...#end Directive

The#while directive is a looping feature that makes it easy to place multiple objects in
a pattern or other uses.

WHILE_DIRECTIVE:

#while (Cond) TOKENS... #end

TheTOKENSare any number of POV-Ray keyword, identifiers, or punctuation marks
which are thebodyof the loop. The #while directive is followed by a float expression
that evaluates to a boolean value. A value of 0.0 is false and any non-zero value is true.

68 Scene Description Language

Note: extremely small values of about 1e-10 are considered zero in case of round off

errors.

The parentheses around the expression are required. If the condition is true parsing
continues normally until an#end directive is reached. At the end, POV-Ray loops back
to the #while directive and the condition is re-evaluated. Looping continues until the
condition fails. When it fails, parsing continues after the#end directive.

Note: it is possible for the condition to fail the first time and the loop is totally skipped.
It is up to the user to insure that something inside the loop changes so that it eventually
terminates.

Here is a properly constructed loop example:

#declare Count=0;

#while (Count < 5)

object { MyObject translate x*3*Count }

#declare Count=Count+1;

#end

This example places five copies ofMyObject in a row spaced three units apart in the
x-direction.

1.2.7 User Message Directives

With the addition of conditional and loop directives, the POV-Ray language has the
potential to be more like an actual programming language. This means that it will be
necessary to have some way to see what is going on when trying to debug loops and
conditionals. To fulfill this need we have added the ability to print text messages to the
screen. You have a choice of five different text streams to use including the ability to
generate a fatal error if you find it necessary. Limited formatting is available for strings
output by this method.

Text Message Streams

The syntax for a text message is any of the following:

TEXT_STREAM_DIRECTIVE:

#debug STRING | #error STRING | #warning STRING

WhereSTRINGis any valid string of text including string identifiers or functions which
return strings. For example:

#switch (clock*360)

#range (0,180)

#debug "Clock in 0 to 180 range\n"

#break

#range (180,360)

#debug "Clock in 180 to 360 range\n"

#break

#else

#warning "Clock outside expected range\n"

#warning concat("Value is:",str(clock*360,5,0),"\n")

1.2 Language Directives 69

#end

There are seven distinct text streams that POV-Ray uses for output. You may output
only to three of them. On some versions of POV-Ray, each stream is designated by
a particular color. Text from these streams are displayed whenever it is appropriate
so there is often an intermixing of the text. The distinction is only important if you
choose to turn some of the streams off or to direct some of the streams to text files. On
some systems you may be able to review the streams separately in their own scroll-back
buffer. See ”Directing Text Streams to Files” for details on re-directing the streams to
a text file.

Here is a description of how POV-Ray uses each stream. You may use them for what-
ever purpose you want except note that use of the#error stream causes a fatal error
after the text is displayed.

Debug: This stream displays debugging messages. It was primarily designed for de-
velopers but this and other streams may also be used by the user to display messages
from within their scene files.

Error: This stream displays fatal error messages. After displaying this text, POV-Ray
will terminate. When the error is a scene parsing error, you may be shown several lines
of scene text that leads up to the error.

Warning: This stream displays warning messages during the parsing of scene files and
other warnings. Despite the warning, POV-Ray can continue to render the scene.

The#render and#statistsics could be accessed in previous versions. Their output
is now redirected to the#debug stream. The#banner and#status streams can not be
accessed by the user.

Text Formatting

Some escape sequences are available to include non-printing control characters in your
text. These sequences are similar to those used in string literals in the C programming
language. The sequences are:

"\a" Bell or alarm, 0x07
"\b" Backspace, 0x08
"\f" Form feed, 0x0C
"\n" New line (line feed) 0x0A
"\r" Carriage return 0x0D
"\t" Horizontal tab 0x09
"\uNNNN" Unicode character code NNNN 0xNNNN
"\v" Vertical tab 0x0B
"\0" Null 0x00
"\\" Backslash 0x5C
"\’" Single quote 0x27
"\"" Double quote 0x22

Table 1.6: All character escape sequences

For example:

70 Scene Description Language

#debug "This is one line.\nBut this is another"

Depending on what platform you are using, they may not be fully supported for console
output. However they will appear in any text file if you re-direct a stream to a file.

1.2.8 User Defined Macros

POV-Ray 3.1 introduced user defined macros with parameters. This feature, along
with the ability to declare#local variables, turned the POV-Ray Language into a fully
functional programming language. Consequently, it is now possible to write scene
generation tools in POV-Ray’s own language that previously required external utilities.

The #macro Directive

The syntax for declaring a macro is:

MACRO_DEFINITION:

#macro IDENTIFIER ([PARAM_IDENT] [, PARAM_IDENT]...) TOKENS... #end

WhereIDENTIFIERis the name of the macro andPARAMIDENTs are a list of zero or
more formal parameter identifiers separated by commas and enclosed by parentheses.
The parentheses are required even if no parameters are specified.

TheTOKENSare any number of POV-Ray keyword, identifiers, or punctuation marks
which are the bodyof the macro. The body of the macro may contain almost any
POV-Ray syntax items you desire. It is terminated by the#end directive.

Note: any conditional directives such as#if...#end, #while...#end, etc. must be fully
nested inside or outside the macro so that the corresponding#end directives pair-up
properly.

A macro must be declared before it is invoked. All macro names are global in scope
and permanent in duration. You may redefine a macro by another#macro directive
with the same name. The previous definition is lost. Macro names respond to#ifdef,
#ifndef, and#undef directives. See ”The #ifdef and #ifndef Directives” and ”Destroy-
ing Identifiers with #undef”.

Invoking Macros

You invoke the macro by specifying the macro name followed by a list of zero or more
actual parameters enclosed in parentheses and separated by commas. The number of
actual parameters must match the number of formal parameters in the definition. The
parentheses are required even if no parameters are specified. The syntax is:

MACRO_INVOCATION:

MACRO_IDENTIFIER ([ACTUAL_PARAM] [, ACTUAL_PARAM]...)

ACTUAL_PARAM:

IDENTIFIER | RVALUE

An RVALUE is any value that can legally appear to the right of an equals sign in
a #declare or #local declaration. See ”Declaring identifiers” for information on
RVALUEs. When the macro is invoked, a new local symbol table is created. The actual

1.2 Language Directives 71

parameters are assigned to formal parameter identifiers as local, temporary variables.
POV-Ray jumps to the body of the macro and continues parsing until the matching
#end directive is reached. There, the local variables created by the parameters are de-
stroyed as well as any local identifiers expressly created in the body of the macro. It
then resumes parsing at the point where the macro was invoked. It is as though the
body of the macro was cut and pasted into the scene at the point where the macro was
invoked.

Note: it is possible to invoke a macro that was declared in another file. This is quite nor-
mal and in fact is how many ”plug-ins” work (such as the popular Lens Flare macro).
However, be aware that calling a macro that was declared in a file different from the
one that it is being called from involves more overhead than calling one in the same
file.

This is because POV-Ray does not tokenize and store its language. Calling a macro
in another file therefore requires that the other file be opened and closed for each call.
Normally, this overhead is inconsequential; however, if you are calling the macro many
thousands of times, it can cause significant delays. A future version of the POV-Ray
language will remove this problem.

Here is a simple macro that creates a window frame object when you specify the inner
and outer dimensions.

#macro Make_Frame(OuterWidth,OuterHeight,InnerWidth,

InnerHeight,Depth)

#local Horz = (OuterHeight-InnerHeight)/2;

#local Vert = (OuterWidth-InnerWidth)/2;

difference {

box{

<0,0,0>,<OuterWidth,OuterHeight,Depth>

}

box{

<Vert,Horz,-0.1>,

<OuterWidth-Vert,OuterHeight-Horz,Depth+0.1>

}

}

#end

Make_Frame(8,10,7,9,1) //invoke the macro

In this example, the macro has five float parameters. The actual parameters (the values
8, 10, 7, 9, and 1) are assigned to the five identifiers in the#macro formal parameter
list. It is as though you had used the following five lines of code.

#local OuterWidth = 8;

#local OuterHeight = 10;

#local InnerWidth, = 7;

#local InnerHeight = 9;

#local Depth = 1;

These five identifiers are stored in the same symbol table as any other local identifier
such asHorz or Vert in this example. The parameters and local variables are all de-
stroyed when the#end statement is reached. See ”Identifier Name Collisions” for
a detailed discussion of how local identifiers, parameters, and global identifiers work
when a local identifier has the same name as a previously declared identifier.

72 Scene Description Language

Are POV-Ray Macros a Function or a Macro?

POV-Ray macros are a strange mix of macros and functions. In traditional computer
programming languages, a macro works entirely by token substitution. The body of the
routine is inserted into the invocation point by simply copying the tokens and parsing
them as if they had been cut and pasted in place. Such cut-and-paste substitution is
often calledmacro substitutionbecause it is what macros are all about. In this respect,
POV-Ray macros are exactly like traditional macros in that they use macro substitution
for the body of the macro. However traditional macros also use this cut-and-paste
substitution strategy for parameters but POV-Ray does not.

Suppose you have a macro in the C programming languageTypical Cmac(Param) and
you invoke it asTypical Cmac(else A=B). Anywhere thatParam appears in the macro
body, the four tokenselse, A, =, and B are substituted into the program code using a
cut-and-paste operation. No type checking is performed because anything is legal. The
ability to pass an arbitrary group of tokens via a macro parameter is a powerful (and
sadly often abused) feature of traditional macros.

After careful deliberation, we have decided against this type of parameters for our
macros. The reason is that POV-Ray uses commas more frequently in its syntax than do
most programming languages. Suppose you create a macro that is designed to operate
on one vector and two floats. It might be definedOurMac(V,F1,F2). If you allow
arbitrary strings of tokens and invoke a macro such asOurMac(<1,2,3>,4,5) then it is
impossible to tell if this is a vector and two floats or if its 5 parameters with the two
tokens< and1 as the first parameter. If we design the macro to accept 5 parameters
then we cannot invoke it like this...OurMac(MyVector,4,5).

Function parameters in traditional programming languages do not use token substitu-
tion to pass values. They create temporary, local variables to store parameters that are
either constant values or identifier references which are in effect a pointer to a variable.
POV-Ray macros use this function-like system for passing parameters to its macros.
In our example OurMac(<1,2,3>,4,5), POV-Ray sees the< and knows it must be
the start of a vector. It parses the whole vector expression and assigns it to the first
parameter exactly as though you had used the statement#local V=<1,2,3>;.

Although we say that POV-Ray parameters are more like traditional function parame-
ters than macro parameters, there still is one difference. Most languages require you
to declare the type of each parameter in the definition before you use it but POV-Ray
does not. This should be no surprise because most languages require you to declare the
type of any identifier before you use it but POV-Ray does not. This means that if you
pass the wrong type value in a POV-Ray macro parameter, it may not generate an error
until you reference the identifier in the macro body. No type checking is performed
as the parameter is passed. So in this very limited respect, POV-Ray parameters are
somewhat macro-like but are mostly function-like.

Returning a Value Like a Function

POV-Ray macros have a variety of uses. Like most macros, they provide a parameter-
ized way to insert arbitrary code into a scene file. However most POV-Ray macros will
be used like functions or procedures in a traditional programming language. Macros
are designed to fill all of these roles.

1.2 Language Directives 73

When the body of a macro consists of statements that create an entire item such as an
object, texture, etc. then the macro acts like a function which returns a single value. The
Make Frame macro example in the section ”Invoking Macros” above is such a macro
which returns a value that is an object. Here are some examples of how you might
invoke it.

union { //make a union of two objects

object{ Make_Frame(8,10,7,9,1) translate 20*x}

object{ Make_Frame(8,10,7,9,1) translate -20*x}

}

#declare BigFrame = object{ Make_Frame(8,10,7,9,1)}

#declare SmallFrame = object{ Make_Frame(5,4,4,3,0.5)}

Because no type checking is performed on parameters and because the expression syn-
tax for floats, vectors, and colors is identical, you can create clever macros which work
on all three. See the sample sceneMACRO3.POV which includes this macro to interpo-
late values.

// Define the macro. Parameters are:

// T: Middle value of time

// T1: Initial time

// T2: Final time

// P1: Initial position (may be float, vector or color)

// P2: Final position (may be float, vector or color)

// Result is a value between P1 and P2 in the same proportion

// as T is between T1 and T2.

#macro Interpolate(T,T1,T2,P1,P2)

(P1+(T1+T/(T2-T1))*(P2-P1))

#end

You might invoke it withP1 andP2 as floats, vectors, or colors as follows.

sphere{

Interpolate(I,0,15,<2,3,4>,<9,8,7>), //center location is vector

Interpolate(I,0,15,3.0,5.5) //radius is float

pigment {

color Interpolate(I,0,15,rgb<1,1,0>,rgb<0,1,1>)

}

}

As the float valueI varies from 0 to 15, the location, radius, and color of the sphere
vary accordingly.

There is a danger in using macros as functions. In a traditional programming language
function, the result to be returned is actually assigned to a temporary variable and the
invoking code treats it as a variable of a given type. However macro substitution may
result in invalid or undesired syntax. The definition of the macroInterpolate above
has an outermost set of parentheses. If those parentheses are omitted, it will not matter
in the examples above, but what if you do this...

#declare Value = Interpolate(I,0,15,3.0,5.5)*15;

The end result is as if you had done...

#declare Value = P1+(T1+T/(T2-T1))*(P2-P1) * 15;

which is syntactically legal but not mathematically correct because theP1 term is not

74 Scene Description Language

multiplied. The parentheses in the original example solves this problem. The end result
is as if you had done...

#declare Value = (P1+(T1+T/(T2-T1))*(P2-P1)) * 15;

which is correct.

Returning Values Via Parameters

Sometimes it is necessary to have a macro return more than one value or you may
simply prefer to return a value via a parameter as is typical in traditional programming
language procedures. POV-Ray macros are capable of returning values this way. The
syntax for POV-Ray macro parameters says that the actual parameter may be anIDEN-
TIFIER or an RVALUE. Values may only be returned via a parameter if the parameter
is an IDENTIFIER. Parameters that areRVALUESare constant values that cannot re-
turn information. AnRVALUEis anything that legally may appear to the right of an
equals sign in a#declare or #local directive. For example consider the following
trivial macro which rotates an object about the x-axis.

#macro Turn_Me(Stuff,Degrees)

#declare Stuff = object{Stuff rotate x*Degrees}

#end

This attempts to re-declare the identifierStuff as the rotated version of the object.
However the macro might be invoked withTurn Me(box{0,1},30) which uses a box
object as anRVALUEparameter. This won’t work because the box is not an identifier.
You can however do this

#declare MyObject=box{0,1}

Turn_Me(MyObject,30)

The identifierMyObject now contains the rotated box.

See ”Identifier Name Collisions” for a detailed discussion of how local identifiers,
parameters, and global identifiers work when a local identifier has the same name as a
previously declared identifier.

While it is obvious thatMyObject is an identifier andbox{0,1} is not, it should be noted
that Turn Me(object{MyObject},30)will not work becauseobject{MyObject} is con-
sidered an object statement and is not apure identifier. This mistake is more likely to
be made with float identifiers versus float expressions. Consider these examples.

#declare Value=5.0;

MyMacro(Value) //MyMacro can change the value of Value but...

MyMacro(+Value) //This version and the rest are not lone

MyMacro(Value+0.0) // identifiers. They are float expressions

MyMacro(Value*1.0) // which cannot be changed.

Although all four invocations ofMyMacro are passed the value 5.0, only the first may
modify the value of the identifier.

Chapter 2

Scene Settings

2.1 Command-line Options

The reference section describes all command line switches and INI file keywords that
are used to set the options of POV-Ray. It is supposed to be used as a reference for
looking up things. It does not contain detailed explanations on how scenes are written
or how POV-Ray is used. It just explains all features, their syntax, applications, limits,
drawbacks, etc.

Options may be specified by switches or INI-style options. Almost all INI-style options
have equivalent+/ - switches and most switches have equivalent INI-style option. The
following sections give a detailed description of each POV-Ray option. It includes both
the INI-style settings and the+/ - switches.

The notation and terminology used is described in the tables below.

Keyword=bool TurnKeyword on if bool equalstrue, yes, on or 1 and Turn
it off if it is any other value.

Keyword=true Do this option iftrue, yes, on or 1 is specified.
Keyword=false Do this option iffalse, no, off or 0 is specified.
Keyword=filename SetKeyword to filename where filename is any valid file

name.
Note: some options prohibit the use of any of the above
true or false values as a file name. They are noted in later
sections.

n Any integer such as in+W320
n.n Any float such as inClock=3.45
0.n Any float< 1.0 even if it has no leading 0
s Any string of text
x or y Any single character
path Any directory name, drive optional, no final path separator

(”\” or ” /”, depending on the operating system)

Table 2.1:

76 Scene Settings

Unless otherwise specifically noted, you may assume that either a plus or minus sign
before a switch will produce the same results.

2.1.1 Animation Options

Internal animation loop, automatic output file name numbering and the ability to shell
out to the operating system to external utilities which can assemble individual frames
into an animation, greatly improved the animation capability. The internal animation
loop is simple yet flexible. You may still use external programs or batch files to create
animations without the internal loop.

External Animation Loop

Clock=n.n Setsclock float identifier to n.n
+Kn.n Same asClock=n.n

Table 2.2:

The Clock=n.n option or the +Kn.n switch may be used to pass a single float value
to the program for basic animation. The value is stored in the float identifierclock.
If an object had arotate <0,clock,0> attached then you could rotate the object by
different amounts over different frames by setting+K10.0,+K20.0... etc. on successive
renderings. It is up to the user to repeatedly invoke POV-Ray with a different Clock
value and a different Output File Name for each frame.

Internal Animation Loop

Initial Frame=n Sets initial frame number to n
Final Frame=n Sets final frame number to n
Initial Clock=n.n Sets initial clock value to n.n
Final Clock=n.n Sets final clock value to n.n
+KFIn Same asInitial Frame=n
+KFFn Same asFinal Frame=n
+KIn.n Same asInitial Clock=n.n
+KFn.n Same asFinal Clock=n.n

Table 2.3:

The internal animation loop relieves the user of the task of generating complicated
sets of batch files to invoke POV-Ray multiple times with different settings. While
the multitude of options may look intimidating, the clever set of default values means
that you will probably only need to specify theFinal Frame=n or the+KFFn option to
specify the number of frames. All other values may remain at their defaults.

Any Final Frame setting other than -1 will trigger POV-Ray’s internal animation loop.
For example Final Frame=10 or +KFF10 causes POV-Ray to render your scene 10
times. If you specifiedOutput File Name=file.tga then each frame would be out-
put asfile01.tga, file02.tga, file03.tga etc. The number of zero-padded digits

2.1 Command-line Options 77

in the file name depends upon the final frame number. For example+KFF100 would
generatefile001.tga throughfile100.tga. The frame number may encroach upon
the file name. On MS-DOS with an eight character limit,myscene.pov would render
to mysce001.tga throughmysce100.tga.

The defaultInitial Frame=1 will probably never have to be changed. You would only
change it if you were assembling a long animation sequence in pieces. One scene might
run from frame 1 to 50 and the next from 51 to 100. TheInitial Frame=n or +KFIn
option is for this purpose.

Note: if you wish to render a subset of frames such as 30 through 40 out of a 1 to 100
animation, you should not changeInitial Frame or Final Frame. Instead you should
use the subset commands described in section ”Subsets of Animation Frames”.

Unlike some animation packages, the action in POV-Ray animated scenes does not
depend upon the integer frame numbers. Rather you should design your scenes based
upon the float identifierclock. By default, the clock value is 0.0 for the initial frame
and 1.0 for the final frame. All other frames are interpolated between these values.
For example if your object is supposed to rotate one full turn over the course of the
animation, you could specifyrotate 360*clock*y. Then as clock runs from 0.0 to
1.0, the object rotates about the y-axis from 0 to 360 degrees.

The major advantage of this system is that you can render a 10 frame animation or a
100 frame or 500 frame or 329 frame animation yet you still get one full 360 degree
rotation. Test renders of a few frames work exactly like final renders of many frames.

In effect you define the motion over a continuous float valued parameter (the clock)
and you take discrete samples at some fixed intervals (the frames). If you take a movie
or video tape of a real scene it works the same way. An object’s actual motion depends
only on time. It does not depend on the frame rate of your camera.

Many users have already created scenes for POV-Ray 2 that expect clock values over a
range other than the default 0.0 to 1.0. For this reason we provide theInitial Clock=n.n
or +KIn.nandFinal Clock=n.nor +KFn.noptions. For example to run the clock from
25.0 to 75.0 you would specifyInitial Clock=25.0 andFinal Clock=75.0. Then the
clock would be set to 25.0 for the initial frame and 75.0 for the final frame. In-between
frames would have clock values interpolated from 25.0 through 75.0 proportionally.

Users who are accustomed to using frame numbers rather than clock values could spec-
ify Initial Clock=1.0 and Final Clock=10.0 and Frame Final=10 for a 10 frame
animation.

For new scenes, we recommend you do not change theInitial Clock or Final Clock
from their default 0.0 to 1.0 values. If you want the clock to vary over a different range
than the default 0.0 to 1.0, we recommend you handle this inside your scene file as
follows...

#declare Start = 25.0;

#declare End = 75.0;

#declare My_Clock = Start+(End-Start)*clock;

Then useMy Clock in the scene description. This keeps the critical values 25.0 and 75.0
in your .pov file.

Note: more details concerning the inner workings of the animation loop are in the

78 Scene Settings

section on shell-out operating system commands in section ”Shell-out to Operating
System”.

Subsets of Animation Frames

Subset Start Frame=n Set subset starting frame to n
Subset Start Frame=0.n Set subset starting frame to n percent
Subset End Frame=n Set subset ending frame to n
Subset End Frame=0.n Set subset ending frame to n percent
+SFn or+SF0.n Same asSubset Start Frame
+EFn or+EF0.n Same asSubset End Frame

Table 2.4:

When creating a long animation, it may be handy to render only a portion of the ani-
mation to see what it looks like. Suppose you have 100 frames but only want to render
frames 30 through 40. If you setInitial Frame=30 andFinal Frame=40 then the clock
would vary from 0.0 to 1.0 from frames 30 through 40 rather than 0.30 through 0.40
as it should. Therefore you should leaveInitial Frame=1 andFinal Frame=100 and
useSubset Start Frame=30 andSubset End Frame=40 to selectively render part of the
scene. POV-Ray will then properly compute the clock values.

Usually you will specify the subset using the actual integer frame numbers however
an alternate form of the subset commands takes a float value in the range0.0<=n.nnn
<=1.0which is interpreted as a fraction of the whole animation. For example,Subset Start Frame=0.333

andSubset End Frame=0.667 would render the middle 1/3rd of a sequence regardless
of the number of frames.

Cyclic Animation

Cyclic Animation=bool Turn cyclic animation on/off
+KC Turn cyclic animation on
-KC Turn cyclic animation off

Table 2.5:

Many computer animation sequences are designed to be run in a continuous loop. Sup-
pose you have an object that rotates exactly 360 degrees over the course of your ani-
mation and you didrotate 360*clock*y to do so. Both the first and last frames would
be identical. Upon playback there would be a brief one frame jerkiness. To eliminate
this problem you need to adjust the clock so that the last frame does not match the first.
For example a ten frame cyclic animation should not use clock 0.0 to 1.0. It should
run from 0.0 to 0.9 in 0.1 increments. However if you change to 20 frames it should
run from 0.0 to 0.95 in 0.05 increments. This complicates things because you would
have to change the final clock value every time you changedFinal Frame. Setting
Cyclic Animation=on or using+KC will cause POV-Ray to automatically adjust the fi-
nal clock value for cyclic animation regardless of how many total frames. The default
value for this setting is off.

2.1 Command-line Options 79

Field Rendering

Field Render=bool Turn field rendering on/off
Odd Field=bool Set odd field flag
+UF Turn field rendering on
-UF Turn field rendering off
+UO Set odd field flag on
-UO Set odd field flag off

Table 2.6:

Field rendering is sometimes used for animations when the animation is being output
for television. TVs only display alternate scan lines on each vertical refresh. When
each frame is being displayed the fields are interlaced to give the impression of a higher
resolution image. The even scan lines make up the even field, and are drawn first (i.e.
scan lines 0, 2, 4, etc.), followed by the odd field, made up of the odd numbered scan
lines are drawn afterwards. If objects in an animation are moving quickly, their position
can change noticeably from one field to the next. As a result, it may be desirable in
these cases to have POV-Ray render alternate fields at the actual field rate (which is
twice the frame rate), rather than rendering full frames at the normal frame rate. This
would save a great deal of time compared to rendering the entire animation at twice the
frame rate, and then only using half of each frame.

By default, field rendering is not used. SettingField Render=on or using +UF will
cause alternate frames in an animation to be only the even or odd fields of an animation.
By default, the first frame is the even field, followed by the odd field. You can have
POV-Ray render the odd field first by specifyingOdd Field=on, or by using the +UO
switch.

2.1.2 General Output Options

Height and Width of Output

Height=n Sets screen height to n pixels
Width=n Sets screen width to n pixels
+Hn Same asHeight=n
+Wn Same asWidth=n

Table 2.7:

These switches set the height and width of the image in pixels. This specifies the image
size for file output. The preview display, if on, will generally attempt to pick a video
mode to accommodate this size but the display settings do not in any way affect the
resulting file output.

Partial Output Options

When doing test rendering it is often convenient to define a small, rectangular sub-
section of the whole screen so you can quickly check out one area of the image. The

80 Scene Settings

Start Column=n Set first column to n pixels
Start Column=0.n Set first column to n percent of width
+SCn or+SC0.n Same asStart Column
Start Row=n Set first row to n pixels
Start Row=0.n Set first row to n percent of height
+SRn or+Sn Same asStart Row=n
+SR0.n or+S0.n Same asStart Row=0.n
End Column=n Set last column to n pixels
End Column=0.n Set last column to n percent of width
+ECn or+EC0.n Same asEnd Column
End Row=n Set last row to n pixels
End Row=0.n Set last row to n percent of height
+ERn or+En Same asEnd Row=n
+ER0.n or+E0.n Same asEnd Row=0.n

Table 2.8:

Start Row, End Row, Start Column andEnd Column options allow you to define the
subset area to be rendered. The default values are the full size of the image from (1,1)
which is the upper left to (w,h) on the lower right where w and h are theWidth=n and
Height=n values you have set.

Note: if the number specified is greater than 1 then it is interpreted as an absolute row
or column number in pixels. If it is a decimal value between 0.0 and 1.0 then it is
interpreted as a percent of the total width or height of the image.

For example: Start Row=0.75 and Start Column=0.75 starts on a row 75% down
from the top at a column 75% from the left. Thus it renders only the lower-right 25%
of the image regardless of the specified width and height.

The+SR, +ER, +SC and +EC switches work in the same way as the corresponding INI-
style settings for both absolute settings or percentages. Early versions of POV-Ray
allowed only start and end rows to be specified with+Sn and +En so they are still
supported in addition to+SR and+ER.

When rendering a subset of *columns* (+sc/+ec) POV-Ray generates a full width im-
age and fills the not rendered columns with black pixels. This should not be a problem
for any image reading program no matter what file format is used.

when rendering a subset of *rows* (+sr/+er) POV-Ray writes the full height into the
image file header and only writed those lines into the image that are rendered. This
can cause problems with image reading programs that are not checking the file while
reading and just read over the end.

if POV-Ray wrote the actual height of the partial image into the image header there
would be no way to continue the trace in a later run.

Interrupting Options

On some operating systems once you start a rendering you must let it finish. The
Test Abort=on option or+X switch causes POV-Ray to test the keyboard for keypress.
If you have pressed a key, it will generate a controlled user abort. Files will be flushed

2.1 Command-line Options 81

Test Abort=bool Turn test for user abort on/off
+X Turn test abort on
-X Turn test abort off
Test Abort Count=n Set to test for abort every n pixels
+Xn Set to test for abort every n pixels on
-Xn Set to test for abort off (in future test every n pixels)

Table 2.9:

and closed but only data through the last full row of pixels is saved. POV-Ray exits
with an error code 2 (normally POV-Ray returns 0 for a successful run or 1 for a fatal
error).

When this option is on, the keyboard is polled on every line while parsing the scene file
and on every pixel while rendering. Because polling the keyboard can slow down a ren-
dering, the Test Abort Count=n option or+Xn switch causes the test to be performed
only everyn pixels rendered or scene lines parsed.

Resuming Options

Continue Trace=bool Sets continued trace on/off
+C Sets continued trace on
-C Sets continued trace off
Create Ini=file Generate an INI file to file
Create Ini=true Generate file.ini where file is scene name.
Create Ini=false Turn off generation of previously set file.ini
+GIfile Same asCreate Ini=file

Table 2.10:

If you abort a render while it’s in progress or if you used theEnd Row option to end the
render prematurely, you can useContinue Trace=on or +C option to continue the render
later at the point where you left off. This option reads in the previously generated output
file, displays the partial image rendered so far, then proceeds with the ray-tracing. This
option cannot be used if file output is disabled withOutput to file=off or -F.

TheContinue Trace option may not work if theStart Row option has been set to any-
thing but the top of the file, depending on the output format being used. Also POV-Ray
cannot continue the file once it has been opened and saved again by any program

POV-Ray tries to figure out where to resume an interrupted trace by reading any pre-
viously generated data in the specified output file. All file formats contain the image
size, so this will override any image size settings specified. Some file formats (namely
TGA and PNG) also store information about where the file started (i. e.+SCn and
+SRn options), alpha output+UA, and bit-depth+FNn, which will override these settings.
It is up to the user to make sure that all other options are set the same as the original
render.

TheCreate Ini option or+GI switch provides an easy way to create an INI file with all
of the rendering options, so you can re-run files with the same options, or ensure you
have all the same options when resuming. This option creates an INI file with every

82 Scene Settings

option set at the value used for that rendering. This includes default values which you
have not specified. For example if you run POV-Ray with...

POVRAY +Isimple.pov MYOPTS +GIrerun.ini MOREOPTS

POV-Ray will create a file calledrerun.ini with all of the options used to generate
this scene. The file is not written until all options have been processed. This means
that in the above example, the file will include options from bothmyopts.ini and
moreopts.ini despite the fact that the+GI switch is specified between them. You may
now re-run the scene with...

POVRAY RERUN

or resume an interrupted trace with

POVRAY RERUN +C

If you add other switches with thererun.ini reference, they will be included in future
re-runs because the file is re-written every time you use it.

The Create Ini option is also useful for documenting how a scene was rendered. If
you render waycool.pov with Create Ini=on then it will create a filewaycool.ini
that you could distribute along with your scene file so other users can exactly re-create
your image.

2.1.3 Display Output Options

Display Hardware Settings

Display=bool Turns graphic display on/off
+D Turns graphic display on
-D Turns graphic display off
Video Mode=x Set video mode to x; does not affect on/off
+Dx Set display on; Set mode to x
-Dx Set display off; but for future use mode x
Palette=y Set display palette to y; does not affect on/off
+Dxy Set display on; Set mode x; Set palette y
-Dxy Set display off; use mode x, palette y in future
Display Gamma=n.n Sets the display gamma to n.n

Table 2.11:

TheDisplay=on or +D switch will turn on the graphics display of the image while it is
being rendered. Even on some non-graphics systems, POV-Ray may display an 80 by
24 character”ASCII-Art” version of your image. Where available, the display may
be full, 24-bit true color. SettingDisplay=off or using the-D switch will turn off the
graphics display which is the default.

On the Windows platform, the default isDisplay=on. Turning display off does not, of
course, turn off the actual video display. Instead, POV-Ray will not open the output
window that it normally shows a render in.

The Video Mode=x option sets the display mode or hardware type chosen wherex is
a single digit or letter that is machine dependent. GenerallyVideo Mode=0 means the

2.1 Command-line Options 83

default or an auto-detected setting should be used. When using switches, this character
immediately follows the switch. For example the+D0 switch will turn on the graphics
display in the default mode.

The Palette=y option selects the palette to be used. Typically the single character
parametery is a digit which selects one of several fixed palettes or a letter suchG for
gray scale, H for 15-bit or 16-bit high color or T for 24-bit true color. When using
switches, this character is the 2nd character after the switch. For example the+D0T

switch will turn on the graphics display in the default mode with a true color palette.
The Display Gamma=n.nsetting is not available as a command-line switch.

The Display Gamma setting overcomes the problem of images (whether ray-traced or
not) having different brightness when being displayed on different monitors, different
video cards, and under different operating systems.

Note: theDisplay Gamma is a setting based on your computer’s display hardware, and
should be set correctly once and not changed.

The Display Gamma INI setting works in conjunction with the newassumed gamma
global setting to ensure that POV scenes and the images they create look the same
on all systems. See section ”AssumedGamma” which describes theassumed gamma
global setting and describes gamma more thoroughly.

While the Display Gamma can be different for each system, there are a few general
rules that can be used for settingDisplay Gamma if you don’t know it exactly. If the
Display Gamma keyword does not appear in the INI file, POV-Ray assumes that the dis-
play gamma is 2.2. This is because most PC monitors have a gamma value in the range
1.6 to 2.6 (newer models seem to have a lower gamma value). Mac has the ability to
do gamma correction inside the system software (based on a user setting in the gamma
control panel). If the gamma control panel is turned off, or is not available, the de-
fault Macintosh system gamma is 1.8. Many newer PC graphics cards can do hardware
gamma correction and should use the current DisplayGamma setting, usually 1.0.

Setting your Display Gamma

The following gamma test image can be used to help you set yourDisplay Gamma

accurately.

Before viewing the gamma image darken the room and set the monitor brightness and
contrast to maximum. While viewing a black screen, lower the brightness gradually
until the ”background” is no longer noticeable (ie when it just fades from view). This
may be difficult on monitors that use overscanning, unless you change the viewable
area settings.

Now, lower the contrast until the alternating white and black bars on the left edge of
each column are equal in width. This is trying to get a 50% gray by using half white
and half black. If this is not possible, choose a contrast setting which is about in the
middle. While viewing the image from a distance, or with squinted eyes, one of the
numbered ”swatches” will best match the gray value approximated by the white and
black bars. The number in this ”swatch” is your display’s actual gamma value.

Normal display gamma values are in the range 2.0 to 2.6. If your monitor is usually
used in a dim environment, we often use a gamma value that is 15% - 25% lower than

84 Scene Settings

Figure 2.1: Display gamma test image.

the actual display gamma to give the images more contrast. Some systems, such as
Macs and SGIs, already do gamma correction, so they may have display gammas of
1.0 or 1.8.

For scene files that do not contain anassumed gamma global setting the INI file option
Display Gamma will not have any affect on the preview output of POV-Ray or for most
output file formats. However, theDisplay Gamma value is used when creating PNG
format output files, and also when rendering the POV-Ray example files (because they
have anassumed gamma), so it should still be correctly set for your system to ensure
proper results.

Display Related Settings

Pause When Done=bool Sets pause when done on/off
+P Sets pause when done on
-P Sets pause when done off
Verbose=bool Set verbose messages on/off
+V Set verbose messages on
-V Set verbose messages off
Draw Vistas=bool Turn draw vistas on/off
+UD Turn draw vistas on
-UD Turn draw vistas off

Table 2.12:

On some systems, when the image is complete, the graphics display is cleared and
POV-Ray switches back into text mode to print the final statistics and to exit. Normally
when the graphics display is on, you want to look at the image awhile before continu-
ing. UsingPause When Done=on or +P causes POV-Ray to pause in graphics mode until
you press a key to continue. The default is not to pause (-P).

When the graphics display is not used, it is often desirable to monitor progress of
the rendering. UsingVerbose=on or +V turns on verbose reporting of your rendering
progress. This reports the number of the line currently being rendered, the elapsed time
for the current frame and other information. On some systems, this textual information

2.1 Command-line Options 85

can conflict with the graphics display. You may need to turn this off when the display
is on. The default setting is off (-V).

The optionDraw Vistas=on or +UD was originally a debugging help for POV-Ray’s
vista buffer feature but it was such fun we decided to keep it. Vista buffering is a
spatial sub-division method that projects the 2-D extents of bounding boxes onto the
viewing window. POV-Ray tests the 2-D x, y pixel location against these rectangular
areas to determine quickly which objects, if any, the viewing ray will hit. This option
shows you the 2-D rectangles used. The default setting is off (-UD) because the drawing
of the rectangles can take considerable time on complex scenes and it serves no critical
purpose. See section ”Automatic Bounding Control” for more details.

Mosaic Preview

Preview Start Size=n Set mosaic preview start size to n
+SPn Same as PreviewStartSize=n
Preview End Size=n Set mosaic preview end size to n
+EPn Same as PreviewEnd Size=n

Table 2.13:

Typically, while you are developing a scene, you will do many low resolution test
renders to see if objects are placed properly. Often this low resolution version doesn’t
give you sufficient detail and you have to render the scene again at a higher resolution.
A feature called ”mosaic preview” solves this problem by automatically rendering
your image in several passes.

The early passes paint a rough overview of the entire image using large blocks of
pixels that look like mosaic tiles. The image is then refined using higher resolutions
on subsequent passes. This display method very quickly displays the entire image at a
low resolution, letting you look for any major problems with the scene. As it refines
the image, you can concentrate on more details, like shadows and textures. You don’t
have to wait for a full resolution render to find problems, since you can interrupt the
rendering early and fix the scene, or if things look good, you can let it continue and
render the scene at high quality and resolution.

To use this feature you should first select aWidth and Height value that is the highest
resolution you will need. Mosaic preview is enabled by specifying how big the mosaic
blocks will be on the first pass usingPreview Start Size=n or +SPn. The value n
should be a number greater than zero that is a power of two (1, 2, 4, 8, 16, 32, etc.) If
it is not a power of two, the nearest power of two less than n is substituted. This sets
the size of the squares, measured in pixels. A value of 16 will draw every 16th pixel
as a 16*16 pixel square on the first pass. Subsequent passes will use half the previous
value (such as 8*8, 4*4 and so on.)

The process continues until it reaches 1*1 pixels or until it reaches the size you set
with Preview End Size=n or +EPn. Again the value n should be a number greater
than zero that is a power of two and less than or equal toPreview Start Size. If it
is not a power of two, the nearest power of two less than n is substituted. The default
ending value is 1. If you setPreview End Size to a value greater than 1 the mosaic
passes will end before reaching 1*1, but POV-Ray will always finish with a 1*1. For

86 Scene Settings

example, if you want a single 8*8 mosaic pass before rendering the final image, set
Preview Start Size=8 and Preview End Size=8.

No file output is performed until the final 1*1 pass is reached. Although the preliminary
passes render only as many pixels as needed, the 1*1 pass re-renders every pixel so that
anti-aliasing and file output streams work properly. This makes the scene take up to
25% longer than the regular 1*1 pass to render, so it is suggested that mosaic preview
not be used for final rendering. Also, the lack of file output until the final pass means
that renderings which are interrupted before the 1*1 pass can not be resumed without
starting over from the beginning.

2.1.4 File Output Options

Output to File=bool Sets file output on/off
+F Sets file output on (use default type)
-F Sets file output off

Table 2.14:

By default, POV-Ray writes an image file to disk. When you are developing a scene
and doing test renders, the graphic preview may be sufficient. To save time and disk
activity you may turn file output off with Output to File=off or -F.

Output File Type

Output File Type=x Sets file output format to x
+Fxn Sets file output on; sets format x, depth n
-Fxn Sets file output off; but in future use format x, depth n
Output Alpha=bool Sets alpha output on/off
+UA Sets alpha output on
-UA Sets alpha output off
Bits Per Color=n Sets file output bits/color to n

Table 2.15:

The default type of image file depends on which platform you are using. MS-DOS and
most others default to 24-bit uncompressed Targa. Windows defaults to ’sys’, which
is 24-bit BMP. See your platform-specific documentation to see what your default file
type is. You may select one of several different file types usingOutput File Type=x or
+Fx wherex is one of the following...

.. C Compressed Targa-24 format (RLE, run length encoded)

.. N PNG (portable network graphics) format

.. P Unix PPM format

.. S System-specific such as Mac Pict or Windows BMP

.. T UncompressedTarga-24 format

Table 2.16:

2.1 Command-line Options 87

Note: the obsolete+FD dump format and+FR raw format have been dropped because
they were rarely used and no longer necessary. PPM, PNG, and system specific for-
mats have been added. PPM format images are uncompressed, and have a simple text
header, which makes it a widely portable image format. PNG is an image format de-
signed not only to replace GIF, but to improve on its shortcomings. PNG offers the
highest compression available without loss for high quality applications, such as ray-
tracing. The system specific format depends on the platform used and is covered in the
appropriate system specific documentation.

Most of these formats output 24 bits per pixel with 8 bits for each of red, green and
blue data. PNG and PPM allow you to optionally specify the output bit depth from
5 to 16 bits for each of the red, green, and blue colors, giving from 15 to 48 bits of
color information per pixel. The default output depth for all formats is 8 bits/color
(16 million possible colors), but this may be changed for PNG and PPM format files
by settingBits Per Color=n or by specifying+FNn or +FPn, where n is the desired bit
depth.

Specifying a smaller color depth like 5 bits/color (32768 colors) may be enough for
people with 8- or 16-bit (256 or 65536 color) displays, and will improve compression
of the PNG file. Higher bit depths like 10 or 12 may be useful for video or publishing
applications, and 16 bits/color is good for grayscale height field output (See section
”Height Field” for details on height fields).

Targa format also allows 8 bits of alpha transparency data to be output, while PNG
format allows 5 to 16 bits of alpha transparency data, depending on the color bit depth
as specified above. You may turn this option on withOutput Alpha=on or +UA. The
default is off or -UA.

The alpha channel stores a transparency value for each pixel, just like there is also
stored a value for red green and blue light for each pixel. In POV-Ray, when the alpha
channel is turned on, all areas of the image where the background is partly or fully
visible will be partly or fully transparent. Refractions of the background will also be
transparent, but not reflections. Also anti-aliasing is taken into account

The philosophy of the alpha channel feature in POV-Ray is that the background color
should not be present in the color of the image when the alpha channel is used. Instead,
the amount of visible background is kept in the alpha and *only* in the alpha channel.
That ensures that images look correct when viewed with the alpha channel.

See section ”Using the Alpha Channel” for further details on using transparency in
imagemaps in your scene.

In addition to support for variable bit-depths, alpha channel, and grayscale formats,
PNG files also store theDisplay Gamma value so the image displays properly on all
systems (see section ”Display Hardware Settings”). Thehf gray 16 global setting, as
described in section ”HFGray 16” will also affect the type of data written to the output
file.

Output File Name

The default output filename is created from the scene name and need not be speci-
fied. The scene name is the input name with all drive, path, and extension information

88 Scene Settings

Output File Name=file Sets output file to file
+Ofile Same asOutput File Name=file

Table 2.17:

stripped. For example if the input file name isc:\povray3\mystuff\myfile.pov the
scene name ismyfile. The proper extension is appended to the scene name based on
the file type. For examplemyfile.tga or myfile.png might be used.

You may override the default output name usingOutput File Name=file or +Ofile. For
example:

Input_File_Name=myinput.pov

Output_File_Name=myoutput.tga

If an output file name of ”-” is specified (a single minus sign), then the image will
be written to standard output, usually the screen. The output can then be piped into
another program or to a GUI if desired.

If the file specified is actually a path or directory or folder name and not a file name,
then the default output name is used but it is written to the specified directory. For
example:

Input_File_Name=myscene.pov

Output_File_Name=c:\povray3\myimages\

This will createc:\povray3\myimages\myscene.tga as the output file.

Output File Buffer

The output-file buffer optionsBuffer Output andBuffer Size are removed per POV-
Ray 3.51

Note: the options are still accepted, but ignored, in order to be backward compatible
with old INI files.

CPU Utilization Histogram

The CPU utilization histogram is a way of finding out where POV-Ray is spending its
rendering time, as well as an interesting way of generating heightfields. The histogram
splits up the screen into a rectangular grid of blocks. As POV-Ray renders the image,
it calculates the amount of time it spends rendering each pixel and then adds this time
to the total rendering time for each grid block. When the rendering is complete, the
histogram is a file which represents how much time was spent computing the pixels in
each grid block.

Not all versions of POV-Ray allow the creation of histograms. The histogram output is
dependent on the file type and the system that POV-Ray is being run on.

2.1 Command-line Options 89

Histogram Type=y Set histogram type to y (Turn off if type is ’X’)
+HTy Same asHistogram Type=y

Table 2.18:

File Type

The histogram output file type is nearly the same as that used for the image output file
types in ”Output File Type”. The available histogram file types are as follows.

+HTC Comma separated values (CSV) often used in spreadsheets
+HTN PNG (portable network graphics) format grayscale
+HTP Unix PPM format
+HTS System-specific such as Mac Pict or Windows BMP
+HTT Uncompressed Targa-24 format (TGA)
+HTX No histogram file output is generated

Table 2.19:

Note: +HTC does not generate a compressed Targa-24 format output file but rather a text
file with a comma-separated list of the time spent in each grid block, in left-to-right and
top-to bottom order. The units of time output to the CSV file are system dependent.
See the system specific documentation for further details on the time units in CSV files.

The Targa and PPM format files are in the POV heightfield format (see ”Height Field”),
so the histogram information is stored in both the red and green parts of the image,
which makes it unsuitable for viewing. When used as a height field, lower values
indicate less time spent calculating the pixels in that block, while higher indicate more
time spent in that block.

PNG format images are stored as grayscale images and are useful for both viewing the
histogram data as well as for use as a heightfield. In PNG files, the darker (lower) areas
indicate less time spent in that grid block, while the brighter (higher) areas indicate
more time spent in that grid block.

File Name

Histogram Name=file Set histogram name to file
+HNfile Same asHistogram Name=file

Table 2.20:

The histogram file name is the name of the file in which to write the histogram data. If
the file name is not specified it will default tohistogram.ext, whereext is based on
the file type specified previously.

Note: that if the histogram name is specified the file name extension should match the
file type.

90 Scene Settings

Histogram Grid Size=nn.mm Set histogram grid to nn by mm
+HSnn.mm Same asHistogram Grid Size=nn.mm

Table 2.21:

Grid Size

The histogram grid size gives the number of times the image is split up in both the
horizontal and vertical directions. For example

povray +Isample +W640 +H480 +HTN +HS160.120 +HNhistogram.png

will split the image into 160*120 grid blocks, each of size 4*4 pixels, and output a
PNG file, suitable for viewing or for use as a heightfield. Smaller numbers for the
grid size mean more pixels are put into the same grid block. With CSV output, the
number of values output is the same as the number of grid blocks specified. For the
other formats the image size is identical to the rendered image rather than the specified
grid size, to allow easy comparison between the histogram and the rendered image. If
the histogram grid size is not specified, it will default to the same size as the image, so
there will be one grid block per pixel.

Note: on systems that do task-switching or multi-tasking the histogram may not exactly
represent the amount of time POV-Ray spent in a given grid block since the histogram
is based on real time rather than CPU time. As a result, time may be spent for oper-
ating system overhead or on other tasks running at the same time. This will cause the
histogram to have speckling, noise or large spikes. This can be reduced by decreasing
the grid size so that more pixels are averaged into a given grid block.

2.1.5 Scene Parsing Options

POV-Ray reads in your scene file and processes it to create an internal model of your
scene. The process is calledparsing. As your file is parsed other files may be read
along the way. This section covers options concerning what to parse, where to find it
and what version specific assumptions it should make while parsing it.

Constant

Declare=IDENTIFIER=FLOAT Declares an identifier with a float value

Table 2.22:

You can now declare a constant in an INI file, and that constant will be available to
the scene. Since INI file statements may also be laced on the command-line, you can
therefore also declare on the command-line (though there is no switch for it).

Declare=MyValue=24

This would be the same as a#declare MyValue=24; in a scene file. The value on the
right-hand side must be a constant float value.

A possible use could be switching off radiosity or photons from commandline:

2.1 Command-line Options 91

--in INI-file / on command-line

Declare=RAD=0

--in scenefile

global_settings {

#if (RAD)

radiosity {

...

}

#end

}

Input File Name

Input File Name=file Sets input file name to file
+Ifile Same asInput File Name=file

Table 2.23:

Note: there may be no space between+I andfile.

You will probably always set this option but if you do not the default input filename is
object.pov. If you do not have an extension then.pov is assumed. On case-sensitive
operating systems both.pov and.POV are tried. A full path specification may be used
(on MS-DOS systems+Ic:\povray3\mystuff\myfile.pov is allowed for example).
In addition to specifying the input file name this also establishes thescene name.

The scene name is the input name with drive, path and extension stripped. In the above
example the scene name ismyfile. This name is used to create a default output file
name and it is referenced other places.

Note: as per version 3.5 you can now specify a POV file on the command-line without
the use of the+i switch (i.e. it works the same way as specifying an INI file without a
switch), the POV file then should be the last on the commandline.

If you use ”-” as the input file name the input will be read from standard input. Thus
you can pipe a scene created by a program to POV-Ray and render it without having a
scene file.

Under MS-DOS you can try this feature by typing.

type ANYSCENE.POV | povray +I-

Include File Name

Include Header=file Sets primary include file name to file
+HIfile Same asInclude Header=file

Table 2.24:

92 Scene Settings

This option allows you to include a file as the first include file of a scene file. You can
for example use this option to always include a specific set of default include files used
by all your scenes.

Library Paths

Library Path=path Add path to list of library paths
+Lpath Same asLibrary Path=path

Table 2.25:

POV-Ray looks for files in the current directory. If it does not find a file it needs it looks
in various other library directories which you specify. POV-Ray does not search your
operating system path. It only searches the current directory and directories which you
specify with this option. For example the standard include files are usually kept in one
special directory. You tell POV-Ray to look there with...

Library_Path=c:\povray3\include

You must not specify any final path separators (”\” or ” /”) at the end.

Multiple uses of this option switch do not override previous settings. Up to twenty
unique paths may be specified. If you specify the exact same path twice it is only
counted once. The current directory will be searched first followed by the indicated
library directories in the order in which you specified them.

Language Version

Version=n.n Set initial language compatibility to version n.n
+MVn.n Same asVersion=n.n

Table 2.26:

As POV-Ray has evolved from version 1.0 through to today we have made every effort
to maintain some amount of backwards compatibility with earlier versions. Some old
or obsolete features can be handled directly without any special consideration by the
user. Some old or obsolete features can no longer be handled at all. Howeversomeold
features can still be used if you warn POV-Ray that this is an older scene. In the POV-
Ray scene language you can use the#version directive to switch version compatibility
to different settings. See section ”The #version Directive” for more details about the
language version directive. Additionally you may use theVersion=n.n option or the
+MVn.n switch to establish theinitial setting. For example one feature introduced in
2.0 that was incompatible with any 1.0 scene files is the parsing of float expressions.
Setting Version=1.0 or using+MV1.0 turns off expression parsing as well as many
warning messages so that nearly all 1.0 files will still work. Naturally the default
setting for this option isVersion=3.5.

Note: some obsolete or re-designed featuresare totally unavailable in the current ver-
sion of POV-Ray REGARDLES OF THE VERSION SETTING.Details on these features
are noted throughout this documentation.

2.1 Command-line Options 93

2.1.6 Shell-out to Operating System

Pre Scene Command=s Set command before entire scene
Pre Frame Command=s Set command before each frame
Post Scene Command=s Set command after entire scene
Post Frame Command=s Set command after each frame
User Abort Command=s Set command when user aborts POV-Ray
Fatal Error Command=s Set command when POV-Ray has fatal error

Table 2.27:

Note: no+ or - switches are available for these options. They cannot be used from the
command line. They may only be used from INI files.

POV-Ray offers you the opportunity to shell-out to the operating system at several key
points to execute another program or batch file. Usually this is used to manage files
created by the internal animation loop however the shell commands are available for
any scene. The strings is a single line of text which is passed to the operating system
to execute a program. For example

Post_Scene_Command=tga2gif -d -m myfile

would use the utilitytga2gif with the-D and-M parameters to convertmyfile.tga to
myfile.gif after the scene had finished rendering.

Note: individual platforms may provide means of preventing shell-outs from occurring.
For example, the Windows version provides a menu command to turn shell-outs off

(which is the default setting for that platform). The reason for this (along with file
I/O restrictions) is to attempt to prevent untrusted INI files from doing harm to your
system.

String Substitution in Shell Commands

It could get cumbersome to change thePost Scene Command every time you changed
scene names. POV-Ray can substitute various values into a command string for you.
For example:

Post_Scene_Command=tga2gif -d -m \%s

POV-Ray will substitute the%s with the scene name in the command. Thescene name
is theInput File Name or +I setting with any drive, directory and extension removed.
For example:

Input_File_Name=c:\povray3\scenes\waycool.pov

is stripped down to the scene namewaycool which results in...

Post_Scene_Command=tga2gif -d -m waycool

In an animation it may be necessary to have the exact output file name with the frame
number included. The string%o will substitute the output file name. Suppose you want
to save your output files in a zip archive using the utility programpkzip. You could
do...

Post_Frame_Command=pkzip -m \%s \%o

94 Scene Settings

After rendering frame 12 ofmyscene.pov POV-Ray would shell to the operating system
with

pkzip -m myscene mysce012.tga

The -M switch in pkzip moves mysce012.tga to myscene.zip and removes it from
the directory. Note that%o includes frame numbers only when in an animation loop.
During thePre Scene Command and Post Scene Command there is no frame number
so the original, unnumberedOutput File Name is used. Any User Abort Command or
Fatal Error Command not inside the loop will similarly give an unnumbered%o substi-
tution.

Here is the complete list of substitutions available for a command string.

%o Output file name with extension and embedded frame number if any
%s Scene name derived by stripping path and ext from input name
%n Frame number of this frame
%k Clock value of this frame
%h Height of image in pixels
%w Width of image in pixels
%% A single % sign.

Table 2.28:

Shell Command Sequencing

Here is the sequence of events in an animation loop. Non-animated scenes work the
exact same way except there is no loop.

1. Process all INI file keywords and command line switches just once.

2. Open any text output streams and do CreateINI if any.

3. Execute PreSceneCommand if any.

4. Loop through frames (or just do once on non-animation).

(a) Execute PreFrameCommand if any.

(b) Parse entire scene file, open output file and read settings, turn on display,
render the frame, destroy all objects, textures etc., close output file, close
display.

(c) Execute PostFrameCommand if any.

(d) Repeat above steps until all frames are done.

5. Execute PostSceneCommand if any.

6. Finish

If the user interrupts processing theUser Abort Command, if any, is executed. User
aborts can only occur during the parsing and rendering parts of step (4b) above. If a
fatal error occurs that POV-Ray notices theFatal Error Command, if any, is executed.
Sometimes an unforeseen bug or memory error could cause a total crash of the program
in which case there is no chance to shell out. Fatal errors can occur just about anywhere

2.1 Command-line Options 95

including during the processing of switches or INI files. If a fatal error occurs before
POV-Ray has read theFatal Error Command string then obviously no shell can occur.

Note: the entire scene is re-parsed for every frame. Future versions of POV-Ray may
allow you to hold over parts of a scene from one frame to the next but for now it starts
from scratch every time.

Note: that thePre Frame Command occurs before the scene is parsed. You might use
this to call some custom scene generation utility before each frame. This utility could
rewrite your .pov or .inc files if needed. Perhaps you will want to generate new.gif
or .tga files for image maps or height fields on each frame.

Shell Command Return Actions

Pre Scene Return=s Set pre scene return actions
Pre Frame Return=s Set pre frame return actions
Post Scene Return=s Set post scene return actions
Post Frame Return=s Set post frame return actions
User Abort Return=s Set user abort return actions
Fatal Error Return=s Set fatal return actions

Table 2.29:

Note: that no+ or - switches are available for these options. They cannot be used from
the command line. They may only be used from INI files.

Most operating systems allow application programs to return an error code if something
goes wrong. When POV-Ray executes a shell command it can make use of this error
code returned from the shell process and take some appropriate action if the code is
zero or non-zero. POV-Ray itself returns such codes. It returns 0 for success, 1 for fatal
error and 2 for user abort.

The actions are designated by a single letter in the different ... Return=s options.
The possible actions are:

I ignore the code
S skip one step
A all steps skipped
Q quit POV-Ray immediately
U generate a user abort in POV-Ray
F generate a fatal error in POV-Ray

Table 2.30:

For example if yourPre Frame Command calls a program which generates your height
field data and that utility fails then it will return a non-zero code. We would probably
want POV-Ray to abort as well. The optionPre Frame Return=F will cause POV-Ray
to do a fatal abort if thePre Frame Command returns a non-zero code.

Sometimes a non-zero code from the external process is a good thing. Suppose you
want to test if a frame has already been rendered. You could use theS action to skip
this frame if the file is already rendered. Most utilities report an error if the file is not
found. For example the command...

96 Scene Settings

pkzip -V myscene mysce012.tga

tells pkzip you want to view the catalog ofmyscene.zip for the filemysce012.tga. If
the file isn’t in the archivepkzip returns a non-zero code.

However we want to skip if the file is found. Therefore we need to reverse the action
so it skips on zero and doesn’t skip on non-zero. To reverse the zero vs. non-zero
triggering of an action precede it with a ”-” sign (note a ”!” will also work since it is
used in many programming languages as a negate operator).

Pre Frame Return=S will skip if the code shows error (non-zero) and will proceed
normally on no error (zero). Pre Frame Return=-Swill skip if there is no error (zero)
and will proceed normally if there is an error (non-zero).

The default for all shells isI which means that the return action is ignored no matter
what. POV-Ray simply proceeds with whatever it was doing before the shell command.
The other actions depend upon the context. You may want to refer back to the anima-
tion loop sequence chart in the previous section ”Shell Command Sequencing”. The
action for each shell is as follows.

On return from any UserAbort Command if there is an action triggered...

...and you have
specified...

...then POV-Ray will..

F Then turn this user abort into a fatal error. Do the
Fatal Error Command, if any. Exit POV-Ray with error code
1.

S, A, Q, or U Then proceed with the user abort. Exit POV-Ray with error
code 2.

Table 2.31:

On return from anyFatal Error Command then POV-Ray will proceed with the fatal
error no matter what. It will exit POV-Ray with error code 1.

On return from anyPre Scene Command, Pre Frame Command, Post Frame Command or
Post Scene Commands if there is an action triggered...

...and you have
specified...

...then POV-Ray will...

F ...turn this user abort into a fatal error. Do the
Fatal Error Command, if any. Exit POV-Ray with error code
1.

U ...generate a user abort. Do theUser Abort Command, if any.
Exit POV-Ray with an error code 2.

Q ..quit POV-Ray immediately. Acts as though POV-Ray
never really ran. Do no further shells, (not even a
Post Scene Command) and exit POV-Ray with an error code
0.

Table 2.32:

On return from aPre Scene Command if there is an action triggered...

2.1 Command-line Options 97

...and you have
specified...

...then POV-Ray will...

S ...skip rendering all frames. Acts as though the
scene completed all frames normally. Do not do any
Pre Frame Command or Post Frame Commands. Do the
Post Scene Command, if any. Exit POV-Ray with error code
0. On the earlier chart this means skip step #4.

A ...skip all scene activity. Works exactly likeQ quit. On the
earlier chart this means skip to step #6. Acts as though
POV-Ray never really ran. Do no further shells, (not even a
Post Scene Command) and exit POV-Ray with an error code
0.

Table 2.33:

...and you have
specified...

...then POV-Ray will...

S ...skip only this frame. Acts as though this frame never ex-
isted. Do not do thePost Frame Command. Proceed with the
next frame. On the earlier chart this means skip steps (4b)
and (4c) but loop back as needed in (4d).

A ...skip rendering this frame and all remaining frames.
Acts as though the scene completed all frames normally.
Do not do any further Post Frame Commands. Do the
Post Scene Command, if any. Exit POV-Ray with error code
0. On the earlier chart this means skip the rest of step (4)
and proceed at step (5).

Table 2.34:

98 Scene Settings

On return from aPre Frame Command if there is an action triggered...

On return from aPost Frame Command if there is an action triggered...

...and you have
specified...

...then POV-Ray will...

S or A ...skip all remaining frames. Acts as though the scene
completed all frames normally. Do not do any further
Post Frame Commands. Do thePost Scene Command, if any.
Exit POV-Ray with error code 0. On the earlier chart this
means skip the rest of step (4) and proceed at step (5).

Table 2.35:

On return from anyPost Scene Command if there is an action triggered and you have
specifiedS or A then no special action occurs. This is the same asI for this shell
command.

2.1.7 Text Output

Text output is an important way that POV-Ray keeps you informed about what it is
going to do, what it is doing and what it did. The program splits its text messages into
7 separate streams. Some versions of POV-Ray color-codes the various types of text.
Some versions allow you to scroll back several pages of messages. All versions allow
you to turn some of these text streams off/on or to direct a copy of the text output to
one or several files. This section details the options which give you control over text
output.

Text Streams

There are seven distinct text streams that POV-Ray uses for output. On some versions
each stream is designated by a particular color. Text from these streams are displayed
whenever it is appropriate so there is often an intermixing of the text. The distinction
is only important if you choose to turn some of the streams off or to direct some of the
streams to text files. On some systems you may be able to review the streams separately
in their own scroll-back buffer.

Here is a description of each stream.

Banner: This stream displays the program’s sign-on banner, copyright, contributor’s
list, and some help screens. It cannot be turned off or directed to a file because most of
this text is displayed before any options or switches are read. Therefore you cannot use
an option or switch to control it. There are switches which display the help screens.
They are covered in section ”Help Screen Switches”.

Debug: This stream displays debugging messages. It was primarily designed for
developers but this and other streams may also be used by the user to display messages
from within their scene files. See section ”Text Message Streams” for details on this
feature. This stream may be turned off and/or directed to a text file.

2.1 Command-line Options 99

Fatal: This stream displays fatal error messages. After displaying this text, POV-Ray
will terminate. When the error is a scene parsing error, you may be shown several lines
of scene text that leads up to the error. This stream may be turned off and/or directed
to a text file.

Render: This stream displays information about what options you have specified to
render the scene. It includes feedback on all of the major options such as scene name,
resolution, animation settings, anti-aliasing and others. This stream may be turned off

and/or directed to a text file.

Statistics: This stream displays statistics after a frame is rendered. It includes infor-
mation about the number of rays traced, the length of time of the processing and other
information. This stream may be turned off and/or directed to a text file.

Status: This stream displays one-line status messages that explain what POV-Ray is
doing at the moment. On some systems this stream is displayed on a status line at the
bottom of the screen. This stream cannot be directed to a file because there is generally
no need to. The text displayed by theVerbose option or+V switch is output to this
stream so that part of the status stream may be turned off.

Warning: This stream displays warning messages during the parsing of scene files
and other warnings. Despite the warning, POV-Ray can continue to render the scene.
You will be informed if POV-Ray has made any assumptions about your scene so that
it can proceed. In general any time you see a warning, you should also assume that this
means that future versions of POV-Ray will not allow the warned action. Therefore
you should attempt to eliminate warning messages so your scene will be able to run in
future versions of POV-Ray. This stream may be turned off and/or directed to a text
file.

Console Text Output

You may suppress the output to the console of the debug, fatal, render, statistic or
warning text streams. For example theStatistic Console=off option or the-GS
switch can turn off the statistic stream. Usingon or +GS you may turn it on again. You
may also turn all five of these streams on or off at once using theAll Console option
or +GA switch.

Note: that these options take effect immediately when specified. Obviously any error
or warning messages that might occur before the option is read are not be affected.

Directing Text Streams to Files

You may direct a copy of the text streams to a text file for the debug, fatal, render,
statistic, or warning text streams. For example theStatistic File=s option or the
+GSsswitch. If the strings is true or any of the other validtrue strings then that stream
is redirected to a file with a default name. Validtrue values aretrue, yes, on or 1.
If the value is false the direction to a text file is turned off. Valid false values are
false, no, off or 0. Any other string specified turns on file output and the string is
interpreted as the output file name.

100 Scene Settings

Debug Console=bool
Turn console display of debug info text on/off

+GD
Same asDebug Console=On

-GD
Same asDebug Console=Off

Fatal Console=bool
Turn console display of fatal error text on/off

+GF
Same asFatal Console=On

-GF
Same asFatal Console=Off

Render Console=bool
Turn console display of render info text on/off

+GR
Same asRender Console=On

-GR
Same asRender Console=Off

Statistic Console=bool
Turn console display of statistic text on/off

+GS
Same asStatistic Console=On

-GS
Same asStatistic Console=Off

Warning Console=bool
Turn console display of warning text on/off

+GW
Same asWarning Console=On

-GW
Same asWarning Console=Off

All Console=bool
Turn on/off all debug, fatal, render, statistic and warning text
to console.

+GA
Same asAll Console=On

-GA
Same asAll Console=Off

Table 2.36:

2.1 Command-line Options 101

Debug File=true
Echo debug info text to DEBUG.OUT

Debug File=false Turn off file output of debug info
Debug File=file Echo debug info text to file
+GDfile BothDebug Console=On, Debug File=file
-GDfile BothDebug Console=Off, Debug File=file

Fatal File=true
Echo fatal text to FATAL.OUT

Fatal File=false Turn off file output of fatal
Fatal File=file Echo fatal info text to file
+GFfile BothFatal Console=On, Fatal File=file
-GFfile BothFatal Console=Off, Fatal File=file

Render File=true
Echo render info text to RENDER.OUT

Render File=false Turn off file output of render info
Render File=file Echo render info text to file
+GRfile BothRender Console=On, Render File=file
-GRfile BothRender Console=Off, Render File=file

Statistic File=true
Echo statistic text to STATS.OUT

Statistic File=falseTurn off file output of statistics
Statistic File=file Echo statistic text to file
+GSfile BothStatistic Console=On, Statistic File=file
-GSfile BothStatistic Console=Off, Statistic File=file

Warning File=true
Echo warning info text to WARNING.OUT

Warning File=false Turn off file output of warning info
Warning File=file Echo warning info text to file
+GWfile BothWarning Console=On, Warning File=file
-GWfile BothWarning Console=Off, Warning File=file

All File=true
Echo all debug, fatal, render, statistic, and warning text to
ALLTEXT.OUT

All File=false Turn off file output of all debug, fatal, render, statistic, and
warning text.

All File=file Echo all debug, fatal, render, statistic, and warning text to
file

+GAfile BothAll Console=On, All File=file
-GAfile BothAll Console=Off, All File=file

Table 2.37:

102 Scene Settings

Similarly you may specify such a true, false or file name string after a switch such as
+GSfile. You may also direct all five streams to the same file using theAll File option
or +GA switch. You may not specify the same file for two or more streams because
POV-Ray will fail when it tries to open or close the same file twice.

Note: that these options take effect immediately when specified. Obviously any error
or warning messages that might occur before the option is read will not be affected.

Warning Level

Warning Level=n Allows you to turn off classes of warnings.
+WLn Same asWarning Level=n

Table 2.38:

Level 0 turns off all warnings. Level 5 turns off all language version related warnings.
The default is level 10 and it enables all warnings. All other levels are reserved and
should not be specified.

Help Screen Switches

+H or +? Show help screen 0 if this is the only switch

Table 2.39:

Note: there are no INI style equivalents to these options.

After displaying the help screens, POV-Ray terminates. Because some operating sys-
tems do not permit a question mark as a command line switch you may also use the+H

switch.

Note: this switch is also used to specify the height of the image in pixels. Therefore the
+H switch is only interpreted as a help switch if it is the only switch on the command
line.

Graphical interface versions of POV-Ray such as Mac or Windows have extensive on-
line help.

2.1.8 Tracing Options

There is more than one way to trace a ray. Sometimes there is a trade-off between
quality and speed. Sometimes options designed to make tracing faster can slow things
down. This section covers options that tell POV-Ray how to trace rays with the appro-
priate speed and quality settings.

Quality Settings

TheQuality=n option or+Qn switch allows you to specify the image rendering quality.
You may choose to lower the quality for test rendering and raise it for final renders. The

2.1 Command-line Options 103

Quality=n Set quality value to n (0<= n <= 11)
+Qn Same asQuality=n

Table 2.40:

quality adjustments are made by eliminating some of the calculations that are normally
performed. For example settings below 4 do not render shadows. Settings below 8 do
not use reflection or refraction. The duplicate values allow for future expansion. The
values correspond to the following quality levels:

0, 1 Just show quick colors. Use full ambient lighting only.
Quick colors are used only at 5 or below.

2, 3 Show specified diffuse and ambient light.
4 Render shadows, but no extended lights.
5 Render shadows, including extended lights.
6, 7 Compute texture patterns, compute photons
8 Compute reflected, refracted, and transmitted rays.
9, 10, 11 Compute media and radiosity

Table 2.41:

The default is 9 if not specified.

Automatic Bounding Control

Bounding=bool Turn bounding on/off
+MB Turn bounding on; Set threshold to 25 or previous amount
-MB Turn bounding off
Bounding Threshold=n Set bound threshold to n
+MBn Turn bounding on; bound threshold to n
-MBn Turn bounding off; set future threshold to n
Light Buffer=bool Turn light buffer on/off
+UL Turn light buffer on
-UL Turn light buffer off
Vista Buffer=bool Turn vista buffer on/off
+UV Turn vista buffer on
-UV Turn vista buffer off

Table 2.42:

POV-Ray uses a variety of spatial sub-division systems to speed up ray-object intersec-
tion tests. The primary system uses a hierarchy of nested bounding boxes. This system
compartmentalizes all finite objects in a scene into invisible rectangular boxes that are
arranged in a tree-like hierarchy. Before testing the objects within the bounding boxes
the tree is descended and only those objects are tested whose bounds are hit by a ray.
This can greatly improve rendering speed. However for scenes with only a few objects
the overhead of using a bounding system is not worth the effort. The Bounding=off
option or-MB switch allows you to force bounding off. The default value is on.

The Bounding Threshold=n or +MBn switch allows you to set the minimum number

104 Scene Settings

of objects necessary before bounding is used. The default is+MB25 which means that
if your scene has fewer than 25 objects POV-Ray will automatically turn bounding off

because the overhead isn’t worth it. Generally it’s a good idea to use a much lower
threshold like+MB5.

Additionally POV-Ray uses systems known asvista buffersand light buffersto further
speed things up. These systems only work when bounding is on and when there are
a sufficient number of objects to meet the bounding threshold. The vista buffer is
created by projecting the bounding box hierarchy onto the screen and determining the
rectangular areas that are covered by each of the elements in the hierarchy. Only those
objects whose rectangles enclose a given pixel are tested by the primary viewing ray.
The vista buffer can only be used with perspective and orthographic cameras because
they rely on a fixed viewpoint and a reasonable projection (i. e. straight lines have to
stay straight lines after the projection).

The light buffer is created by enclosing each light source in an imaginary box and
projecting the bounding box hierarchy onto each of its six sides. Since this relies on a
fixed light source, light buffers will not be used for area lights.

Reflected and transmitted rays do not take advantage of the light and vista buffer.

The default settings areVista Buffer=on or +UV and Light Buffer=on or +UL. The
option to turn these features off is available to demonstrate their usefulness and as
protection against unforeseen bugs which might exist in any of these bounding systems.

In general, any finite object and many types of CSG of finite objects will properly re-
spond to this bounding system. In addition blobs and meshes use an additional internal
bounding system. These systems are not affected by the above switch. They can be
switched off using the appropriate syntax in the scene file (see ”Blob” and ”Mesh” for
details).

Text objects are split into individual letters that are bounded using the bounding box
hierarchy. Some CSG combinations of finite and infinite objects are also automatically
bound. The end result is that you will rarely need to add manual bounding objects as
was necessary in earlier versions of POV-Ray unless you use many infinite objects.

Removing User Bounding

Remove Bounds=bool Turn unnecessary bounds removal on/off
+UR Turn unnecessary bounds removal on
-UR Turn unnecessary bounds removal off
Split Unions=bool Turn split bounded unions on/off
+SU Turn split bounded unions on
-SU Turn split bounded unions off

Table 2.43:

Early versions of POV-Ray had no system of automatic bounding or spatial sub-division
to speed up ray-object intersection tests. Users had to manually create bounding boxes
to speed up the rendering. Since version 3.0, POV-Ray has had more sophisticated
automatic bounding than any previous version. In many cases the manual bounding on
older scenes is slower than the new automatic systems. Therefore POV-Ray removes

2.1 Command-line Options 105

manual bounding when it knows it will help. In rare instances you may want to keep
manual bounding. Some older scenes incorrectly used bounding when they should
have used clipping. If POV-Ray removes the bounds in these scenes the image will
not look right. To turn off the automatic removal of manual bounds you should specify
Remove Bounds=off or use -UR. The default is Remove Bounds=on.

One area where the jury is still out is the splitting of manually bounded unions. Un-
bounded unions are always split into their component parts so that automatic bounding
works better. Most users do not bound unions because they know that doing so is usu-
ally slower. If you do manually bound a union we presume you really want it bound.
For safety sake we do not presume to remove such bounds. If you want to remove man-
ual bounds from unions you should specifySplit Unions=on or use +SU. The default
is Split Unions=off.

Anti-Aliasing Options

Antialias=bool
Turns anti-aliasing on/off

+A
Turns aa on with threshold 0.3 or previous amount

-A
Turns anti-aliasing off

Sampling Method=n
Sets aa-sampling method (only1 or 2 are valid)

+AMn
Same asSampling Method=n

Antialias Threshold=n.n
Sets anti-aliasing threshold

+An.n Sets aa on with aa-threshold at n.n
-An.n Sets aa off (aa-threshold n.n in future)

Jitter=bool
Sets aa-jitter on/off

+J
Sets aa-jitter on with 1.0 or previous amount

-J
Sets aa-jitter off

Jitter Amount=n.n
Sets aa-jitter amount to n.n. If n.n<= 0 aa-jitter is set off

+Jn.n Sets aa-jitter on; jitter amount to n.n. If n.n<= 0 aa-jitter is
set off

-Jn.n Sets aa-jitter off (jitter amount n.n in future)

Antialias Depth=n
Sets aa-depth (1<= n <= 9)

+Rn
Same asAntialias Depth=n

Table 2.44:

The ray-tracing process is in effect a discrete, digital sampling of the image with typ-
ically one sample per pixel. Such sampling can introduce a variety of errors. This
includes a jagged, stair-step appearance in sloping or curved lines, a broken look for
thin lines, moiré patterns of interference and lost detail or missing objects,
which are so small they reside between adjacent pixels. The effect that is responsible
for those errors is calledaliasing.

Anti-aliasing is any technique used to help eliminate such errors or to reduce the neg-

106 Scene Settings

ative impact they have on the image. In general, anti-aliasing makes the ray-traced
image look smoother. The Antialias=on option or+A switch turns on POV-Ray’s
anti-aliasing system.

When anti-aliasing is turned on, POV-Ray attempts to reduce the errors by shooting
more than one viewing ray into each pixel and averaging the results to determine the
pixel’s apparent color. This technique is called super-sampling and can improve the
appearance of the final image but it drastically increases the time required to render a
scene since many more calculations have to be done.

POV-Ray gives you the option to use one of two alternate super-sampling methods. The
Sampling Method=n option or +AMn switch selects either type1 or type 2. Selecting
one of those methods does not turn anti-aliasing on. This has to be done by using the
+A command line switch orAntialias=on option.

Type 1 is an adaptive, non-recursive, super-sampling method. It isadaptivebecause
not every pixel is super-sampled. Type 2 is an adaptive and recursive super-sampling
method. It isrecursivebecause the pixel is sub-divided and sub-sub-divided recur-
sively. Theadaptivenature of type 2 is the variable depth of recursion.

In the default, non-recursive method (+AM1), POV-Ray initially traces one ray per pixel.
If the color of a pixel differs from its neighbors (to the left or above) by at least the
set threshold value then the pixel is super-sampled by shooting a given, fixed num-
ber of additional rays. The default threshold is 0.3 but it may be changed using the
Antialias Threshold=n.noption. When the switches are used, the threshold may op-
tionally follow the+A. For example +A0.1 turns anti-aliasing on and sets the threshold
to 0.1.

The threshold comparison is computed as follows. If r1, g1, b1 and r2, g2, b2 are the
rgb components of two pixels then the difference between pixels is computed by

diff = abs(r1-r2) + abs(g1-g2) + abs(b1-b2)

If this difference is greater than the threshold then both pixels are super-sampled. The
rgb values are in the range from 0.0 to 1.0 thus the most two pixels can differ is 3.0.
If the anti-aliasing threshold is 0.0 then every pixel is super-sampled. If the threshold
is 3.0 then no anti-aliasing is done. Lower threshold means more anti-aliasing and less
speed. Use anti-aliasing for your final version of a picture, not the rough draft. The
lower the contrast, the lower the threshold should be. Higher contrast pictures can get
away with higher tolerance values. Good values seem to be around 0.2 to 0.4.

When using the non-recursive method, the default number of super-samples is nine per
pixel, located on a 3*3 grid. TheAntialias Depth=n option or +Rn switch controls
the number of rows and columns of samples taken for a super-sampled pixel. For
example+R4 would give 4*4=16 samples per pixel.

The second, adaptive, recursive super-sampling method starts by tracing four rays at
the corners of each pixel. If the resulting colors differ more than the threshold amount
additional samples will be taken. This is done recursively, i.e. the pixel is divided
into four sub-pixels that are separately traced and tested for further subdivision. The
advantage of this method is the reduced number of rays that have to be traced. Samples
that are common among adjacent pixels and sub-pixels are stored and reused to avoid
re-tracing of rays. The recursive character of this method makes the super-sampling

2.1 Command-line Options 107

concentrate on those parts of the pixel that are more likely to need super-sampling (see
figure below).

Figure 2.2: Example of how the recursive super-sampling works.

The maximum number of subdivisions is specified by theAntialias Depth=n option
or +Rn switch. This is different from the adaptive, non-recursive method where the total
number of super-samples is specified. A maximum number ofn subdivisions results in
a maximum number of samples per pixel that is given by the following table.

+Rn Number of additional samples
per super-sampled pixel for the
non-recursive method+AM1

Maximum number of samples
per super-sampled pixel for the
recursive method+AM2

1 1 9
2 4 25
3 9 81
4 16 289
5 25 1089
6 36 4225
7 49 16641
8 64 66049
9 81 263169

Table 2.45:

Note: the maximum number of samples in the recursive case is hardly ever reached for
a given pixel. If the recursive method is used with no anti-aliasing each pixel will be
the average of the rays traced at its corners. In most cases a recursion level of three is
sufficient.

Another way to reduce aliasing artefacts is to introduce noise into the sampling pro-
cess. This is calledjittering and works because the human visual system is much more
forgiving to noise than it is to regular patterns. The location of the super-samples is
jittered or wiggled a tiny amount when anti-aliasing is used. Jittering is used by de-
fault but it may be turned off with the Jitter=off option or-J switch. The amount
of jittering can be set with theJitter Amount=n.n option. When using switches the
jitter scale may be specified after the+Jn.n switch. For example+J0.5 uses half the

108 Scene Settings

normal jitter. The default amount of 1.0 is the maximum jitter which will insure that
all super-samples remain inside the original pixel.

Note: the jittering noise is random and non-repeatable so you should avoid using jitter
in animation sequences as the anti-aliased pixels will vary and flicker annoyingly from
frame to frame.

If anti-aliasing is not used one sample per pixel is taken regardless of the super-sampling
method specified.

2.2 Camera

The camera definition describes the position, projection type and properties of the cam-
era viewing the scene. Its syntax is:

CAMERA:

camera{ [CAMERA_ITEMS...] }

CAMERA_ITEM:

CAMERA_TYPE | CAMERA_VECTOR | CAMERA_MODIFIER |

CAMERA_IDENTIFIER

CAMERA_TYPE:

perspective | orthographic | fisheye | ultra_wide_angle |

omnimax | panoramic | cylinder CylinderType | spherical

CAMERA_VECTOR:

location <Location> | right <Right> | up <Up> |

direction <Direction> | sky <Sky>

CAMERA_MODIFIER:

angle HORIZONTAL [VERTICAL] | look_at <Look_At> |

blur_samples Num_of_Samples | aperture Size |

focal_point <Point> | confidence Blur_Confidence |

variance Blur_Variance | NORMAL | TRANSFORMATION

Camera default values:

DEFAULT CAMERA:

camera {

perspective

location <0,0,0>

direction <0,0,1>

right 1.33*x

up y

sky <0,1,0>

}

CAMERA TYPE: perspective

angle : \˜{}67.380 (direction_length=0.5*

right_length/tan(angle/2))

confidence : 0.9 (90\%)

direction : <0,0,1>

focal_point: <0,0,0>

location : <0,0,0>

look_at : z

right : 1.33*x

2.2 Camera 109

sky : <0,1,0>

up : y

variance : 1/128

Depending on the projection type zero or more of the parameters are required:

• If no camera is specified the default camera is used.

• If no projection type is given the perspective camera will be used (pinhole cam-
era).

• TheCAMERATYPEhas to be the first item in the camera statement.

• OtherCAMERAITEMsmay legally appear in any order.

• For other than the perspective camera, the minimum that has to be specified is
the CAMERA TYPE, the cylindrical camera also requires theCAMERATYPE
to be followed by a float.

• The Orthographic camera has two ’modes’. For the pure orthographic projection
up or right have to be specified. For an orthographic camera, with the same
area of view as a perspective camera at the plane which goes through the lookat
point, the angle keyword has to be use. A value for the angle is optional.

• All other CAMERAITEMs are taken from the default camera, unless they are
specified differently.

2.2.1 Placing the Camera

The POV-Ray camera has ten different models, each of which uses a different projec-
tion method to project the scene onto your screen. Regardless of the projection type
all cameras use thelocation, right, up, direction, and keywords to determine the
location and orientation of the camera. The type keywords and these four vectors fully
define the camera. All other camera modifiers adjust how the camera does its job. The
meaning of these vectors and other modifiers differ with the projection type used. A
more detailed explanation of the camera types follows later. In the sub-sections which
follows, we explain how to place and orient the camera by the use of these four vectors
and thesky and look at modifiers. You may wish to refer to the illustration of the
perspective camera below as you read about these vectors.

Location and Look At

Under many circumstances just two vectors in the camera statement are all you need to
position the camera:location andlook at vectors. For example:

camera {

location <3,5,-10>

look_at <0,2,1>

}

The location is simply the x, y, z coordinates of the camera. The camera can be located
anywhere in the ray-tracing universe. The default location is<0,0,0>. Thelook at
vector tells POV-Ray to pan and tilt the camera until it is looking at the specified x, y,

110 Scene Settings

Figure 2.3: The perspective camera.

z coordinates. By default the camera looks at a point one unit in the z-direction from
the location.

Thelook at modifier should almost always be the last item in the camera statement.
If other camera items are placed after thelook at vector then the camera may not
continue to look at the specified point.

The Sky Vector

Normally POV-Ray pans left or right by rotating about the y-axis until it lines up with
thelook at point and then tilts straight up or down until the point is met exactly. How-
ever you may want to slant the camera sideways like an airplane making a banked turn.
You may change the tilt of the camera using thesky vector. For example:

camera {

location <3,5,-10>

sky <1,1,0>

look_at <0,2,1>

}

This tells POV-Ray to roll the camera until the top of the camera is in line with the sky
vector. Imagine that the sky vector is an antenna pointing out of the top of the camera.
Then it uses thesky vector as the axis of rotation left or right and then to tilt up or
down in line with thesky until pointing at thelook at point. In effect you’re telling
POV-Ray to assume that the sky isn’t straight up.

Thesky vector does nothing on its own. It only modifies the way thelook at vector
turns the camera. The default value issky<0,1,0>.

Angles

The angle keyword followed by a float expression specifies the (horizontal) viewing
angle in degrees of the camera used. Even though it is possible to use thedirection

vector to determine the viewing angle for the perspective camera it is much easier to
use the angle keyword.

2.2 Camera 111

When you specify theangle, POV-Ray adjusts the length of thedirection vector
accordingly. The formula used isdirection length= 0.5 * right length / tan(angle/
2) where right lengthis the length of theright vector. You should therefore specify
the direction and right vectors before theangle keyword. The right vector is
explained in the next section.

There is no limitation to the viewing angle except for the perspective projection. If you
choose viewing angles larger than 360 degrees you’ll see repeated images of the scene
(the way the repetition takes place depends on the camera). This might be useful for
special effects.

Thespherical camera has the option to also specify a vertical angle. If not specified
it defaults to the horizontal angle/2

For example if you render an image with a 2:1 aspect ratio and map it to a sphere using
spherical mapping, it will recreate the scene. Another use is to map it onto an object and
if you specify transformations for the object before the texture, say in an animation, it
will look like reflections of the environment (sometimes called environment mapping).

The Direction Vector

You will probably not need to explicitly specify or change the cameradirection vector
but it is described here in case you do. It tells POV-Ray the initial direction to point
the camera before moving it with thelook at or rotate vectors (the default value
is direction<0,0,1>). It may also be used to control the (horizontal) field of view
with some types of projection. The length of the vector determines the distance of the
viewing plane from the camera’s location. A shorterdirection vector gives a wider
view while a longer vector zooms in for close-ups. In early versions of POV-Ray, this
was the only way to adjust field of view. However zooming should now be done using
the easier to useangle keyword.

If you are using theultra wide angle, panoramic, or cylindrical projection you
should use a unit lengthdirection vector to avoid strange results. The length of the
direction vector doesn’t matter when using theorthographic, fisheye, or omnimax
projection types.

Up and Right Vectors

The primary purpose of theup andright vectors is to tell POV-Ray the relative height
and width of the view screen. The default values are:

right 4/3*x

up y

In the defaultperspective camera, these two vectors also define the initial plane of
the view screen before moving it with thelook at or rotate vectors. The length of
the right vector (together with thedirection vector) may also be used to control the
(horizontal) field of view with some types of projection. Thelook atmodifier changes
both theup andright vectors. Theangle calculation depends on theright vector.

Most camera types treat theup and right vectors the same as theperspective type.
However several make special use of them. In theorthographic projection: The

112 Scene Settings

lengths of the up andright vectors set the size of the viewing window regardless
of the direction vector length, which is not used by the orthographic camera.

When usingcylindrical projection: types 1 and 3, the axis of the cylinder lies along
theup vector and the width is determined by the length ofright vector or it may be
overridden with theangle vector. In type 3 theup vector determines how many units
high the image is. For example if you haveup 4*y on a camera at the origin. Only
points from y=2 to y=-2 are visible. All viewing rays are perpendicular to the y-axis.
For type 2 and 4, the cylinder lies along theright vector. Viewing rays for type 4 are
perpendicular to theright vector.

Note: that theup, right, and direction vectors should always remain perpendicular
to each other or the image will be distorted. If this is not the case a warning message
will be printed. The vista buffer will not work for non-perpendicular camera vectors.

Aspect Ratio

Together theup andright vectors define theaspect ratio(height to width ratio) of
the resulting image. The default valuesup<0,1,0> and right<1.33,0,0> result in
an aspect ratio of 4 to 3. This is the aspect ratio of a typical computer monitor. If
you wanted a tall skinny image or a short wide panoramic image or a perfectly square
image you should adjust theup andright vectors to the appropriate proportions.

Most computer video modes and graphics printers use perfectly square pixels. For
example Macintosh displays and IBM SVGA modes 640x480, 800x600 and 1024x768
all use square pixels. When your intended viewing method uses square pixels then
the width and height you set with theWidth andHeight options or+W or +H switches
should also have the same ratio as theup andright vectors.

Note: 640/480= 4/3 so the ratio is proper for this square pixel mode.

Not all display modes use square pixels however. For example IBM VGA mode
320x200 and Amiga 320x400 modes do not use square pixels. These two modes still
produce a 4/3 aspect ratio image. Therefore images intended to be viewed on such
hardware should still use 4/3 ratio on theirup andright vectors but the pixel settings
will not be 4/3.

For example:

camera {

location <3,5,-10>

up <0,1,0>

right <1,0,0>

look_at <0,2,1>

}

This specifies a perfectly square image. On a square pixel display like SVGA you
would use pixel settings such as+W480 +H480 or +W600 +H600. However on the non-
square pixel Amiga 320x400 mode you would want to use values of+W240 +H400 to
render a square image.

The bottom line issue is this: theup and right vectors should specify the artist’s
intended aspect ratio for the image and the pixel settings should be adjusted to that

2.2 Camera 113

same ratio for square pixels and to an adjusted pixel resolution for non-square pixels.
The up andright vectors shouldnot be adjusted based on non-square pixels.

Handedness

Theright vector also describes the direction to the right of the camera. It tells POV-
Ray where the right side of your screen is. The sign of theright vector can be used
to determine the handedness of the coordinate system in use. The default value is:
right<1.33,0,0>. This means that the+x-direction is to the right. It is called aleft-
handedsystem because you can use your left hand to keep track of the axes. Hold out
your left hand with your palm facing to your right. Stick your thumb up. Point straight
ahead with your index finger. Point your other fingers to the right. Your bent fingers
are pointing to the+x-direction. Your thumb now points into+y-direction. Your index
finger points into the+z-direction.

To use a right-handed coordinate system, as is popular in some CAD programs and
other ray-tracers, make the same shape using your right hand. Your thumb still points
up in the+y-direction and your index finger still points forward in the+z-direction but
your other fingers now say the+x-direction is to the left. That means that the right
side of your screen is now in the -x-direction. To tell POV-Ray to act like this you
can use a negative x value in theright vector such as: right<-1.33,0,0>. Since
having x values increasing to the left doesn’t make much sense on a 2D screen you now
rotate the whole thing 180 degrees around by using a positive z value in your camera’s
location. You end up with something like this.

camera {

location <0,0,10>

up <0,1,0>

right <-1.33,0,0>

look_at <0,0,0>

}

Now when you do your ray-tracer’s aerobics, as explained in the section ”Understand-
ing POV-Ray’s Coordinate System”, you use your right hand to determine the direction
of rotations.

In a two dimensional grid, x is always to the right and y is up. The two versions of
handedness arise from the question of whether z points into the screen or out of it and
which axis in your computer model relates to up in the real world.

Architectural CAD systems, like AutoCAD, tend to use theGod’s Eyeorientation that
the z-axis is the elevation and is the model’s up direction. This approach makes sense
if you’re an architect looking at a building blueprint on a computer screen. z means up,
and it increases towards you, with x and y still across and up the screen. This is the
basic right handed system.

Stand alone rendering systems, like POV-Ray, tend to consider you as a participant.
You’re looking at the screen as if you were a photographer standing in the scene. The
up direction in the model is now y, the same as up in the real world and x is still to the
right, so z must be depth, which increases away from you into the screen. This is the
basic left handed system.

114 Scene Settings

Transforming the Camera

The various transformations such astranslate and rotate modifiers can re-position
the camera once you’ve defined it. For example:

camera {

location < 0, 0, 0>

direction < 0, 0, 1>

up < 0, 1, 0>

right < 1, 0, 0>

rotate <30, 60, 30>

translate < 5, 3, 4>

}

In this example, the camera is created, then rotated by 30 degrees about the x-axis, 60
degrees about the y-axis and 30 degrees about the z-axis, then translated to another
point in space.

2.2.2 Types of Projection

The following list explains the different projection types that can be used with the
camera. The most common types are the perspective and orthographic projections. The
CAMERATYPEshould be thefirst item in acamera statement. If none is specified, the
perspective camera is the default.

You should note that the vista buffer can only be used with the perspective and ortho-
graphic camera.

Perspective projection

The perspective keyword specifies the default perspective camera which simulates
the classic pinhole camera. The (horizontal) viewing angle is either determined by the
ratio between the length of thedirection vector and the length of theright vector
or by the optional keywordangle, which is the preferred way. The viewing angle has
to be larger than 0 degrees and smaller than 180 degrees. See the figure in ”Placing the
Camera” for the geometry of the perspective camera.

Orthographic projection

The orthographic camera offers two modes of operation:

The pureorthographic projection. This projection uses parallel camera rays to create
an image of the scene. The area of view is determined by the lengths of theright and
up vectors. One of these has to be specified, they are not taken from the default camera.
If omitted the second method of the camera is used.

If, in a perspective camera, you replace theperspective keyword byorthographic
and leave all other parameters the same, you’ll get an orthographic view with the same
image area, i.e. the size of the image is the same. The same can be achieved by adding
the angle keyword to an orthographic camera. A value for the angle is optional. So

2.2 Camera 115

this second mode is active if no up and right are within the camera statement, or when
the angle keyword is within the camera statement.

You should be aware though that the visible parts of the scene change when switching
from perspective to orthographic view. As long as all objects of interest are near the
look at point they’ll be still visible if the orthographic camera is used. Objects farther
away may get out of view while nearer objects will stay in view.

If objects are too close to the camera location they may disappear. Too close here
means, behind the orthographic camera projection plane (the plane that goes through
thelook at point).

Fisheye projection

This is a spherical projection. The viewing angle is specified by theangle keyword.
An angle of 180 degrees creates the ”standard” fisheye while an angle of 360 degrees
creates a super-fisheye (”I-see-everything-view”). If you use this projection you should
get a circular image. If this isn’t the case, i.e. you get an elliptical image, you should
read ”Aspect Ratio”.

Ultra wide angle projection

This projection is somewhat similar to the fisheye but it projects the image onto a rect-
angle instead of a circle. The viewing angle can be specified using theangle keyword.

Omnimax projection

The omnimax projection is a 180 degrees fisheye that has a reduced viewing angle in
the vertical direction. In reality this projection is used to make movies that can be
viewed in the dome-like Omnimax theaters. The image will look somewhat elliptical.
Theangle keyword isn’t used with this projection.

Panoramic projection

This projection is called ”cylindrical equirectangular projection”. It overcomes the
degeneration problem of the perspective projection if the viewing angle approaches 180
degrees. It uses a type of cylindrical projection to be able to use viewing angles larger
than 180 degrees with a tolerable lateral-stretching distortion. Theangle keyword is
used to determine the viewing angle.

Cylindrical projection

Using this projection the scene is projected onto a cylinder. There are four different
types of cylindrical projections depending on the orientation of the cylinder and the
position of the viewpoint. A float value in the range 1 to 4 must follow thecylinder
keyword. The viewing angle and the length of theup or right vector determine the

116 Scene Settings

dimensions of the camera and the visible image. The camera to use is specified by a
number. The types are:

1. vertical cylinder, fixed viewpoint

2. horizontal cylinder, fixed viewpoint

3. vertical cylinder, viewpoint moves along the cylinder’s axis

4. horizontal cylinder, viewpoint moves along the cylinder’s axis

Spherical projection

Using this projection the scene is projected onto a sphere.
Syntax:

camera {

spherical

[angle HORIZONTAL [VERTICAL]]

[CAMERA_ITEMS...]

}

The first value afterangle sets the horizontal viewing angle of the camera. With the
optional second value, the vertical viewing angle is set: both in degrees. If the vertical
angle is not specified, it defaults to half the horizontal angle.

The spherical projection is similar to the fisheye projection, in that the scene is pro-
jected on a sphere. But unlike the fisheye camera, it uses rectangular coordinates
instead of polar coordinates; in this it works the same way as spherical mapping
(map type 1).

This has a number of uses. Firstly, it allows an image rendered with the spherical cam-
era to be mapped on a sphere without distortion (with the fisheye camera, you first have
to convert the image from polar to rectangular coordinates in some image editor). Also,
it allows effects such as ”environment mapping”, often used for simulating reflections
in scanline renderers.

2.2.3 Focal Blur

POV-Ray can simulate focal depth-of-field by shooting a number of sample rays from
jittered points within each pixel and averaging the results.

To turn on focal blur, you must specify theaperture keyword followed by a float
value which determines the depth of the sharpness zone. Large apertures give a lot of
blurring, while narrow apertures will give a wide zone of sharpness.

Note: while this behaves as a real camera does, the values for aperture are purely
arbitrary and are not related tof -stops.

You must also specify theblur samples keyword followed by an integer value speci-
fying the maximum number of rays to use for each pixel. More rays give a smoother
appearance but is slower. By default no focal blur is used, i. e. the default aperture is 0
and the default number of samples is 0.

2.2 Camera 117

The center of thezone of sharpnessis specified by thefocal point vector. Thezone
of sharpnessis a plane through thefocal point and is parallel to the camera. Objects
close to this plane of focus are in focus and those farther from that plane are more
blurred. The default value isfocal point<0,0,0>.

Althoughblur samples specifies the maximum number of samples, there is an adap-
tive mechanism that stops shooting rays when a certain degree of confidence has been
reached. At that point, shooting more rays would not result in a significant change.

The confidence and variance keywords are followed by float values to control the
adaptive function. Theconfidence value is used to determine when the samples seem
to beclose enoughto the correct color. Thevariance value specifies an acceptable
tolerance on the variance of the samples taken so far. In other words, the process of
shooting sample rays is terminated when the estimated color value is very likely (as
controlled by the confidence probability) near the real color value.

Since theconfidence is a probability its values can range from 0 to<1 (the default is
0.9, i. e. 90%). The value for thevariance should be in the range of the smallest
displayable color difference (the default is 1/128). If 1 is used POV-Ray will issue a
warning and then use the default instead.

Rendering with the default settings can result in quite grainy images. This can be
improved by using a lowervariance. A value of 1/10000 gives a fairly good result
(with default confidence and blursamples set to something like 100) without being
unacceptably slow.

Largerconfidence values will lead to more samples, slower traces and better images.
The same holds for smallervariance thresholds.

2.2.4 Camera Ray Perturbation

The optionalnormal may be used to assign a normal pattern to the camera. For exam-
ple:

camera{

location Here

look_at There

normal { bumps 0.5 }

}

All camera rays will be perturbed using this pattern. The image will be distorted as
though you were looking through bumpy glass or seeing a reflection off of a bumpy
surface. This lets you create special effects. See the animated scenecamera2.pov for
an example. See ”Normal” for information on normal patterns.

2.2.5 Camera Identifiers

Camera identifiers may be declared to make scene files more readable and to param-
eterize scenes so that changing a single declaration changes many values. You may
declare several camera identifiers if you wish. This makes it easy to quickly change
cameras. An identifier is declared as follows.

118 Scene Settings

CAMERA_DECLARATION:

#declare IDENTIFIER = CAMERA |

#local IDENTIFIER = CAMERA

WhereIDENTIFIERis the name of the identifier up to 40 characters long andCAMERA
is any valid camera statement. See ”#declare vs. #local” for information on identifier
scope. Here is an example...

#declare Long_Lens = camera {

location -z*100

look_at <0,0,0>

angle 3

}

#declare Short_Lens = camera {

location -z*50

look_at <0,0,0>

angle 15

}

camera {

Long_Lens // edit this line to change lenses

translate <33,2,0>

}

Note: only camera transformations can be added to an already declared camera. Cam-
era behaviour changing keywords are not allowed, as they are needed in an earlier stage
for resolving the keyword order dependencies.

2.3 Atmospheric Effects

Atmospheric effects are a loosely-knit group of features that affect the background
and/or the atmosphere enclosing the scene. POV-Ray includes the ability to render a
number of atmospheric effects, such as fog, haze, mist, rainbows and skies.

2.3.1 Atmospheric Media

Atmospheric effects such as fog, dust, haze, or visible gas may be simulated by amedia

statement specified in the scene but not attached to any object. All areas not inside a
non-hollow object in the entire scene. A very simple approach to add fog to a scene
is explained in section ”Fog” however this kind of fog does not interact with any light
sources likemedia does. It will not show light beams or other effects and is therefore
not very realistic.

The atmosphere media effect overcomes some of the fog’s limitations by calculating the
interaction between light and the particles in the atmosphere using volume sampling.
Thus shafts of light beams will become visible and objects will cast shadows onto
smoke or fog.

Note: POV-Ray can’t sample media along an infinitely long ray. The ray must be finite
in order to be possible to sample. This means that sampling media is only possible for

2.3 Atmospheric Effects 119

rays that hit an object. So no atmospheric media will show up againstbackground or
sky sphere.
Another way of being able to sample media is using spotlights because also in this case
the ray is not infinite (it is sampled only inside the spotlight cone).

With spotlights you’ll be able to create the best results because their cone of light will
become visible. Pointlights can be used to create effects like street lights in fog. Lights
can be made to not interact with the atmosphere by addingmedia interaction off to
the light source. They can be used to increase the overall light level of the scene to
make it look more realistic.

Complete details onmedia are given in the section ”Media”. Earlier versions of POV-
Ray used anatmosphere statement for atmospheric effects but that system was incom-
patible with the old objecthalo system. So atmosphere has been eliminated and
replaced with a simpler and more powerful media feature. The user now only has to
learn one media system for either atmospheric or object use.

If you only want media effects in a particular area, you should use object media rather
than only relying upon the media pattern. In general it will be faster and more accurate
because it only calculates inside the constraining object.

Note: the atmosphere feature will not work if the camera is inside a non-hollow object
(see section ”Empty and Solid Objects” for a detailed explanation).

2.3.2 Background

A background color can be specified if desired. Any ray that doesn’t hit an object will
be colored with this color. The default background is black. The syntax forbackground

is:

BACKGROUND:

background {COLOR}

2.3.3 Fog

If it is not necessary for light beams to interact with atmospheric media, thenfog may
be a faster way to simulate haze or fog. This feature artificially adds color to every
pixel based on the distance the ray has traveled. The syntax for fog is:

FOG:

fog { [FOG_IDENTIFIER] [FOG_ITEMS...] }

FOG_ITEMS:

fog_type Fog_Type | distance Distance | COLOR |

turbulence <Turbulence> | turb_depth Turb_Depth |

omega Omega | lambda Lambda | octaves Octaves |

fog_offset Fog_Offset | fog_alt Fog_Alt |

up <Fog_Up> | TRANSFORMATION

Fog default values:

lambda : 2.0

fog_type : 1

120 Scene Settings

fog_offset : 0.0

fog_alt : 0.0

octaves : 6

omega : 0.5

turbulence : <0,0,0>

turb_depth : 0.5

up : <0,1,0>

Currently there are two fog types, the defaultfog type 1 is a constant fog andfog type
2 is ground fog. The constant fog has a constant density everywhere while the ground
fog has a constant density for all heights below a given point on the up axis and thins
out along this axis.

The color of a pixel with an intersection depthd is calculated by

PIXEL COLOR= exp(-d/D) * OBJECTCOLOR+ (1-exp(-d/D)) * FOG COLOR

whereD is the specified value of the required fogdistance keyword. At depth 0 the
final color is the object’s color. If the intersection depth equals the fog distance the
final color consists of 64% of the object’s color and 36% of the fog’s color.

Note: for this equation, a distance of zero is undefined. In practice, povray will treat
this value as ”fog is off”. To use an extremely thick fog, use a small nonzero number
such as 1e-6 or 1e-10.

For ground fog, the height below which the fog has constant density is specified by the
fog offset keyword. Thefog alt keyword is used to specify the rate by which the
fog fades away. The default values for both are 0.0 so be sure to specify them if ground
fog is used. At an altitude ofFog Offset+Fog Alt the fog has a density of 25%. The
density of the fog at height less than or equal toFog Offsetis 1.0 and for height larger
than thanFog Offsetis calculated by:

1/(1 + (y - Fog Offset) / Fog Alt) ˆ2

The total density along a ray is calculated by integrating from the height of the starting
point to the height of the end point.

The optionalup vector specifies a direction pointing up, generally the same as the
camera’s up vector. All calculations done during the ground fog evaluation are done
relative to this up vector, i. e. the actual heights are calculated along this vector. The
up vector can also be modified using any of the known transformations described in
”Transformations”. Though it may not be a good idea to scale the up vector - the
results are hardly predictable - it is quite useful to be able to rotate it. You should also
note that translations do not affect the up direction (and thus don’t affect the fog).

The required fog color has three purposes. First it defines the color to be used in blend-
ing the fog and the background. Second it is used to specify a translucency threshold.
By using a transmittance larger than zero one can make sure that at least that amount
of light will be seen through the fog. With a transmittance of 0.3 you’ll see at least
30% of the background. Third it can be used to make a filtering fog. With a filter
value larger than zero the amount of background light given by the filter value will be
multiplied with the fog color. A filter value of 0.7 will lead to a fog that filters 70% of
the background light and leaves 30% unfiltered.

Fogs may be layered. That is, you can apply as many layers of fog as you like. Gen-
erally this is most effective if each layer is a ground fog of different color, altitude and

2.3 Atmospheric Effects 121

with different turbulence values. To use multiple layers of fogs, just add all of them to
the scene.

You may optionally stir up the fog by adding turbulence. Theturbulence keyword
may be followed by a float or vector to specify an amount of turbulence to be used.
The omega, lambda and octaves turbulence parameters may also be specified. See
section ”Pattern Modifiers” for details on all of these turbulence parameters.

Additionally the fog turbulence may be scaled along the direction of the viewing ray
using theturb depth amount. Typical values are from 0.0 to 1.0 or more. The default
value is 0.5 but any float value may be used.

Note: the fog feature will not work if the camera is inside a non-hollow object (see
section ”Empty and Solid Objects” for a detailed explanation).

2.3.4 Sky Sphere

The sky sphere is used create a realistic sky background without the need of an addi-
tional sphere to simulate the sky. Its syntax is:

SKY_SPHERE:

sky_sphere { [SKY_SPHERE_IDENTIFIER] [SKY_SPHERE_ITEMS...] }

SKY_SPHERE_ITEM:

PIGMENT | TRANSFORMATION

The sky sphere can contain several pigment layers with the last pigment being at the
top, i. e. it is evaluated last, and the first pigment being at the bottom, i. e. it is evaluated
first. If the upper layers contain filtering and/or transmitting components lower layers
will shine through. If not lower layers will be invisible.

The sky sphere is calculated by using the direction vector as the parameter for evaluat-
ing the pigment patterns. This leads to results independent from the view point which
pretty good models a real sky where the distance to the sky is much larger than the
distances between visible objects.

If you want to add a nice color blend to your background you can easily do this by
using the following example.

sky_sphere {

pigment {

gradient y

color_map {

[0.5 color CornflowerBlue]

[1.0 color MidnightBlue]

}

scale 2

translate -1

}

}

This gives a soft blend fromCornflowerBlue at the horizon toMidnightBlue at the
zenith. The scale and translate operations are used to map the direction vector values,
which lie in the range from<-1, -1, -1> to <1, 1, 1>, onto the range from<0, 0, 0> to

122 Scene Settings

<1, 1, 1>. Thus a repetition of the color blend is avoided for parts of the sky below the
horizon.

In order to easily animate a sky sphere you can transform it using the usual transfor-
mations described in ”Transformations”. Though it may not be a good idea to translate
or scale a sky sphere - the results are hardly predictable - it is quite useful to be able
to rotate it. In an animation the color blendings of the sky can be made to follow the
rising sun for example.

Note: only one sky sphere can be used in any scene. It also will not work as you
might expect if you use camera types like the orthographic or cylindrical camera. The
orthographic camera uses parallel rays and thus you’ll only see a very small part of the
sky sphere (you’ll get one color skies in most cases). Reflections in curved surface will
work though, e. g. you will clearly see the sky in a mirrored ball.

2.3.5 Rainbow

Rainbows are implemented using fog-like, circular arcs. Their syntax is:

RAINBOW:

rainbow { [RAINBOW_IDENTIFIER] [RAINBOW_ITEMS...] }

RAINBOW_ITEM:

direction <Dir> | angle Angle | width Width |

distance Distance | COLOR_MAP | jitter Jitter | up <Up> |

arc_angle Arc_Angle | falloff_angle Falloff_Angle

Rainbow default values:

arc_angle : 180.0

falloff_angle : 180.0

jitter : 0.0

up : y

The requireddirection vector determines the direction of the (virtual) light that is
responsible for the rainbow. Ideally this is an infinitely far away light source like the
sun that emits parallel light rays. The position and size of the rainbow are specified by
the requiredangle andwidth keywords. To understand how they work you should first
know how the rainbow is calculated.

For each ray the angle between the rainbow’s direction vector and the ray’s direc-
tion vector is calculated. If this angle lies in the interval fromAngle-Width/2 to
Angle+Width/2 the rainbow is hit by the ray. The color is then determined by using the
angle as an index into the rainbow’s colormap. After the color has been determined it
will be mixed with the background color in the same way like it is done for fogs.

Thus the angle and width parameters determine the angles under which the rainbow
will be seen. The optionaljitter keyword can be used to add random noise to the
index. This adds some irregularity to the rainbow that makes it look more realistic.

The requireddistance keyword is the same like the one used with fogs. Since the
rainbow is a fog-like effect it’s possible that the rainbow is noticeable on objects. If
this effect is not wanted it can be avoided by using a large distance value. By default a
sufficiently large value is used to make sure that this effect does not occur.

2.4 Global Settings 123

The color map statement is used to assign a color map that will be mapped onto the
rainbow. To be able to create realistic rainbows it is important to know that the index
into the color map increases with the angle between the ray’s and rainbow’s direction
vector. The index is zero at the innermost ring and one at the outermost ring. The filter
and transmittance values of the colors in the color map have the same meaning as the
ones used with fogs (see section ”Fog”).

The default rainbow is a 360 degree arc that looks like a circle. This is no problem as
long as you have a ground plane that hides the lower, non-visible part of the rainbow. If
this isn’t the case or if you don’t want the full arc to be visible you can use the optional
keywordsup, arc angle andfalloff angle to specify a smaller arc.

The arc angle keyword determines the size of the arc in degrees (from 0 to 360 de-
grees). A value smaller than 360 degrees results in an arc that abruptly vanishes. Since
this doesn’t look nice you can use thefalloff angle keyword to specify a region in
which the rainbow will smoothly blend into the background making it vanish softly.
The falloff angle has to be smaller or equal to the arc angle.

The up keyword determines were the zero angle position is. By changing this vec-
tor you can rotate the rainbow about its direction. You should note that the arc goes
from -Arc Angle/2 to +Arc Angle/2. The soft regions go from-Arc Angle/2 to -
Falloff Angle/2 and from+Falloff Angle/2 to +Arc Angle/2.

The following example generates a 120 degrees rainbow arc that has a falloff region of
30 degrees at both ends:

rainbow {

direction <0, 0, 1>

angle 42.5

width 5

distance 1000

jitter 0.01

color_map { Rainbow_Color_Map }

up <0, 1, 0>

arc_angle 120

falloff_angle 30

}

It is possible to use any number of rainbows and to combine them with other atmo-
spheric effects.

2.4 Global Settings

Theglobal settings statement is a catch-all statement that gathers together a number
of global parameters. The statement may appear anywhere in a scene as long as it is not
inside any other statement. You may have multipleglobal settings statements in a
scene. Whatever values were specified in the lastglobal settings statement override
any previous settings.

Note: some items which were language directives in earlier versions of POV-Ray have
been moved inside theglobal settings statement so that it is more obvious to the user
that their effect is global. The old syntax is permitted but generates a warning.

124 Scene Settings

The new syntax is:

GLOBAL_SETTINGS:

global_settings { [GLOBAL_SETTINGS_ITEMS...] }

GLOBAL_SETTINGS_ITEM:

adc_bailout Value | ambient_light COLOR | assumed_gamma Value |

hf_gray_16 [Bool] | irid_wavelength COLOR |

charset GLOBAL_CHARSET | max_intersections Number |

max_trace_level Number | number_of_waves Number |

noise_generator Number | radiosity { RADIOSITY_ITEMS... } |

photon { PHOTON_ITEMS... }

GLOBAL_CHARSET:

ascii | utf8 | sys

Global setting default values:

charset : ascii

adc_bailout : 1/255

ambient_light : <1,1,1>

assumed_gamma : No gamma correction

hf_gray_16 : off

irid_wavelength : <0.25,0.18,0.14>

max_trace_level : 5

max_intersections : 64

number_of_waves : 10

noise_generator : 2

Radiosity:

adc_bailout : 0.01

always_sample : on

brightness : 1.0

count : 35 (max = 1600)

error_bound : 1.8

gray_threshold : 0.0

low_error_factor : 0.5

max_sample : non-positive value

minimum_reuse : 0.015

nearest_count : 5 (max = 20)

normal : off

pretrace_start : 0.08

pretrace_end : 0.04

recursion_limit : 3

Each item is optional and may appear in any order. If an item is specified more than
once, the last setting overrides previous values. Details on each item are given in the
following sections.

2.4.1 ADC Bailout

In scenes with many reflective and transparent surfaces, POV-Ray can get bogged down
tracing multiple reflections and refractions that contribute very little to the color of a
particular pixel. The program uses a system calledAdaptive Depth Control(ADC)
to stop computing additional reflected or refracted rays when their contribution is in-
significant.

2.4 Global Settings 125

You may use the global settingadc bailout keyword followed by float value to specify
the point at which a ray’s contribution is considered insignificant. For example:

global_settings { adc_bailout 0.01 }

The default value is 1/255, or approximately 0.0039, since a change smaller than that
could not be visible in a 24 bit image. Generally this setting is perfectly adequate and
should be left alone. Settingadc bailout to 0 will disable ADC, relying completely
onmax trace level to set an upper limit on the number of rays spawned.

See section ”MaxTraceLevel” for details on how ADC andmax trace level interact.

2.4.2 Ambient Light

Ambient light is used to simulate the effect of inter-diffuse reflection that is responsible
for lighting areas that partially or completely lie in shadow. POV-Ray provides the
ambient light keyword to let you easily change the brightness of the ambient lighting
without changing every ambient value in all finish statements. It also lets you create
interesting effects by changing the color of the ambient light source. The syntax is:

global_settings { ambient_light COLOR }

The default is a white ambient light source set atrgb <1,1,1>. Only the rgb compo-
nents are used. The actual ambient used is:Ambient= Finish Ambient * GlobalAmbient.

See section ”Ambient” for more information.

2.4.3 AssumedGamma

Many people may have noticed at one time or another that some images are too bright
or dim when displayed on their system. As a rule, Macintosh users find that images
created on a PC are too bright, while PC users find that images created on a Macintosh
are too dim.

The assumed gamma global setting works in conjunction with theDisplay Gamma INI
setting (see section ”Display Hardware Settings”) to ensure that scene files render the
same way across the wide variety of hardware platforms that POV-Ray is used on. The
assumed gamma setting is used in a scene file by adding

global_settings { assumed_gamma Value }

where the assumed gamma value is the correction factor to be applied before the pixels
are displayed and/or saved to disk. For scenes created in older versions of POV-Ray, the
assumed gamma value will be the same as the display gamma value of the system the
scene was created on. For PC systems, the most common display gamma is 2.2, while
for scenes created on Macintosh systems should use a scene gamma of 1.8. Another
gamma value that sometimes occurs in scenes is 1.0.

Scenes that do not have anassumed gamma global setting will not have any gamma
correction performed on them, for compatibility reasons. If you are creating new scenes
or rendering old scenes, it is strongly recommended that you put in an appropriate
assumed gamma global setting. For new scenes, you should use an assumed gamma
value of 1.0 as this models how light appears in the real world more realistically.

126 Scene Settings

Before we go to the following sections, that explain more thoroughly what gamma is
and why it is important, a short overview of how gamma works in POV-Ray:

noassumed gamma in scene :

No gamma correction is applied to output file.

assumed gamma 1 :

GammaDisplay Gamma is applied to output file.

If Display Gamma is not specified, 2.2 is used.

assumed gamma G :

GammaDisplay Gamma/G is applied to output file.

If Display Gamma is not specified, 2.2/G is used.

Recommended value forassumed gamma is 1.

Monitor Gamma

The differences in how images are displayed is a result of how a computer actually
takes an image and displays it on the monitor. In the process of rendering an image and
displaying it on the screen, several gamma values are important, including the POV
scene file or image file gamma and the monitor gamma.

Most image files generated by POV-Ray store numbers in the range from 0 to 255 for
each of the red, green and blue components of a pixel. These numbers represent the
intensity of each color component, with 0 being black and 255 being the brightest color
(either 100% red, 100% green or 100% blue). When an image is displayed, the graphics
card converts each color component into a voltage which is sent to the monitor to light
up the red, green and blue phosphors on the screen. The voltage is usually proportional
to the value of each color component.

Gamma becomes important when displaying intensities that aren’t the maximum or
minimum possible values. For example, 127 should represent 50% of the maximum
intensity for pixels stored as numbers between 0 and 255. On systems that don’t do
gamma correction, 127 will be converted to 50% of the maximum voltage, but because
of the way the phosphors and the electron guns in a monitor work, this may be only
22% of the maximum color intensity on a monitor with a gamma of 2.2. To display a
pixel which is 50% of the maximum intensity on this monitor, we would need a voltage
of 73% of the maximum voltage, which translates to storing a pixel value of 186.

The relationship between the input pixel value and the displayed intensity can be ap-
proximated by an exponential functionobright = ibright ˆ display gamma where
obright is the output intensity and ibright is the input pixel intensity. Both values are in
the range from 0 to 1 (0% to 100%). Most monitors have a fixed gamma value in the
range from 1.8 to 2.6. Using the above formula with displaygamma values greater than
1 means that the output brightness will be less than the input brightness. In order to
have the output and input brightness be equal an overall system gamma of 1 is needed.
To do this, we need to gamma correct the input brightness in the same manner as above
but with a gamma value of 1/displaygamma before it is sent to the monitor. To correct

2.4 Global Settings 127

for a display gamma of 2.2, this pre-monitor gamma correction uses a gamma value of
1.0/2.2 or approximately 0.45.

How the pre-monitor gamma correction is done depends on what hardware and soft-
ware is being used. On Macintosh systems, the operating system has taken it upon itself
to insulate applications from the differences in display hardware. Through a gamma
control panel the user may be able to set the actual monitor gamma and Mac will then
convert all pixel intensities so that the monitor will appear to have the specified gamma
value. On Silicon Graphics machines, the display adapter has built-in gamma correc-
tion calibrated to the monitor which gives the desired overall gamma (the default is
1.7). Unfortunately, on PCs and most UNIX systems, it is up to the application to do
any gamma correction needed.

Image File Gamma

Since most PC and UNIX applications and image file formats don’t understand display
gamma, they don’t do anything to correct for it. As a result, users creating images on
these systems adjust the image in such a way that it has the correct brightness when
displayed. This means that the data values stored in the files are made brighter to com-
pensate for the darkening effect of the monitor. In essence, the 0.45 gamma correction
is built in to the image files created and stored on these systems. When these files are
displayed on a Macintosh system, the gamma correction built in to the file, in addi-
tion to gamma correction built into MacOS, means that the image will be too bright.
Similarly, files that look correct on Macintosh or SGI systems because of the built-in
gamma correction will be too dark when displayed on a PC.

The PNG format files generated by POV-Ray overcome the problem of too much or
not enough gamma correction by storing the image file gamma (which is 1.0/dis-
play gamma) inside the PNG file when it is generated by POV-Ray. When the PNG file
is later displayed by a program that has been set up correctly, it uses this gamma value
as well as the current display gamma to correct for the potentially different display
gamma used when originally creating the image.

Unfortunately, of all the image file formats POV-Ray supports, PNG is the only one
that has any gamma correction features and is therefore preferred for images that will
be displayed on a wide variety of platforms.

Scene File Gamma

The image file gamma problem itself is just a result of how scenes themselves are
generated in POV-Ray. When you start out with a new scene and are placing light
sources and adjusting surface textures and colors, you generally make several attempts
before the lighting is how you like it. How you choose these settings depends upon
the preview image or the image file stored to disk, which in turn is dependent upon the
overall gamma of the display hardware being used.

This means that as the artist you are doing gamma correction in the POV-Ray scene
file for your particular hardware. This scene file will generate an image file that is
also gamma corrected for your hardware and will display correctly on systems similar
to your own. However, when this scene is rendered on another platform, it may be

128 Scene Settings

too bright or too dim, regardless of the output file format used. Rather than have you
change all the scene files to have a single fixed gamma value (heaven forbid!), POV-
Ray allows you to specify in the scene file the display gamma of the system that the
scene was created on.

Theassumed gamma global setting, in conjunction with theDisplay Gamma INI setting
lets POV-Ray know how to do gamma correction on a given scene so that the preview
and output image files will appear the correct brightness on any system. Since the
gamma correction is done internally to POV-Ray, it will produce output image files
that are the correct brightness for the current display, regardless of what output format
is used. As well, since the gamma correction is performed in the high-precision data
format that POV-Ray uses internally, it produces better results than gamma correction
done after the file is written to disk.

Although you may not notice any difference in the output on your system with and
without anassumed gamma setting, the assumed gamma is important if the scene is ever
rendered on another platform.

2.4.4 HF Gray 16

Thehf gray 16 setting is useful when using POV-Ray to generate heightfields for use
in other POV-Ray scenes. The syntax is... globalsettings{ hf gray 16 [Bool] }

The boolean value turns the option on or off. If the keyword is specified without the
boolean value then the option is turned on. Ifhf gray 16 is not specified in any
global settings statement in the entire scene then the default is off.

When hf gray 16 is on, the output file will be in the form of a heightfield, with the
height at any point being dependent on the brightness of the pixel. The brightness of a
pixel is calculated in the same way that color images are converted to grayscale images:
height = 0.3 * red + 0.59 * green + 0.11 * blue.

Setting the hf gray 16 option will cause the preview display, if used, to be grayscale
rather than color. This is to allow you to see how the heightfield will look because
some file formats store heightfields in a way that is difficult to understand afterwards.
See section ”Height Field” for a description of how POV-Ray heightfields are stored
for each file type.

2.4.5 Irid Wavelength

Iridescence calculations depend upon the dominant wavelengths of the primary col-
ors of red, green and blue light. You may adjust the values using the global setting
irid wavelength as follows...

global_settings { irid_wavelength COLOR }

The default value isrgb <0.25,0.18,0.14> and any filter or transmit values are ig-
nored. These values are proportional to the wavelength of light but they represent no
real world units.

In general, the default values should prove adequate but we provide this option as a
means to experiment with other values.

2.4 Global Settings 129

2.4.6 Charset

This allows you to specify the assumed character set of all text strings. If you specify
ascii only standard ASCII character codes in the range from 0 to 127 are valid. You
can easily find a table of ASCII characters on the internet. The optionutf8 is a special
Unicode text encoding and it allows you to specify characters of nearly all languages
in use today. We suggest you use a text editor with the capability to export text to
UTF8 to generate input files. You can find more information, including tables with
codes of valid characters athttp://www.unicode.org/ The last possible option is to use
a system specific character set. For details about thesys character set option refer to
the platform specific documentation.

2.4.7 Max Trace Level

In scenes with many reflective and transparent surfaces POV-Ray can get bogged down
tracing multiple reflections and refractions that contribute very little to the color of a
particular pixel. The global settingmax trace level defines the integer maximum
number of recursive levels that POV-Ray will trace a ray.

global_settings { max_trace_level Level }

This is used when a ray is reflected or is passing through a transparent object and when
shadow rays are cast. When a ray hits a reflective surface, it spawns another ray to
see what that point reflects. That is trace level one. If it hits another reflective surface
another ray is spawned and it goes to trace level two. The maximum level by default is
five.

One speed enhancement added to POV-Ray in version 3.0 isAdaptive Depth Control
(ADC). Each time a new ray is spawned as a result of reflection or refraction its con-
tribution to the overall color of the pixel is reduced by the amount of reflection or the
filter value of the refractive surface. At some point this contribution can be considered
to be insignificant and there is no point in tracing any more rays. Adaptive depth con-
trol is what tracks this contribution and makes the decision of when to bail out. On
scenes that use a lot of partially reflective or refractive surfaces this can result in a con-
siderable reduction in the number of rays fired and makes it safer to use much higher
max trace level values.

This reduction in color contribution is a result of scaling by the reflection amount and/or
the filter values of each surface, so a perfect mirror or perfectly clear surface will not
be optimizable by ADC. You can see the results of ADC by watching theRays Saved
andHighest Trace Level displays on the statistics screen.

The point at which a ray’s contribution is considered insignificant is controlled by
theadc bailout value. The default is 1/255 or approximately 0.0039 since a change
smaller than that could not be visible in a 24 bit image. Generally this setting is per-
fectly adequate and should be left alone. Settingadc bailout to 0 will disable ADC,
relying completely on max trace level to set an upper limit on the number of rays
spawned.

If max trace level is reached before a non-reflecting surface is found and if ADC
hasn’t allowed an early exit from the ray tree the color is returned as black. Raise

130 Scene Settings

max trace level if you see black areas in a reflective surface where there should be a
color.

The other symptom you could see is with transparent objects. For instance, try making
a union of concentric spheres with a clear texture on them. Make ten of them in the
union with radius’s from 1 to 10 and render the scene. The image will show the first
few spheres correctly, then black. This is because a new level is used every time you
pass through a transparent surface. Raisemax trace level to fix this problem.

Note: that raisingmax trace level will use more memory and time and it could cause
the program to crash with a stack overflow error, although ADC will alleviate this to a
large extent.

Values formax trace level can be set up to a maximum of 256. If there is nomax trace level
set and during rendering the default value is reached, a warning is issued.

2.4.8 Max Intersections

POV-Ray uses a set of internal stacks to collect ray/object intersection points. The
usual maximum number of entries in theseI-Stacksis 64. Complex scenes may cause
these stacks to overflow. POV-Ray doesn’t stop but it may incorrectly render your
scene. When POV-Ray finishes rendering, a number of statistics are displayed. If you
seeI-Stack Overflows reported in the statistics you should increase the stack size.
Add a global setting to your scene as follows:

global_settings { max_intersections Integer }

If the I-Stack Overflows remain increase this value until they stop.

2.4.9 NumberOf Waves

Thewaves andripples patterns are generated by summing a series of waves, each with
a slightly different center and size. By default, ten waves are summed but this amount
can be globally controlled by changing thenumber of waves setting.

global_settings { number_of_waves Integer }

Changing this value affects both waves and ripples alike on all patterns in the scene.

2.4.10 Noisegenerator

There are three noise generators implemented.

• noise generator 1 the noise that was used in POVRay 3.1

• noise generator 2 ’range corrected’ version of the old noise, it does not show
the plateaus seen withnoise generator 1

• noise generator 3 generates Perlin noise

The default isnoise generator 2

Note: The noisegenerators can also be used within the pigment/normal/etc. statement.

2.5 Radiosity 131

2.4.11 Radiosity Basics

Important notice:The radiosity features in POV-Ray are somewhat experimental. There
is a high probability that the design and implementation of these features will be
changed in future versions. We cannot guarantee that scenes using these features in
this version will render identically in future releases or that full backwards compatibil-
ity of language syntax can be maintained.

Radiosity is an extra calculation that more realistically computes the diffuse interreflec-
tion of light. This diffuse interreflection can be seen if you place a white chair in a room
full of blue carpet, blue walls and blue curtains. The chair will pick up a blue tint from
light reflecting off of other parts of the room. Also notice that the shadowed areas of
your surroundings are not totally dark even if no light source shines directly on the
surface. Diffuse light reflecting off of other objects fills in the shadows. Typically
ray-tracing uses a trick calledambientlight to simulate such effects but it is not very
accurate.

Radiosity calculations are only made when aradiosity{} block is used inside the
global settings{} block.

The following sections describes how radiosity works, how to control it with various
global settings and tips on trading quality vs. speed.

2.5 Radiosity

2.5.1 How Radiosity Works

The problem of ray-tracing is to figure out what the light level is at each point that you
can see in a scene. Traditionally, in ray tracing, this is broken into the sum of these
components:

Diffuse

the effect that makes the side of things facing the light brighter;

Specular

the effect that makes shiny things have dings or sparkles on them;

Reflection

the effect that mirrors give; and

Ambient

the general all-over light level that any scene has, which keeps things in shadow
from being pure black.

POV-Ray’s radiosity system, based on a method by Greg Ward, provides a way to
replace the last term - the constant ambient light value - with a light level which is
based on what surfaces are nearby and how bright in turn they are.

The first thing you might notice about this definition is that it is circular: the bright-
ness and color of everything is dependent on everything else and vice versa. This is

132 Scene Settings

true in real life but in the world of ray-tracing, we can make an approximation. The
approximation that is used is: the objects you are looking at have theirambient val-
ues calculated for you by checking the other objects nearby. When those objects are
checked during this process, however, theirdiffuse term is used. The brightness of
radiosity in POV-Ray is based on two things:

1. the amount of light ”gathered”

2. the ’diffuse’ property of the surface finish

ambient lightglobal settingsambient 0

How does POV-Ray calculate the ambient term for each point? By sending out more
rays, in many different directions, and averaging the results. A typical point might use
200 or more rays to calculate its ambient light level correctly.

Now this sounds like it would make the ray-tracer 200 times slower. This is true,
except that the software takes advantage of the fact that ambient light levels change
quite slowly (remember, shadows are calculated separately, so sharp shadow edges are
not a problem). Therefore, these extra rays are sent out onlyonce in a while(about 1
time in 50), then these calculated values are saved and reused for nearby pixels in the
image when possible.

This process of saving and reusing values is what causes the need for a variety of tuning
parameters, so you can get the scene to look just the way you want.

2.5.2 Adjusting Radiosity

As described earlier, radiosity is turned on by using theradiosity{} block inglobal setting.
Radiosity has many parameters that are specified as follows:

global_settings { radiosity { [RADIOSITY_ITEMS...] } }

RADIOSITY_ITEMS:

adc_bailout Float | always_sample Bool | brightness Float |

count Integer | error_bound Float | gray_threshold Float |

load_file Filename | low_error_factor Float | max_sample Float |

media Bool | minimum_reuse Float | nearest_count Integer |

normal Bool | pretrace_end Float | pretrace_start Float |

recursion_limit Integer | save_file Filename

Each item is optional and may appear in any order. If an item is specified more than
once the last setting overrides previous values. Details on each item is given in the
following sections.

Note: Considerable changes have been made to the way radiosity works in POV-Ray
3.5 compared to POV-Ray 3.1. Old scene will not render to the same result, if they ren-
der at all. It is not possible to use the#version directive to get backward compatibility
for radiosity.

radiosity adc bailout

You can specify an adcbailout for radiosity rays. Useadc bailout = 0.01 / brightest ambient object
for good results. Default is 0.01.

2.5 Radiosity 133

always sample

You can force POV-Ray to only use the data from the pretrace step and not gather
any new samples during the final radiosity pass. This may reduce splotchiness. To do
this, usealways sample off, by default it ison. It can also be usefully when reusing
previously saved radiosity data.

brightness

Thebrightness keyword specifies a float value that is the degree to which objects are
brightened before being returned upwards to the rest of the system. The default value
is 1.0. In cases where you would raise theglobal settings{ambient light value} to
increase the over all brightness in a non-radiosity scene, you can usebrightness in a
radiosity scene.

count

The integer number of rays that are sent out whenever a new radiosity value has to be
calculated is given bycount. A value of 35 is the default, the maximum is 1600. When
this value is too low, the light level will tend to look a little bit blotchy, as if the surfaces
you’re looking at were slightly warped. If this is not important to your scene (as in the
case that you have a bump map or if you have a strong texture) then by all means use a
lower number.

error bound

The error bound float value is one of the two main speed/quality tuning values (the
other is of course the number of rays shot). In an ideal world, this would be theonly

value needed. It is intended to mean the fraction of error tolerated. For example, if it
were set to 1 the algorithm would not calculate a new value until the error on the last
one was estimated at as high as 100%. Ignoring the error introduced by rotation for the
moment, on flat surfaces this is equal to the fraction of the reuse distance, which in turn
is the distance to the closest item hit. If you have an old sample on the floor 10 inches
from a wall, an error bound of 0.5 will get you a new sample at a distance of about 5
inches from the wall.

The default value of 1.8 is good for a smooth general lighting effect. Using lower
values is more accurate, but it will strongly increase the danger of artifacts and therefore
require highercount. You can use values even lower than 0.1 but both render time and
memory use can become extremely high then.

gray threshold

Diffusely interreflected light is a function of the objects around the point in question.
Since this is recursively defined to millions of levels of recursion, in any real life scene,
every point is illuminated at least in part by every other part of the scene. Since we
can’t afford to compute this, if we only do one bounce, the calculated ambient light

134 Scene Settings

is very strongly affected by the colors of the objects near it. This is known as color
bleed and it really happens but not as much as this calculation method would have you
believe. Thegray threshold float value grays it down a little, to make your scene more
believable. A value of .6 means to calculate the ambient value as 60% of the equivalent
gray value calculated, plus 40% of the actual value calculated. At 0%, this feature does
nothing. At 100%, you always get white/gray ambient light, with no hue.

Note: this does not change the lightness/darkness, only the strength of hue/grayness
(in HLS terms, it changes S only). The default value is 0.0

low error factor

If you calculate just enough samples, but no more, you will get an image which has
slightly blotchy lighting. What you want is just a few extra interspersed, so that the
blending will be nice and smooth. The solution to this is the mosaic preview, con-
trolled bypretrace: it goes over the image one or more times beforehand, calculating
radiosity values. To ensure that you get a few extra, the radiosity algorithm lowers the
error bound during the pre-final passes, then sets it back just before the final pass. The
low error factor is a float tuning value which sets the amount that the error bound is
dropped during the preliminary image passes. If your low error factor is 0.8 and your
error bound is set to 0.4 it will really use an error bound of 0.32 during the first passes
and 0.4 on the final pass. The default value is 0.5.

max sample

Sometimes there can be problems with splotchiness that is caused by objects that
are very bright. This can be sometimes avoided by using themax sample keyword.
max sample takes a float parameter which specifies the brightest that any gathered sam-
ple is allowed to be. Any samples brighter than this will have their brightness decreased
(without affecting color). Specifying a non-positive value formax sample will allow
any brightness of samples (which is the default).

Media and Radiosity

Radiosity estimation can be affected by media. To enable this feature, addmedia on to
theradiosity{} block. The default isoff

minimum reuse

The minimum effective radius ratio is set byminimum reuse float value. This is the
fraction of the screen width which sets the minimum radius of reuse for each sample
point (actually, it is the fraction of the distance from the eye but the two are roughly
equal). For example, if the value is 0.02, the radius of maximum reuse for every sam-
ple is set to whatever ground distance corresponds to 2% of the width of the screen.
Imagine you sent a ray off to the horizon and it hits the ground at a distance of 100
miles from your eye point. The reuse distance for that sample will be set to 2 miles. At
a resolution of 300*400 this will correspond to (very roughly) 8 pixels. The theory is

2.5 Radiosity 135

that you don’t want to calculate values for every pixel into every crevice everywhere in
the scene, it will take too long. This sets a minimum bound for the reuse. If this value
is too low, (which it should be in theory) rendering gets slow, and inside corners can
get a little grainy. If it is set too high, you don’t get the natural darkening of illumina-
tion near inside edges, since it reuses. At values higher than 2% you start getting more
just plain errors, like reusing the illumination of the open table underneath the apple.
Remember that this is a unit less ratio. The default value is 0.015.

nearest count

Thenearest count integer value is the minimum number of old ambient values blended
together to create a new interpolated value. The total number blended will vary depend-
ing onerror bound. All previous values that fit within the specified errorbound will
be used in the average.

It will always be the n geometrically closest reusable points that get used. If you go
lower than 4, things can get pretty patchy. This can be good for debugging, though.
Must be no more than 20, since that is the size of the array allocated. The default value
is 5.

Normal and Radiosity

Radiosity estimation can be affected by normals. To enable this feature, addnormal on
to theradiosity{} block. The default isoff

Pretrace

To control the radiosity pre-trace gathering step, use the keywordspretrace start and
pretrace end within the radiosity{} block. Each of these is followed by a decimal
value between 0.0 and 1.0 which specifies the size of the blocks in the mosaic preview
as a percentage of the image size. The defaults are 0.08 forpretrace start and 0.04
for pretrace end

recursion limit

Therecursion limit is an integer value which determines how many recursion levels
are used to calculate the diffuse inter-reflection. The default value is 3, the upper limit
is 20.

Save and load radiosity data

You can save the radiosity data usingsave file "file name" and load the same data
later usingload file "file name". In general, it is not a good idea to save and load ra-
diosity data if scene objects are moving. Even if data are loaded, more samples may be

136 Scene Settings

taken during rendering (which produces a better approximation). You can disable sam-
ples from being taken during the final rendering phase by specifyingalways sample

off.

2.5.3 Tips on Radiosity

Have a look at the ”Radiosity Tutorial” in the ”Advanced Tutorial” section, to get a feel
for what the visual result of changing radiosity parameters is.

If you want to see where your values are being calculated set radiositycount down
to about 20, set radiositynearest count to 1 and setgray threshold to 0. This
will make everything maximally patchy, so you’ll be able to see the borders between
patches. There will have been a radiosity calculation at the center of most patches. As
a bonus, this is quick to run. You can then change theerror bound up and down to
see how it changes things. Likewise modifyminimum reuse.

One way to get extra smooth results: crank up the sample count (we’ve gone as high
as 1300) and drop thelow error factor to something small like 0.6. Bump up the
nearest count to 7 or 8. This will get better values, and more of them, then interpolate
among more of them on the last pass. This is not for people with a lack of patience
since it is like a squared function. If your blotchiness is only in certain corners or near
certain objects try tuning the error bound instead. Never drop it by more than a little at
a time, since the run time will get very long.

Sometimes extra samples are taken during the final rendering pass. These newer sam-
ples can cause discontinuities in the radiosity in some scenes. To decrease these arte-
facts, use a pretraceend of 0.04 (or even 0.02 if you’re really patient and picky). This
will cause the majority of the samples to be taken during the preview passes, and de-
crease the artefacts created during the final rendering pass. You can force POV-Ray to
only use the data from the pretrace step and not gather any new samples during the fi-
nal radiosity pass. To do this, use ”alwayssample no” within the radiosity block inside
global settings.

If your scene uses ambient objects (especially small ambient objects) as light sources,
you should probably use a higher count (100-150 and higher). For such scenes, an
error bound of 1.0 is usually good. Higher causes too much error, but lower causes
very slow rendering. And it’s important to adapt adcbailout.

Chapter 3

Objects

Objects are the building blocks of your scene. There are a lot of different types of
objects supported by POV-Ray. In the sections which follows, we describe ”Finite
Solid Primitives”, ”Finite Patch Primitives”, ”Infinite Solid Primitives”, ”Isosurface
Object”, ”Parametric Object”, and ”Light Sources”. These primitive shapes may be
combined into complex shapes using ”Constructive Solid Geometry” (also known as
CSG).

The basic syntax of an object is a keyword describing its type, some floats, vectors or
other parameters which further define its location and/or shape and some optional ob-
ject modifiers such as texture, interiortexture, pigment, normal, finish, interior, bound-
ing, clipping or transformations. Specifically the syntax is:

OBJECT:

FINITE_SOLID_OBJECT | FINITE_PATCH_OBJECT |

INFINITE_SOLID_OBJECT | ISOSURFACE_OBJECT | PARAMETRIC_OBJECT |

CSG_OBJECT | LIGHT_SOURCE |

object { OBJECT_IDENTIFIER [OBJECT_MODIFIERS...] }

FINITE_SOLID_OBJECT:

BLOB | BOX | CONE | CYLINDER | HEIGHT_FIELD | JULIA_FRACTAL |

LATHE | PRISM | SPHERE | SPHERESWEEP | SUPERELLIPSOID | SOR |

TEXT | TORUS

FINITE_PATCH_OBJECT:

BICUBIC_PATCH | DISC | MESH | MESH2 | POLYGON | TRIANGLE |

SMOOTH_TRIANGLE

INFINITE_SOLID_OBJECT:

PLANE | POLY | CUBIC | QUARTIC | QUADRIC

ISOSURFACE_OBJECT:

ISOSURFACE

PARAMETRIC_OBJECT:

PARAMETRIC

CSG_OBJECT:

UNION | INTERSECTION | DIFFERENCE | MERGE

Object identifiers may be declared to make scene files more readable and to parameter-
ize scenes so that changing a single declaration changes many values. An identifier is
declared as follows.

138 Objects

OBJECT_DECLARATION:

#declare IDENTIFIER = OBJECT |

#local IDENTIFIER = OBJECT

WhereIDENTIFIERis the name of the identifier up to 40 characters long andOBJECT
is any valid object. To invoke an object identifier, you wrap it in anobject{...} state-
ment. You use theobject statement regardless of what type of object it originally was.
Although early versions of POV-Ray required thisobject wrapper all of the time,
now it is only used withOBJECTIDENTIFIERS.

Object modifiers are covered in detail later. However here is a brief overview.

The texture describes the surface properties of the object. Complete details are in ”Tex-
tures”. Textures are combinations of pigments, normals, and finishes. In the section
”Pigment” you’ll learn how to specify the color or pattern of colors inherent in the
material. In ”Normal” we describe a method of simulating various patterns of bumps,
dents, ripples or waves by modifying the surface normal vector. The section on ”Fin-
ish” describes the reflective properties of the surface. The ”Interior” is a feature intro-
duced in POV-Ray 3.1. It contains information about the interior of the object which
was formerly contained in the finish and halo parts of a texture. Interior items are no
longer part of the texture. Instead, they attach directly to the objects. The halo feature
has been discontinued and replaced with a new feature called ”Media” which replaces
both halo and atmosphere.

Bounding shapes are finite, invisible shapes which wrap around complex, slow render-
ing shapes in order to speed up rendering time. Clipping shapes are used to cut away
parts of shapes to expose a hollow interior. Transformations tell the ray-tracer how to
move, size or rotate the shape and/or the texture in the scene.

3.1 Finite Solid Primitives

There are fourteen different solid finite primitive shapes: blob, box, cone, cylinder,
height field, Julia fractal, lathe, prism, sphere, spheresweep, superellipsoid, surface of
revolution, text object and torus. These have a well-definedinsideand can be used
in CSG (see section ”Constructive Solid Geometry”). They are finite and respond to
automatic bounding. You may specify an interior for these objects.

3.1.1 Blob

Blobs are an interesting and flexible object type. Mathematically they are iso-surfaces
of scalar fields, i.e. their surface is defined by the strength of the field in each point. If
this strength is equal to a threshold value you’re on the surface otherwise you’re not.

Picture each blob component as an object floating in space. This object isfilled with
a field that has its maximum at the center of the object and drops off to zero at the
object’s surface. The field strength of all those components are added together to form
the field of the blob. Now POV-Ray looks for points where this field has a given value,
the threshold value. All these points form the surface of the blob object. Points with
a greater field value than the threshold value are considered to be inside while points
with a smaller field value are outside.

3.1 Finite Solid Primitives 139

There’s another, simpler way of looking at blobs. They can be seen as a union of
flexible components that attract or repel each other to form a blobby organic looking
shape. The components’ surfaces actually stretch out smoothly and connect as if they
were made of honey or something similar.

The syntax forblob is defined as follows:

BLOB:

blob { BLOB_ITEM... [BLOB_MODIFIERS...]}

BLOB_ITEM:

sphere{<Center>, Radius,

[strength] Strength[COMPONENT_MODIFIER...] } |

cylinder{<End1>, <End2>, Radius,

[strength] Strength [COMPONENT_MODIFIER...] } |

component Strength, Radius, <Center> |

threshold Amount

COMPONENT_MODIFIER:

TEXTURE | PIGMENT | NORMAL | FINISH | TRANSFORMATION

BLOB_MODIFIER:

hierarchy [Boolean] | sturm [Boolean] | OBJECT_MODIFIER

Blob default values:

hierarchy : on

sturm : off

threshold : 1.0

The threshold keyword is followed by a float value which determines the total field
strength value that POV-Ray is looking for. The default value if none is specified is
threshold 1.0. By following the ray out into space and looking at how each blob com-
ponent affects the ray, POV-Ray will find the points in space where the field strength
is equal to the threshold value. The following list shows some things you should know
about the threshold value.

1. The threshold value must be positive.

2. A component disappears if the threshold value is greater than its strength.

3. As the threshold value gets larger, the surface you see gets closer to the centers
of the components.

4. As the threshold value gets smaller, the surface you see gets closer to the surface
of the components.

Cylindrical components are specified by acylinder statement. The center of the end-
caps of the cylinder is defined by the vectors<End1> and <End2>. Next is the float
value of theRadiusfollowed by the floatStrength. These vectors and floats are required
and should be separated by commas. The keywordstrength may optionally precede
the strength value. The cylinder has hemispherical caps at each end.

Spherical components are specified by asphere statement. The location is defined
by the vector <Center>. Next is the float value of theRadiusfollowed by the float
Strength. These vector and float values are required and should be separated by com-
mas. The keywordstrength may optionally precede the strength value.

You usually will apply a single texture to the entire blob object, and you typically
use transformations to change its size, location, and orientation. However both the

140 Objects

cylinder andsphere statements may have individual texture, pigment, normal, finish,
and transformations applied to them. You may not apply separateinterior statements
to the components but you may specify one for the entire blob.

Note: by unevenly scaling a spherical component you can create ellipsoidal compo-
nents. The tutorial section on ”Blob Object” illustrates individually textured blob com-
ponents and many other blob examples.

The component keyword is an obsolete method for specifying a spherical component
and is only used for compatibility with earlier POV-Ray versions. It may not have
textures or transformations individually applied to it.

The strength parameter of either type of blob component is a float value specifying
the field strength at the center of the object. The strength may be positive or negative.
A positive value will make that component attract other components while a negative
value will make it repel other components. Components in different, separate blob
shapes do not affect each other.

You should keep the following things in mind.

1. The strength value may be positive or negative. Zero is a bad value, as the net
result is that no field was added – you might just as well have not used this
component.

2. If strength is positive, then POV-Ray will add the component’s field to the space
around the center of the component. If this adds enough field strength to be
greater than the threshold value you will see a surface.

3. If the strength value is negative, then POV-Ray will subtract the component’s
field from the space around the center of the component. This will only do some-
thing if there happen to be positive components nearby. The surface around any
nearby positive components will be dented away from the center of the negative
component.

After all components and the optionalthreshold value have been specified you may
specify zero or more blob modifiers. A blob modifier is any regular object modifier or
thehierarchy or sturm keywords.

The components of each blob object are internally bounded by a spherical bounding
hierarchy to speed up blob intersection tests and other operations. Using the optional
keyword hierarchy followed by an optional boolean float value will turn it off or on.
By default it is on.

The calculations for blobs must be very accurate. If this shape renders improperly you
may add the keywordsturm followed by an optional boolean float value to turn off or
on POV-Ray’s slower-yet-more-accurate Sturmian root solver. By default it is off.

An example of a three component blob is:

BLOB:

blob {

threshold 0.6

sphere { <.75, 0, 0>, 1, 1 }

sphere { <-.375, .64952, 0>, 1, 1 }

sphere { <-.375, -.64952, 0>, 1, 1 }

scale 2

3.1 Finite Solid Primitives 141

}

If you have a single blob component then the surface you see will just look like the
object used, i.e. a sphere or a cylinder, with the surface being somewhere inside the
surface specified for the component. The exact surface location can be determined
from the blob equation listed below (you will probably never need to know this, blobs
are more for visual appeal than for exact modeling).

For the more mathematically minded, here’s the formula used internally by POV-Ray
to create blobs. You don’t need to understand this to use blobs. The density of the blob
field of a single component is:

density= strength·

1− (
distance
radius

)22

Equation 3.1: Density of a blob field.

wheredistanceis the distance of a given point from the spherical blob’s center or
cylinder blob’s axis. This formula has the nice property that it is exactly equal to
the strength parameter at the center of the component and drops off to exactly 0 at a
distance from the center of the component that is equal to the radius value. The density
formula for more than one blob component is just the sum of the individual component
densities.

3.1.2 Box

A simple box can be defined by listing two corners of the box using the following
syntax for abox statement:

BOX:

box

{

<Corner_1>, <Corner_2>

[OBJECT_MODIFIERS...]

}

Where<Corner 1> and <Corner 2> are vectors defining the x, y, z coordinates of the
opposite corners of the box.

Note: that all boxes are defined with their faces parallel to the coordinate axes. They
may later be rotated to any orientation using therotate keyword.

Boxes are calculated efficiently and make good bounding shapes (if manually bounding
seems to be necessary).

3.1.3 Cone

Thecone statement creates a finite length cone or afrustum(a cone with the point cut
off). The syntax is:

142 Objects

Figure 3.1: The geometry of a box.

CONE:

cone

{

<Base_Point>, Base_Radius, <Cap_Point>, Cap_Radius

[open][OBJECT_MODIFIERS...]

}

Figure 3.2: The geometry of a cone.

Where<Base Point> and< Cap Point> are vectors defining the x, y, z coordinates of
the center of the cone’s base and cap andBase Radius andCap Radius are float values
for the corresponding radii.

Normally the ends of a cone are closed by flat discs that are parallel to each other
and perpendicular to the length of the cone. Adding the optional keywordopen af-
ter Cap Radius will remove the end caps and results in a tapered hollow tube like a
megaphone or funnel.

3.1.4 Cylinder

The cylinder statement creates a finite length cylinder with parallel end caps The
syntax is:

3.1 Finite Solid Primitives 143

CYLINDER:

cylinder

{

<Base_Point>, <Cap_Point>, Radius

[open][OBJECT_MODIFIERS...]

}

Figure 3.3: The geometry of a cylinder.

Where<Base Point> and <Cap Point> are vectors defining the x, y, z coordinates of
the cylinder’s base and cap andRadius is a float value for the radius.

Normally the ends of a cylinder are closed by flat discs that are parallel to each other
and perpendicular to the length of the cylinder. Adding the optional keywordopen after
the radius will remove the end caps and results in a hollow tube.

3.1.5 Height Field

Height fields are fast, efficient objects that are generally used to create mountains or
other raised surfaces out of hundreds of triangles in a mesh. Theheight field state-
ment syntax is:

HEIGHT_FIELD:

height_field{

[HF_TYPE]

"filename"

[HF_MODIFIER...]

[OBJECT_MODIFIER...]

}

HF_TYPE:

gif | tga | pot | png | pgm | ppm | jpeg | tiff | sys | function image

HF_MODIFIER:

hierarchy [Boolean] |

smooth |

water_level Level

Height field default values:

hierarchy : on

smooth : off

144 Objects

water_level : 0.0

A height field is essentially a one unit wide by one unit long square with a mountainous
surface on top. The height of the mountain at each point is taken from the color number
or palette index of the pixels in a graphic image file. The maximum height is one, which
corresponds to the maximum possible color or palette index value in the image file.

Figure 3.4: The size and orientation of an un-scaled height field.

The mesh of triangles corresponds directly to the pixels in the image file. Each square
formed by four neighboring pixels is divided into two triangles. An image with a
resolution ofN*M pixels has(N-1)*(M-1) squares that are divided into2*(N-1)*(M-1)
triangles.

Figure 3.5: Relationship of pixels and triangles in a height field.

The resolution of the height field is influenced by two factors: the resolution of the
image and the resolution of the color/index values. The size of the image determines
the resolution in the x- and z-direction. A larger image uses more triangles and looks
smoother. The resolution of the color/index value determines the resolution along the
y-axis. A height field made from an 8-bit image can have 256 different height levels
while one made from a 16-bit image can have up to 65536 different height levels. Thus
the second height field will look much smoother in the y-direction if the height field is
created appropriately.

The size/resolution of the image does not affect the size of the height field. The un-

3.1 Finite Solid Primitives 145

scaled height field size will always be 1 by 1 by 1. Higher resolution image files will
create smaller triangles, not larger height fields.

There are eight or possibly nine types of files which can define a height field. The
image file type used to create a height field is specified by one of the keywordsgif,
tga, pot, png, pgm, ppm, tiff, jpeg and possibly sys which is a system specific (e.
g. Windows BMP or Macintosh Pict) format file. Specifying the file type is optional.
If it is not defined the same file type will be assumed as the one that is set as the output
file type. This is useful when the source for theheight field is also generated with
POV-Ray.

The GIF, PNG, PGM, TIFF and possibly SYS format files are the only ones that can be
created using a standard paint program. Though there are paint programs for creating
TGA image files they won’t be of much use for creating the special 16 bit TGA files
used by POV-Ray (see below and ”HFGray 16” for more details).

In an image file that uses a color palette, like GIF, the color number is the palette index
at a given pixel. Use a paint program to look at the palette of a GIF image. The first
color is palette index zero, the second is index one, the third is index two and so on. The
last palette entry is index 255. Portions of the image that use low palette entries will
result in lower parts of the height field. Portions of the image that use higher palette
entries will result in higher parts of the height field.

Height fields created from GIF files can only have 256 different height levels because
the maximum number of colors in a GIF file is 256.

The color of the palette entry does not affect the height of the pixel. Color entry 0
could be red, blue, black or orange but the height of any pixel that uses color entry 0
will always be 0. Color entry 255 could be indigo, hot pink, white or sky blue but the
height of any pixel that uses color entry 255 will always be 1.

You can create height field GIF images with a paint program or a fractal program like
Fractint. You can usually getFractint from most of the same sources as POV-Ray.

A POT file is essentially a GIF file with a 16 bit palette. The maximum number of
colors in a POT file is 65536. This means a POT height field can have up to 65536
possible height values. This makes it possible to have much smoother height fields.

Note: the maximum height of the field is still 1 even though more intermediate values
are possible.

At the time of this writing the only program that created POT files was a freeware MS-
Dos/Windows program calledFractint. POT files generated with this fractal program
create fantastic landscapes.

The TGA and PPM file formats may be used as a storage device for 16 bit numbers
rather than an image file. These formats use the red and green bytes of each pixel to
store the high and low bytes of a height value. These files are as smooth as POT files
but they must be generated with special custom-made programs. Several programs can
create TGA heightfields in the format POV uses, such asGforge andTerrain Maker.

PNG format heightfields are usually stored in the form of a grayscale image with black
corresponding to lower and white to higher parts of the height field. Because PNG
files can store up to 16 bits in grayscale images they will be as smooth as TGA and
PPM images. Since they are grayscale images you will be able to view them with a

146 Objects

regular image viewer. gforge can create 16-bit heightfields in PNG format. Color
PNG images will be used in the same way as TGA and PPM images.

SYS format is a platform specific file format. See your platform specific documentation
for details.

In addition to all the usual object modifiers, there are three additional height field mod-
ifiers available.

The optionalwater level parameter may be added after the file name. It consists of the
keywordwater level followed by a float value telling the program to ignore parts of
the height field below that value. The default value is zero and legal values are between
zero and one. For examplewater level 0.5 tells POV-Ray to only render the top
half of the height field. The other half isbelow the waterand couldn’t be seen anyway.
Usingwater level renders faster than cutting off the lower part using CSG or clipping.
This term comes from the popular use of height fields to render landscapes. A height
field would be used to create islands and another shape would be used to simulate
water around the islands. A large portion of the height field would be obscured by the
water so the water level parameter was introduced to allow the ray-tracer to ignore
the unseen parts of the height field.water level is also used to cut away unwanted
lower values in a height field. For example if you have an image of a fractal on a solid
colored background, where the background color is palette entry 0, you can remove the
background in the height field by specifying,water level 0.001.

Normally height fields have a rough, jagged look because they are made of lots of flat
triangles. Adding the keywordsmooth causes POV-Ray to modify the surface normal
vectors of the triangles in such a way that the lighting and shading of the triangles will
give a smooth look. This may allow you to use a lower resolution file for your height
field than would otherwise be needed. However, smooth triangles will take longer to
render. The default value is off.

In order to speed up the intersection tests a one-level bounding hierarchy is available.
By default it is always used but it can be switched off usinghierarchy off to improve
the rendering speed for small height fields (i.e. low resolution images). You may
optionally use a boolean value such ashierarchy on or hierarchy off.

3.1.6 Julia Fractal

A julia fractal object is a 3-Dsliceof a 4-D object created by generalizing the process
used to create the classic Julia sets. You can make a wide variety of strange objects
using the julia fractal statement including some that look like bizarre blobs of
twisted taffy. Thejulia fractal syntax is:

JULIA_FRACTAL:

julia_fractal

{

<4D_Julia_Parameter>

[JF_ITEM...] [OBJECT_MODIFIER...]

}

JF_ITEM:

ALGEBRA_TYPE | FUNCTION_TYPE | max_iteration Count |

precision Amt | slice <4D_Normal>, Distance

3.1 Finite Solid Primitives 147

ALGEBRA_TYPE:

quaternion | hypercomplex

FUNCTION_TYPE:

QUATERNATION:

sqr | cube

HYPERCOMPLEX:

sqr | cube | exp | reciprocal | sin | asin | sinh |

asinh | cos | acos | cosh | acosh | tan | atan |tanh |

atanh | ln | pwr(X_Val, Y_Val)

Julia Fractal default values:

ALGEBRA_TYPE : quaternion

FUNCTION_TYPE : sqr

max_iteration : 20

precision : 20

slice, DISTANCE : <0,0,0,1>, 0.0

The required 4-D vector<4D Julia Parameter> is the classic Julia parameterp in the
iterated formulaf(h) + p. The julia fractal object is calculated by using an algorithm
that determines whether an arbitrary pointh(0) in 4-D space is inside or outside the
object. The algorithm requires generating the sequence of vectorsh(0), h(1), ...

by iterating the formulah(n+1) = f(h(n)) + p (n = 0, 1, ..., max iteration-1)
where p is the fixed 4-D vector parameter of the julia fractal andf() is one of the
functionssqr, cube, ... specified by the presence of the corresponding keyword. The
point h(0) that begins the sequence is considered inside the julia fractal object if none
of the vectors in the sequence escapes a hypersphere of radius 4 about the origin be-
fore the iteration number reaches the integermax iteration value. As you increase
max iteration, some points escape that did not previously escape, forming the julia
fractal. Depending on the<4D Julia Parameter>, the julia fractal object is not nec-
essarily connected; it may be scattered fractal dust. Using a lowmax iteration can
fuse together the dust to make a solid object. A highmax iteration is more accurate
but slows rendering. Even though it is not accurate, the solid shapes you get with a
low max iteration value can be quite interesting. If none is specified, the default is
max iteration 20.

Since the mathematical object described by this algorithm is four-dimensional and
POV-Ray renders three dimensional objects, there must be a way to reduce the number
of dimensions of the object from four dimensions to three. This is accomplished by
intersecting the 4-D fractal with a 3-D ”plane” defined by theslice modifier and then
projecting the intersection to 3-D space. The keyword is followed by 4-D vector and
a float separated by a comma. The slice plane is the 3-D space that is perpendicular
to <4D Normal> and is Distance units from the origin. Zero length<4D Normal>
vectors or a <4D Normal> vector with a zero fourth component are illegal. If none is
specified, the default isslice <0,0,0,1>,0.

You can get a good feel for the four dimensional nature of a julia fractal by using POV-
Ray’s animation feature to vary a slice’sDistance parameter. You can make the julia
fractal appear from nothing, grow, then shrink to nothing asDistance changes, much
as the cross section of a 3-D object changes as it passes through a plane.

The precision parameter is a tolerance used in the determination of whether points
are inside or outside the fractal object. Larger values give more accurate results but
slower rendering. Use as low a value as you can without visibly degrading the fractal

148 Objects

object’s appearance but note values less than 1.0 are clipped at 1.0. The default if none
is specified isprecision 20.

The presence of the keywordsquaternion or hypercomplex determine which 4-D
algebra is used to calculate the fractal. The default isquaternion. Both are 4-D gen-
eralizations of the complex numbers but neither satisfies all the field properties (all the
properties of real and complex numbers that many of us slept through in high school).
Quaternions have non-commutative multiplication and hypercomplex numbers can fail
to have a multiplicative inverse for some non-zero elements (it has been proved that
you cannot successfully generalize complex numbers to four dimensions with all the
field properties intact, so something has to break). Both of these algebras were discov-
ered in the 19th century. Of the two, the quaternions are much better known, but one
can argue that hypercomplex numbers are more useful for our purposes, since complex
valued functions such as sin, cos, etc. can be generalized to work for hypercomplex
numbers in a uniform way.

For the mathematically curious, the algebraic properties of these two algebras can be
derived from the multiplication properties of the unit basis vectors 1= <1,0,0,0>, i=<
0,1,0,0>, j=<0,0,1,0> and k=< 0,0,0,1>. In both algebras 1 x= x 1 = x for any x (1 is
the multiplicative identity). The basis vectors 1 and i behave exactly like the familiar
complex numbers 1 and i in both algebras.

ij = k jk = i ki = j

ji = -k kj = -i ik = -j

ii = jj = kk = -1 ijk = -1

Table 3.1: Quaternion basis vector multiplication rules

ij = k jk = -i ki = -j

ji = k kj = -i ik = -j

ii = jj = kk = -1 ijk = 1

Table 3.2: Hypercomplex basis vector multiplication rules

A distance estimation calculation is used with the quaternion calculations to speed them
up. The proof that this distance estimation formula works does not generalize from two
to four dimensions but the formula seems to work well anyway, the absence of proof
notwithstanding!

The presence of one of the function keywordssqr, cube, etc. determines which func-
tion is used for f(h) in the iteration formulah(n+1) = f(h(n)) + p. The default is
sqr. Most of the function keywords work only if thehypercomplex keyword is present.
Only sqr andcube work with quaternion. The functions are all familiar complex
functions generalized to four dimensions. Function Keyword Maps 4-D value h to:

A simple example of a julia fractal object is:

julia_fractal {

<-0.083,0.0,-0.83,-0.025>

quaternion

sqr

max_iteration 8

precision 15

3.1 Finite Solid Primitives 149

sqr h*h
cube h*h*h
exp e raised to the power h
reciprocal 1/h
sin sine of h
asin arcsine of h
sinh hyperbolic sine of h
asinh inverse hyperbolic sine of h
cos cosine of h
acos arccosine of h
cosh hyperbolic cos of h
acosh inverse hyperbolic cosine of h
tan tangent of h
atan arctangent of h
tanh hyperbolic tangent of h
atanh inverse hyperbolic tangent of h
ln natural logarithm of h
pwr(x,y) h raised to the complex power x+iy

Table 3.3: Function Keyword Maps 4-D value of h

}

The first renderings of julia fractals using quaternions were done by Alan Norton and
later by John Hart in the ’80’s. This POV-Ray implementation followsFractint in
pushing beyond what is known in the literature by using hypercomplex numbers and by
generalizing the iterating formula to use a variety of transcendental functions instead of
just the classic Mandelbrotz2+ c formula. With an extra two dimensions and eighteen
functions to work with, intrepid explorers should be able to locate some new fractal
beasts in hyperspace, so have at it!

3.1.7 Lathe

Thelathe is an object generated from rotating a two-dimensional curve about an axis.
This curve is defined by a set of points which are connected by linear, quadratic, cubic
or bezier spline curves. The syntax is:

LATHE:

lathe

{

[SPLINE_TYPE] Number_Of_Points, <Point_1>

<Point_2>... <Point_n>

[LATHE_MODIFIER...]

}

SPLINE_TYPE:

linear_spline | quadratic_spline | cubic_spline | bezier_spline

LATHE_MODIFIER:

sturm | OBJECT_MODIFIER

Lathe default values:

150 Objects

SPLINE_TYPE : linear_spline

sturm : off

The first item is a keyword specifying the type of spline. The default if none is specified
is linear spline. The required integer valueNumber Of Points specifies how many
two-dimensional points are used to define the curve. The points follow and are specified
by 2-D vectors. The curve is not automatically closed, i.e. the first and last points are
not automatically connected. You will have to do this yourself if you want a closed
curve. The curve thus defined is rotated about the y-axis to form the lathe object,
centered at the origin.

The following examples creates a simple lathe object that looks like a thick cylinder,
i.e. a cylinder with a thick wall:

lathe {

linear_spline

5,

<2, 0>, <3, 0>, <3, 5>, <2, 5>, <2, 0>

pigment {Red}

}

The cylinder has an inner radius of 2 and an outer radius of 3, giving a wall width of
1. It’s height is 5 and it’s located at the origin pointing up, i.e. the rotation axis is the
y-axis.

Note: the first and last point are equal to get a closed curve.

The splines that are used by the lathe and prism objects are a little bit difficult to un-
derstand. The basic concept of splines is to draw a curve through a given set of points
in a determined way. The defaultlinear spline is the simplest spline because it’s
nothing more than connecting consecutive points with a line. This means the curve
that is drawn between two points only depends on those two points. No additional
information is taken into account. The other splines are different in that they do take
other points into account when connecting two points. This creates a smooth curve
and, in the case of the cubic spline, produces smoother transitions at each point.

Thequadratic spline keyword creates splines that are made of quadratic curves. Each
of them connects two consecutive points. Since those two points (call them second
and third point) are not sufficient to describe a quadratic curve, the predecessor of
the second point is taken into account when the curve is drawn. Mathematically, the
relationship (their relative locations on the 2-D plane) between the first and second
point determines the slope of the curve at the second point. The slope of the curve at
the third point is out of control. Thus quadratic splines look much smoother than linear
splines but the transitions at each point are generally not smooth because the slopes on
both sides of the point are different.

Thecubic spline keyword creates splines which overcome the transition problem of
quadratic splines because they also take a fourth point into account when drawing the
curve between the second and third point. The slope at the fourth point is under control
now and allows a smooth transition at each point. Thus cubic splines produce the most
flexible and smooth curves.

Thebezier spline is an alternate kind of cubic spline. Points 1 and 4 specify the end
points of a segment and points 2 and 3 are control points which specify the slope at
the endpoints. Points 2 and 3 do not actually lie on the spline. They adjust the slope

3.1 Finite Solid Primitives 151

of the spline. If you draw an imaginary line between point 1 and 2, it represents the
slope at point 1. It is a line tangent to the curve at point 1. The greater the distance
between 1 and 2, the flatter the curve. With a short tangent the spline can bend more.
The same holds true for control point 3 and endpoint 4. If you want the spline to be
smooth between segments, points 3 and 4 on one segment and points 1 and 2 on the
next segment must form a straight line and point 4 of one segment must be the same as
point 1 on the next segment.

You should note that the number of spline segments, i. e. curves between two points,
depends on the spline type used. For linear splines you get n-1 segments connecting
the points P[i], i=1,...,n. A quadratic spline gives you n-2 segments because the last
point is only used for determining the slope, as explained above (thus you’ll need at
least three points to define a quadratic spline). The same holds for cubic splines where
you get n-3 segments with the first and last point used only for slope calculations (thus
needing at least four points). The bezier spline requires 4 points per segment, creating
n/4 segments.

If you want to get a closed quadratic and cubic spline with smooth transitions at the
end points you have to make sure that in the cubic case P[n-1]= P[2] (to get a closed
curve), P[n]= P[3] and P[n-2]= P[1] (to smooth the transition). In the quadratic case
P[n-1]= P[1] (to close the curve) and P[n]= P[2].

Thesturm keyword can be used to specify that the slower, but more accurate, Sturmian
root solver should be used. Use it, if the shape does not render properly. Since a
quadratic polynomial has to be solved for the linear spline lathe, the Sturmian root
solver is not needed.

3.1.8 Prism

The prism is an object generated specifying one or more two-dimensional, closed
curves in the x-z plane and sweeping them along y axis. These curves are defined
by a set of points which are connected by linear, quadratic, cubic or bezier splines. The
syntax for the prism is:

PRISM:

prism

{

[PRISM_ITEMS...] Height_1, Height_2, Number_Of_Points,

<Point_1>, <Point_2>, ... <Point_n>

[open] [PRISM_MODIFIERS...]

}

PRISM_ITEM:

linear_spline | quadratic_spline | cubic_spline |

bezier_spline | linear_sweep | conic_sweep

PRISM_MODIFIER:

sturm | OBJECT_MODIFIER

Prism default values:

SPLINE_TYPE : linear_spline

SWEEP_TYPE : linear_sweep

sturm : off

152 Objects

The first items specify the spline type and sweep type. The defaults if none is specified
is linear spline and linear sweep. This is followed by two float valuesHeight 1
and Height 2 which are the y coordinates of the top and bottom of the prism. This is
followed by a float value specifying the number of 2-D points you will use to define the
prism. (This includes all control points needed for quadratic, cubic and bezier splines).
This is followed by the specified number of 2-D vectors which define the shape in the
x-z plane.

The interpretation of the points depends on the spline type. The prism object allows you
to use any number of sub-prisms inside one prism statement (they are of the same spline
and sweep type). Wherever an even number of sub-prisms overlaps a hole appears.

Note: you need not have multiple sub-prisms and they need not overlap as these exam-
ples do.

In the linear spline the first point specified is the start of the first sub-prism. The
following points are connected by straight lines. If you specify a value identical to the
first point, this closes the sub-prism and next point starts a new one. When you specify
the value of that sub-prism’s start, then it is closed. Each of the sub-prisms has to be
closed by repeating the first point of a sub-prism at the end of the sub-prism’s point
sequence. In this example, there are two rectangular sub-prisms nested inside each
other to create a frame.

prism {

linear_spline

0, 1, 10,

<0,0>, <6,0>, <6,8>, <0,8>, <0,0>, //outer rim

<1,1>, <5,1>, <5,7>, <1,7>, <1,1> //inner rim

}

The last sub-prism of a linear spline prism is automatically closed - just like the last
sub-polygon in the polygon statement - if the first and last point of the sub-polygon’s
point sequence are not the same. This make it very easy to convert between polygons
and prisms. Quadratic, cubic and bezier splines are never automatically closed.

In the quadratic spline, each sub-prism needs an additional control point at the
beginning of each sub-prisms’ point sequence to determine the slope at the start of
the curve. The first point specified is the control point which is not actually part of the
spline. The second point is the start of the spline. The sub-prism ends when this second
point is duplicated. The next point is the control point of the next sub-prism. The point
after that is the first point of the second sub-prism. Here is an example:

prism {

quadratic_spline

0, 1, 12,

<1,-1>, <0,0>, <6,0>, //outer rim; <1,-1> is control point and

<6,8>, <0,8>, <0,0>, //<0,0> is first & last point

<2,0>, <1,1>, <5,1>, //inner rim; <2,0> is control point and

<5,7>, <1,7>, <1,1> //<1,1> is first & last point

}

In thecubic spline, each sub-prism needs two additional control points – one at the
beginning of each sub-prisms’ point sequence to determine the slope at the start of the
curve and one at the end. The first point specified is the control point which is not

3.1 Finite Solid Primitives 153

actually part of the spline. The second point is the start of the spline. The sub-prism
ends when this second point is duplicated. The next point is the control point of the
end of the first sub-prism. Next is the beginning control point of the next sub-prism.
The point after that is the first point of the second sub-prism.

Here is an example:

prism {

cubic_spline

0, 1, 14,

<1,-1>, <0,0>, <6,0>, //outer rim; First control is <1,-1> and

<6,8>, <0,8>, <0,0>, //<0,0> is first & last point.

<-1,1>, //Last control of first spline is <-1,1>

<2,0>, <1,1>, <5,1>, //inner rim; First control is <2,0> and

<5,7>, <1,7>, <1,1>, //<1,1> is first & last point

<0,2> //Last control of first spline is <0,2>

}

Thebezier spline is an alternate kind of cubic spline. Points 1 and 4 specify the end
points of a segment and points 2 and 3 are control points which specify the slope at
the endpoints. Points 2 and 3 do not actually lie on the spline. They adjust the slope
of the spline. If you draw an imaginary line between point 1 and 2, it represents the
slope at point 1. It is a line tangent to the curve at point 1. The greater the distance
between 1 and 2, the flatter the curve. With a short tangent the spline can bend more.
The same holds true for control point 3 and endpoint 4. If you want the spline to be
smooth between segments, point 3 and 4 on one segment and point 1 and 2 on the next
segment must form a straight line and point 4 of one segment must be the same as point
one on the next segment.

By default linear sweeping is used to create the prism, i.e. the prism’s walls are per-
pendicular to the x-z-plane (the size of the curve does not change during the sweep).
You can also useconic sweep that leads to a prism with cone-like walls by scaling the
curve down during the sweep.

Like cylinders the prism is normally closed. You can remove the caps on the prism by
using theopen keyword. If you do so you shouldn’t use it with CSG because the results
may get wrong.

For an explanation of the spline concept read the description of the ”Lathe” object.
Also see the tutorials on ”Lathe Object” and ”Prism Object”.

The sturm keyword specifies the slower but more accurate Sturmian root solver which
may be used with the cubic or bezier spline prisms if the shape does not render properly.
The linear and quadratic spline prisms do not need the Sturmian root solver.

3.1.9 Sphere

The syntax of thesphere object is:

SPHERE:

sphere

{

<Center>, Radius

154 Objects

[OBJECT_MODIFIERS...]

}

Figure 3.6: The geometry of a sphere.

Where<Center> is a vector specifying the x, y, z coordinates of the center of the sphere
and Radius is a float value specifying the radius. Spheres may be scaled unevenly
giving an ellipsoid shape.

Because spheres are highly optimized they make good bounding shapes (if manual
bounding seems to be necessary).

3.1.10 Spheresweep

The syntax of thesphere sweep object is:

SPHERE_SWEEP:

sphere_sweep {

linear_spline | b_spline | cubic_spline

NUM_OF_SPHERES,

CENTER, RADIUS,

CENTER, RADIUS,

...

CENTER, RADIUS

[tolerance DEPTH_TOLERANCE]

[OBJECT_MODIFIERS]

}

Spheresweep default values:

tolerance : 1.0e-6 (0.000001)

A Sphere Sweep is the envelope of a moving sphere with varying radius, or, in other
words, the space a sphere occupies during its movement along a spline.
Sphere Sweeps are modeled by specifying a list of single spheres which are then inter-
polated.
Three kinds of interpolation are supported:

3.1 Finite Solid Primitives 155

• linear spline : Interpolating the input data with a linear function, which means
that the single spheres are connected by straight tubes.

• b spline : Approximating the input data using a cubic b-spline function, which
results in a curved object.

• cubic spline : Approximating the input data using a cubic spline, which results
in a curved object.

The sphere list (center and radius of each sphere) can take as many spheres as you like
to describe the object, but you will need at least two spheres for alinear spline, and
four spheres forb spline or cubic spline.

Optional: The depth tolerance that should be used for the intersection calculations. This
is done by adding thetolerance keyword and the desired value: the default distance is
1.0e-6 (0.000001) and should do for most sphere sweep objects.
You should change this when you see dark spots on the surface of the object. These are
probably caused by an effect called ”Self-Shading”. This means that the object casts
shadows onto itself at some points because of calculation errors. A ray tracing program
usually defines the minimal distance a ray must travel before it actually hits another (or
the same) object to avoid this effect. If this distance is chosen too small, Self-Shading
may occur.
If so, specifytolerance 1.0e-4 or higher.

Note: if these dark spots remain after raising the tolerance, you might get rid of these
spots by using Adaptive Supersampling (Method 2) for antialiasing. Images look better
with antialiasing anyway.

Note: the merge CSG operation is not recommended with Sphere Sweeps: there could
be a small gap between the merged objects!

3.1.11 Superquadric Ellipsoid

Thesuperellipsoid object creates a shape known as asuperquadric ellipsoidobject.
It is an extension of the quadric ellipsoid. It can be used to create boxes and cylin-
ders with round edges and other interesting shapes. Mathematically it is given by the
equation:

f (x, y, z) =
(
|x|(

2
e) + |y|(

2
e)
)(e

n)
+ |z|(

2
n) − 1 = 0

Equation 3.2:

The values ofe andn, called theeast-westandnorth-southexponent, determine the
shape of the superquadric ellipsoid. Both have to be greater than zero. The sphere is
given bye= 1 andn = 1.

The syntax of the superquadric ellipsoid is:

SUPERELLIPSOID:

superellipsoid

{

156 Objects

<Value_E, Value_N>

[OBJECT_MODIFIERS...]

}

The 2-D vector specifies thee and n values in the equation above. The object sits at
the origin and occupies a space about the size of abox{<-1,-1,-1>,<1,1,1>}.

Two useful objects are the rounded box and the rounded cylinder. These are declared
in the following way.

#declare Rounded_Box = superellipsoid { <Round, Round> }

#declare Rounded_Cylinder = superellipsoid { <1, Round> }

The roundedness valueRound determines the roundedness of the edges and has to be
greater than zero and smaller than one. The smaller you choose the values, the smaller
and sharper the edges will get.

Very small values ofe andn might cause problems with the root solver (the Sturmian
root solver cannot be used).

3.1.12 Surface of Revolution

Thesor object is asurface of revolutiongenerated by rotating the graph of a function
about the y-axis. This function describes the dependence of the radius from the position
on the rotation axis. The syntax is:

SOR:

sor

{

Number_Of_Points, <Point_1>, <Point_2>, ... <Point_n>

[open] [SOR_MODIFIERS...]

}

SOR_MODIFIER:

sturm | OBJECT_MODIFIER

SOR default values:

sturm : off

The float valueNumber Of Points specifies the number of 2-D vectors which follow.
The points <Point 1> through<Point n> are two-dimensional vectors consisting of
the radius and the corresponding height, i.e. the position on the rotation axis. These
points are smoothly connected (the curve is passing through the specified points) and
rotated about the y-axis to form the SOR object. The first and last points are only used
to determine the slopes of the function at the start and end point. They do not actually
lie on the curve. The function used for the SOR object is similar to the splines used
for the lathe object. The difference is that the SOR object is less flexible because it
underlies the restrictions of any mathematical function, i.e. to any given point y on the
rotation axis belongs at most one function value, i.e. one radius value. You can’t rotate
closed curves with the SOR object. Also, make sure that the curve does not cross zero
(y-axis) as this can result in ’less than perfect’ bounding cylinders. POV-Ray will very
likely fail to render large chunks of the part of the spline contained in such an interval.

The optional keywordopen allows you to remove the caps on the SOR object. If you
do this you shouldn’t use it with CSG because the results may be wrong.

3.1 Finite Solid Primitives 157

The SOR object is useful for creating bottles, vases, and things like that. A simple vase
could look like this:

#declare Vase = sor {

7,

<0.000000, 0.000000>

<0.118143, 0.000000>

<0.620253, 0.540084>

<0.210970, 0.827004>

<0.194093, 0.962025>

<0.286920, 1.000000>

<0.468354, 1.033755>

open

}

One might ask why there is any need for a SOR object if there is already a lathe object
which is much more flexible. The reason is quite simple. The intersection test with
a SOR object involves solving a cubic polynomial while the test with a lathe object
requires to solve a 6th order polynomial (you need a cubic spline for the same smooth-
ness). Since most SOR and lathe objects will have several segments this will make
a great difference in speed. The roots of the 3rd order polynomial will also be more
accurate and easier to find.

The sturm keyword may be added to specify the slower but more accurate Sturmian
root solver. It may be used with the surface of revolution object if the shape does not
render properly.

The following explanations are for the mathematically interested reader who wants to
know how the surface of revolution is calculated. Though it is not necessary to read on
it might help in understanding the SOR object.

The function that is rotated about the y-axis to get the final SOR object is given by

r2 = f (h) = A · h3 + B · h2 +C · h+ D

Equation 3.3:

with radiusr and heighth. Since this is a cubic function in h it has enough flexibility
to allow smooth curves.

The curve itself is defined by a set of n points P(i), i=0...n-1, which are interpolated
using one function for every segment of the curve. A segment j, j=1...n-3, goes from
point P(j) to point P(j+1) and uses points P(j-1) and P(j+2) to determine the slopes at
the endpoints. If there are n points we will have n-3 segments. This means that we
need at least four points to get a proper curve. The coefficients A(j), B(j), C(j) and D(j)
are calculated for every segment using the equation

where r(j) is the radius and h(j) is the height of point P(j).

The figure below shows the configuration of the points P(i), the location of segment j,
and the curve that is defined by this segment.

158 Objects

b = M · x,with :

b =

r(j)2

r(j + 1)2

2 · r(j) · (r(j + 1)− r(j − 1))
h(j + 1)− h(j − 1)

2 · r(j + 1) · (r(j + 2)− r(j))
h(j + 2)− h(j)

M =

h(j)3 h(j)2 h(j) 1

h(j + 1)3 h(j + 1)2 h(j + 1) 1
3 · h(j)2 2 · h(j) 1 0

3 · h(j + 1)2 2 · h(j + 1) 1 0

x =

A(j)
B(j)
C(j)
D(j)

Equation 3.4:

Figure 3.7: Points on a surface of revolution.

3.1 Finite Solid Primitives 159

3.1.13 Text

A text object creates 3-D text as an extruded block letter. Currently only TrueType
fonts (ttf) and TrueType Collections (ttc) are supported but the syntax allows for other
font types to be added in the future. If TrueType Collections are used, the first font
found in the collection will be used. The syntax is:

TEXT_OBECT:

text {

ttf "fontname.ttf/ttc" "String_of_Text"

Thickness, <Offset>

[OBJECT_MODIFIERS...]

}

Wherefontname.ttf or fontname.ttc is the name of the TrueType font file. It is a
quoted string literal or string expression. The string expression which follows is the
actual text of the string object. It too may be a quoted string literal or string expression.
See section ”Strings” for more on string expressions.

The text will start with the origin at the lower left, front of the first character and will
extend in the+x-direction. The baseline of the text follows the x-axis and descender
drop into the -y-direction. The front of the character sits in the x-y-plane and the text
is extruded in the+z-direction. The front-to-back thickness is specified by the required
value Thickness.

Characters are generally sized so that 1 unit of vertical spacing is correct. The charac-
ters are about 0.5 to 0.75 units tall.

The horizontal spacing is handled by POV-Ray internally including any kerning infor-
mation stored in the font. The required vector<Offset> defines any extra translation
between each character. Normally you should specify a zero for this value. Specify-
ing 0.1*x would put additional 0.1 units of space between each character. Here is an
example:

text {

ttf "timrom.ttf" "POV-Ray" 1, 0

pigment { Red }

}

Only printable characters are allowed in text objects. Characters such as return, line
feed, tabs, backspace etc. are not supported.

For easy access to your fonts, set the LibraryPath to the directory that contains your
font collection.

3.1.14 Torus

A torus is a 4th order quartic polynomial shape that looks like a donut or inner tube.
Because this shape is so useful and quartics are difficult to define, POV-Ray lets you
take a short-cut and define a torus by:

TORUS:

torus

{

160 Objects

Major, Minor

[TORUS_MODIFIER...]

}

TORUS_MODIFIER:

sturm | OBJECT_MODIFIER

Torus default values:

sturm : off

whereMajor is a float value giving the major radius andMinor is a float specifying the
minor radius. The major radius extends from the center of the hole to the mid-line of
the rim while the minor radius is the radius of the cross-section of the rim. The torus
is centered at the origin and lies in the x-z-plane with the y-axis sticking through the
hole.

Figure 3.8: Major and minor radius of a torus.

The torus is internally bounded by two cylinders and two rings forming a thick cylinder.
With this bounding cylinder the performance of the torus intersection test is vastly
increased. The test for a valid torus intersection, i.e. solving a 4th order polynomial,
is only performed if the bounding cylinder is hit. Thus a lot of slow root solving
calculations are avoided.

Calculations for all higher order polynomials must be very accurate. If the torus ren-
ders improperly you may add the keywordsturm to use POV-Ray’s slower-yet-more-
accurate Sturmian root solver.

3.2 Finite Patch Primitives

There are six totally thin, finite objects which have no well-defined inside. They are
bicubic patch, disc, smooth triangle, triangle, polygon and mesh/ mesh2. They may
be combined in CSG union but cannot be used in other types of CSG (or inside a
clipped by statement). Because these types are finite POV-Ray can use automatic
bounding on them to speed up rendering time. As with all shapes they can be translated,
rotated and scaled.

3.2 Finite Patch Primitives 161

3.2.1 Bicubic Patch

A bicubic patch is a 3D curved surface created from a mesh of triangles. POV-Ray
supports a type of bicubic patch called aBezier patch. A bicubic patch is defined as
follows:

BICUBIC_PATCH:

bicubic_patch

{

PATCH_ITEMS...

<Point_1>,<Point_2>,<Point_3>,<Point_4>,

<Point_5>,<Point_6>,<Point_7>,<Point_8>,

<Point_9>,<Point_10>,<Point_11>,<Point_12>,

<Point_13>,<Point_14>,<Point_15>,<Point_16>

[OBJECT_MODIFIERS...]

}

PATCH_ITEMS:

type Patch_Type | u_steps Num_U_Steps | v_steps Num_V_Steps |

flatness Flatness

Bicubic patch default values:

flatness : 0.0

u_steps : 0

v_steps : 0

The keywordtype is followed by a float Patch Type which currently must be either 0
or 1. For type 0 only the control points are retained within POV-Ray. This means that
a minimal amount of memory is needed but POV-Ray will need to perform many extra
calculations when trying to render the patch. Type 1 preprocesses the patch into many
subpatches. This results in a significant speedup in rendering at the cost of memory.

The four parameterstype, flatness, u steps andv steps may appear in any order.
Only type is required. They are followed by 16 vectors (4 rows of 4) that define the x,
y, z coordinates of the 16 control points which define the patch. The patch touches the
four corner points<Point 1>, <Point 4>, <Point 13> and <Point 16> while the
other 12 points pull and stretch the patch into shape. The Bezier surface is enclosed
by the convex hull formed by the 16 control points, this is known as theconvex hull
property.

The keywordsu steps andv steps are each followed by integer values which tell how
many rows and columns of triangles are the minimum to use to create the surface, both
default to 0. The maximum number of individual pieces of the patch that are tested by
POV-Ray can be calculated from the following:pieces= 2ˆu steps * 2ˆvsteps.

This means that you really should keepu steps and v steps under 4. Most patches
look just fine withu steps 3 andv steps 3, which translates to 64 subpatches (128
smooth triangles).

As POV-Ray processes the Bezier patch it makes a test of the current piece of the patch
to see if it is flat enough to just pretend it is a rectangle. The statement that controls
this test is specified with theflatness keyword followed by a float. Typical flatness
values range from 0 to 1 (the lower the slower). The default if none is specified is 0.0.

If the value for flatness is 0 POV-Ray will always subdivide the patch to the extend

162 Objects

specified byu steps andv steps. If flatness is greater than 0 then every time the patch
is split, POV-Ray will check to see if there is any need to split further.

There are both advantages and disadvantages to using a non-zero flatness. The advan-
tages include:

- If the patch isn’t very curved, then this will be detected and POV-Ray won’t waste a
lot of time looking at the wrong pieces.

- If the patch is only highly curved in a couple of places, POV-Ray will keep subdivid-
ing there and concentrate it’s efforts on the hard part.

The biggest disadvantage is that if POV-Ray stops subdividing at a particular level on
one part of the patch and at a different level on an adjacent part of the patch there is the
potential for cracking. This is typically visible as spots within the patch where you can
see through. How bad this appears depends very highly on the angle at which you are
viewing the patch.

Like triangles, the bicubic patch is not meant to be generated by hand. These shapes
should be created by a special utility. You may be able to acquire utilities to generate
these shapes from the same source from which you obtained POV-Ray. Here is an
example:

bicubic_patch {

type 0

flatness 0.01

u_steps 4

v_steps 4

<0, 0, 2>, <1, 0, 0>, <2, 0, 0>, <3, 0,-2>,

<0, 1 0>, <1, 1, 0>, <2, 1, 0>, <3, 1, 0>,

<0, 2, 0>, <1, 2, 0>, <2, 2, 0>, <3, 2, 0>,

<0, 3, 2>, <1, 3, 0>, <2, 3, 0>, <3, 3, -2>

}

The triangles in a POV-Raybicubic patch are automatically smoothed using normal
interpolation but it is up to the user (or the user’s utility program) to create control
points which smoothly stitch together groups of patches.

3.2.2 Disc

Another flat, finite object available with POV-Ray is thedisc. The disc is infinitely
thin, it has no thickness. If you want a disc with true thickness you should use a very
short cylinder. A disc shape may be defined by:

DISC:

disc

{

<Center>, <Normal>, Radius [, Hole_Radius]

[OBJECT_MODIFIERS...]

}

Disc default values:

HOLE RADIUS : 0.0

3.2 Finite Patch Primitives 163

The vector<Center> defines the x, y, z coordinates of the center of the disc. The
<Normal> vector describes its orientation by describing its surface normal vector. This
is followed by a float specifying the Radius. This may be optionally followed by
another float specifying the radius of a hole to be cut from the center of the disc.

Note: The inside of a disc is the inside of the plane that contains the disc. Also note
that it is not constrained by the radius of the disc.

3.2.3 Mesh

Themesh object can be used to efficiently store large numbers of triangles. Its syntax
is:

MESH:

mesh

{

MESH_TRIANGLE...

[MESH_MODIFIER...]

}

MESH_TRIANGLE:

triangle

{

<Corner_1>, <Corner_2>, <Corner_3>

[uv_vectors <uv_Corner_1>, <uv_Corner_2>, <uv_Corner_3>]

[MESH_TEXTURE]

} |

smooth_triangle

{

<Corner_1>, <Normal_1>,

<Corner_2>, <Normal_2>,

<Corner_3>, <Normal_3>

[uv_vectors <uv_Corner_1>, <uv_Corner_2>, <uv_Corner_3>]

[MESH_TEXTURE]

}

MESH_TEXTURE:

texture { TEXTURE_IDENTIFIER }

texture_list {

TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER

}

MESH_MODIFIER:

inside_vector <direction> | hierarchy [Boolean] |

OBJECT_MODIFIER

Mesh default values:

hierarchy : on

Any number oftriangle and/or smooth triangle statements can be used and each of
those triangles can be individually textured by assigning a texture identifier to it. The
texture has to be declared before the mesh is parsed. It is not possible to use texture
definitions inside the triangle or smooth triangle statements. This is a restriction that is
necessary for an efficient storage of the assigned textures. See ”Triangle and Smooth
Triangle” for more information on triangles.

164 Objects

Themesh object can supportuv mapping. For this, per triangle the keyworduv vectors
has to be given, together with three 2D uv-vectors. Each vector specifies a location in
the xy-plane from which the texture has to be mapped to the matching points of the
triangle. Also see the section uvmapping.

The mesh’s components are internally bounded by a bounding box hierarchy to speed
up intersection testing. The bounding hierarchy can be turned off with thehierarchy
off keyword. This should only be done if memory is short or the mesh consists of only
a few triangles. The default ishierarchy on.

Copies of a mesh object refer to the same triangle data and thus consume very little
memory. You can easily trace a hundred copies of a 10000 triangle mesh without run-
ning out of memory (assuming the first mesh fits into memory). The mesh object has
two advantages over a union of triangles: it needs less memory and it is transformed
faster. The memory requirements are reduced by efficiently storing the triangles ver-
tices and normals. The parsing time for transformed meshes is reduced because only
the mesh object has to be transformed and not every single triangle as it is necessary
for unions.

The mesh object can currently only include triangle and smooth triangle components.
That restriction may change, allowing polygonal components, at some point in the
future.

Solid Mesh

Triangle mesh objects (mesh andmesh2) can now be used in CSG objects such as dif-
ference and intersect, because, after addinginside vector, they do have a defined
’inside’. This will only work for well-behaved meshes, which are completely closed
volumes. If meshes have any holes in them, this might work, but the results are not
guaranteed.

To determine if a point is inside a triangle mesh, POV-Ray shoots a ray from the point in
some arbitrary direction. If this vector intersects an odd number of triangles, the point
is inside the mesh. If it intersects an even number of triangles, the point is outside of
the mesh. You can specify the direction of this vector. For example, to use+z as the
direction, you would add the following line to the triangle mesh description (following
all other mesh data, but before the object modifiers).

inside_vector <0, 0, 1>

3.2.4 Mesh2

The new mesh syntax is designed for use in conversion from other file formats.

MESH2 :

mesh2{

VECTORS...

LISTS... |

INDICES... |

MESH_MODIFIERS

}

VECTORS :

3.2 Finite Patch Primitives 165

vertex_vectors

{

number_of_vertices,

<vertex1>, <vertex2>, ...

}|

normal_vectors

{

number_of_normals,

<normal1>, <normal2>, ...

}|

uv_vectors

{

number_of_uv_vectors,

<uv_vect1>, <uv_vect2>, ...

}

LISTS :

texture_list

{

number_of_textures,

texture { Texture1 },

texture { Texture2 }, ...

}|

INDICES :

face_indices

{

number_of_faces,

<index_a, index_b, index_c> [,texture_index [,

texture_index, texture_index]],

<index_d, index_e, index_f> [,texture_index [,

texture_index, texture_index]],

...

}|

normal_indices

{

number_of_faces,

<index_a, index_b, index_c>,

<index_d, index_e, index_f>,

...

}|

uv_indices {

number_of_faces,

<index_a, index_b, index_c>,

<index_d, index_e, index_f>,

...

}

MESH_MODIFIER :

inside_vector <direction> | object_modifiers

mesh2 has to be specified in the orderVECTORS..., LISTS..., INDICES.... Thenormal vectors,
uv vectors, andtexture list sections are optional. If the number of normals equals
the number of vertices then the normalindices section is optional and the indexes from
theface indices section are used instead. Likewise for theuv indices section.

Note: that the numbers of uvindices must equal number of faces.

166 Objects

The indexes are ZERO-BASED! So the first item in each list has an index of zero.

Smooth and Flat triangles in the same mesh

You can specify both flat and smooth triangles in the same mesh. To do this, specify the
smooth triangles first in theface indices section, followed by the flat triangles. Then,
specify normal indices (in thenormal indices section) for only the smooth triangles.
Any remaining triangles that do not have normal indices associated with them will be
assumed to be flat triangles.

Mesh Triangle Textures

To specify a texture for an individual mesh triangle, specify a single integer texture
index following the face-index vector for that triangle.

To specify three textures for vertex-texture interpolation, specify three integer texture
indices (separated by commas) following the face-index vector for that triangle.

Vertex-texture interpolation and textures for an individual triangle can be mixed in the
same mesh

3.2.5 Polygon

Thepolygon object is useful for creating rectangles, squares and other planar shapes
with more than three edges. Their syntax is:

POLYGON:

polygon

{

Number_Of_Points, <Point_1> <Point_2>... <Point_n>

[OBJECT_MODIFIER...]

}

The floatNumber Of Points tells how many points are used to define the polygon. The
points <Point 1> through<Point n> describe the polygon or polygons. A polygon
can contain any number of sub-polygons, either overlapping or not. In places where an
even number of polygons overlaps a hole appears. When you repeat the first point of
a sub-polygon, it closes it and starts a new sub-polygon’s point sequence. This means
that all points of a sub-polygon are different.

If the last sub-polygon is not closed a warning is issued and the program automatically
closes the polygon. This is useful because polygons imported from other programs
may not be closed, i.e. their first and last point are not the same.

All points of a polygon are three-dimensional vectors that have to lay on the same
plane. If this is not the case an error occurs. It is common to use two-dimensional
vectors to describe the polygon. POV-Ray assumes that the z value is zero in this case.

A square polygon that matches the default planar image map is simply:

3.2 Finite Patch Primitives 167

polygon {

4,

<0, 0>, <0, 1>, <1, 1>, <1, 0>

texture {

finish { ambient 1 diffuse 0 }

pigment { image_map { gif "test.gif" } }

}

//scale and rotate as needed here

}

The sub-polygon feature can be used to generate complex shapes like the letter ”P”,
where a hole is cut into another polygon:

#declare P = polygon {

12,

<0, 0>, <0, 6>, <4, 6>, <4, 3>, <1, 3>, <1,0>, <0, 0>,

<1, 4>, <1, 5>, <3, 5>, <3, 4>, <1, 4>

}

The first sub-polygon (on the first line) describes the outer shape of the letter ”P”. The
second sub-polygon (on the second line) describes the rectangular hole that is cut in
the top of the letter ”P”. Both rectangles are closed, i.e. their first and last points are
the same.

The feature of cutting holes into a polygon is based on the polygon inside/outside
test used. A point is considered to be inside a polygon if a straight line drawn from
this point in an arbitrary direction crosses an odd number of edges (this is known as
Jordan’s curve theorem).

Another very complex example showing one large triangle with three small holes and
three separate, small triangles is given below:

polygon {

28,

<0, 0> <1, 0> <0, 1> <0, 0> // large outer triangle

<.3, .7> <.4, .7> <.3, .8> <.3, .7> // small outer triangle #1

<.5, .5> <.6, .5> <.5, .6> <.5, .5> // small outer triangle #2

<.7, .3> <.8, .3> <.7, .4> <.7, .3> // small outer triangle #3

<.5, .2> <.6, .2> <.5, .3> <.5, .2> // inner triangle #1

<.2, .5> <.3, .5> <.2, .6> <.2, .5> // inner triangle #2

<.1, .1> <.2, .1> <.1, .2> <.1, .1> // inner triangle #3

}

3.2.6 Triangle and Smooth Triangle

The triangle primitive is available in order to make more complex objects than the
built-in shapes will permit. Triangles are usually not created by hand but are converted
from other files or generated by utilities. A triangle is defined by

TRIANGLE:

triangle

{

<Corner_1>, <Corner_2>, <Corner_3>

[OBJECT_MODIFIER...]

}

168 Objects

where<Corner n> is a vector defining the x, y, z coordinates of each corner of the
triangle.

Because triangles are perfectly flat surfaces it would require extremely large numbers
of very small triangles to approximate a smooth, curved surface. However much of our
perception of smooth surfaces is dependent upon the way light and shading is done. By
artificially modifying the surface normals we can simulate a smooth surface and hide
the sharp-edged seams between individual triangles.

The smooth triangle primitive is used for just such purposes. The smooth triangles
use a formula called Phong normal interpolation to calculate the surface normal for any
point on the triangle based on normal vectors which you define for the three corners.
This makes the triangle appear to be a smooth curved surface. A smooth triangle is
defined by

SMOOTH_TRIANGLE:

smooth_triangle

{

<Corner_1>, <Normal_1>, <Corner_2>,

<Normal_2>, <Corner_3>, <Normal_3>

[OBJECT_MODIFIER...]

}

where the corners are defined as in regular triangles and<Normal n> is a vector de-
scribing the direction of the surface normal at each corner.

These normal vectors are prohibitively difficult to compute by hand. Therefore smooth
triangles are almost always generated by utility programs. To achieve smooth results,
any triangles which share a common vertex should have the same normal vector at that
vertex. Generally the smoothed normal should be the average of all the actual normals
of the triangles which share that point.

The mesh object is a way to combine manytriangle andsmooth triangle objects
together in a very efficient way. See ”Mesh” for details.

3.3 Infinite Solid Primitives

There are five polynomial primitive shapes that are possibly infinite and do not respond
to automatic bounding. They are plane, cubic, poly, quadric and quartic. They do have
a well defined inside and may be used in CSG and inside aclipped by statement. As
with all shapes they can be translated, rotated and scaled.

3.3.1 Plane

Theplane primitive is a simple way to define an infinite flat surface. The plane is not
a thin boundary or can be compared to a sheet of paper. A plane is a solid object of
infinite size that divides POV-space in two parts, inside and outside the plane. The
plane is specified as follows:

PLANE:

plane

3.3 Infinite Solid Primitives 169

{

<Normal>, Distance

[OBJECT_MODIFIERS...]

}

The<Normal> vector defines the surface normal of the plane. A surface normal is a
vector which points up from the surface at a 90 degree angle. This is followed by a
float value that gives the distance along the normal that the plane is from the origin
(that is only true if the normal vector has unit length; see below). For example:

plane { <0, 1, 0>, 4 }

This is a plane where straight up is defined in the positive y-direction. The plane is
4 units in that direction away from the origin. Because most planes are defined with
surface normals in the direction of an axis you will often see planes defined using the
x, y or z built-in vector identifiers. The example above could be specified as:

plane { y, 4 }

The plane extends infinitely in the x- and z-directions. It effectively divides the world
into two pieces. By definition the normal vector points to the outside of the plane while
any points away from the vector are defined as inside. This inside/outside distinction is
important when using planes in CSG andclipped by. It is also important when using
fog or atmospheric media. If you place a camera on the ”inside” half of the world,
then the fog or media will not appear. Such issues arise in any solid object but it is
more common with planes. Users typically know when they’ve accidentally placed a
camera inside a sphere or box but ”inside a plane” is an unusual concept. In general
you can reverse the inside/outside properties of an object by adding the object modifier
inverse. See ”Inverse” and ”Empty and Solid Objects” for details.

A plane is called apolynomialshape because it is defined by a first order polynomial
equation. Given a plane:

plane { <A, B, C>, D }

it can be represented by the equationA*x + B*y + C*z - D*sqrt(Aˆ2 + Bˆ2 + Cˆ2)
= 0.

Therefore our exampleplane{y,4} is actually the polynomial equation y=4. You can
think of this as a set of all x, y, z points where all have y values equal to 4, regardless
of the x or z values.

This equation is a first order polynomial because each term contains only single powers
of x, y or z. A second order equation has terms like xˆ2, yˆ2, zˆ2, xy, xz and yz. Another
name for a 2nd order equation is a quadric equation. Third order polys are called cubics.
A 4th order equation is a quartic. Such shapes are described in the sections below.

3.3.2 Poly, Cubic and Quartic

Higher order polynomial surfaces may be defined by the use of apoly shape. The
syntax is

POLY:

poly

{

170 Objects

Order, <A1, A2, A3,... An>

[POLY_MODIFIERS...]

}

POLY_MODIFIERS:

sturm | OBJECT_MODIFIER

Poly default values:

sturm : off

whereOrder is an integer number from 2 to 15 inclusively that specifies the order of the
equation.A1, A2, ... An are float values for the coefficients of the equation. There
aren such terms wheren = ((Order+1)*(Order+2)*(Order+3))/6. Thecubic ob-
ject is an alternate way to specify 3rd order polys. Its syntax is:

CUBIC:

cubic

{

<A1, A2, A3,... A20>

[POLY_MODIFIERS...]

}

Also 4th order equations may be specified with thequartic object. Its syntax is:

QUARTIC:

quartic

{

<A1, A2, A3,... A35>

[POLY_MODIFIERS...]

}

The following table shows which polynomial terms correspond to which x,y,z factors
for the orders 2 to 7. Remembercubic is actually a 3rd order polynomial andquartic
is 4th order.

Polynomial shapes can be used to describe a large class of shapes including the torus,
the lemniscate, etc. For example, to declare a quartic surface requires that each of the
coefficients (A1 ... A35) be placed in order into a single long vector of 35 terms.
As an example let’s define a torus the hard way. A Torus can be represented by the
equation: x4 + y4 + z4 + 2 x2 y2 + 2 x2 z2 + 2 y2 z2 - 2 (r 02 + r 12) x2 + 2

(r 02 - r 12) y2 - 2 (r 02 + r 12) z2 + (r 02 - r 12)2 = 0

Where r0 is the major radius of the torus, the distance from the hole of the donut
to the middle of the ring of the donut, and r1 is the minor radius of the torus, the
distance from the middle of the ring of the donut to the outer surface. The following
object declaration is for a torus having major radius 6.3 minor radius 3.5 (Making the
maximum width just under 20).

// Torus having major radius sqrt(40), minor radius sqrt(12)

quartic {

< 1, 0, 0, 0, 2, 0, 0, 2, 0,

-104, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 2, 0, 56, 0,

0, 0, 0, 1, 0, -104, 0, 784 >

sturm

}

3.3 Infinite Solid Primitives 171

2nd 3rd 4th 5th 6th 7th 5th 6th 7th 6th 7th
A1 x2 x3 x4 x5 x6 x7 A41 y3 xy3 x2y3 A81 z3 xz3

A2 xy x2y x3y x4y x5y x6y A42 y2z3 xy2z3 x2y2z3 A82 z2 xz2

A3 xz x2z x3z x4z x5z x6z A43 y2z2 xy2z2 x2y2z2 A83 z xz

A4 x x2 x3 x4 x5 x6 A44 y2z xy2z x2y2z A84 1 x

A5 y2 xy2 x2y2 x3y2 x4y2 x5y2 A45 y2 xy2 x2y2 A85 y7

A6 yz xyz x2yz x3yz x4yz x5yz A46 yz4 xyz4 x2yz4 A86 y6z

A7 y xy x2y x3y x4y x5y A47 yz3 xyz3 x2yz3 A87 y6

A8 z2 xz2 x2z2 x3z2 x4z2 x5z2 A48 yz2 xyz2 x2yz2 A88 y5z2

A9 z xz x2z x3z x4z x5z A49 yz xyz x2yz A89 y5z

A10 1 x x2 x3 x4 x5 A50 y xy x2y A90 y5

A11 y3 xy3 x2y3 x3y3 x4y3 A51 z5 xz5 x2z5 A91 y4z3

A12 y2z xy2z x2y2z x3y2z x4y2z A52 z4 xz4 x2z4 A92 y4z2

A13 y2 xy2 x2y2 x3y2 x4y2 A53 z3 xz3 x2z3 A93 y4z

A14 yz2 xyz2 x2yz2 x3yz2 x4yz2 A54 z2 xz2 x2z2 A94 y4

A15 yz xyz x2yz x3yz x4yz A55 z xz x2z A95 y3z4

A16 y xy x2y x3y x4y A56 1 x x2 A96 y3z3

A17 z3 xz3 x2z3 x3z3 x4z3 A57 y6 xy6 A97 y3z2

A18 z2 xz2 x2z2 x3z2 x4z2 A58 y5z xy5z A98 y3z

A19 z xz x2z x3z x4z A59 y5 xy5 A99 y3

A20 1 x x2 x3 x4 A60 y4z2 xy4z2 A100 y2z5

A21 y4 xy4 x2y4 x3y4 A61 y4z xy4z A101 y2z4

A22 y3z xy3z x2y3z x3y3z A62 y4 xy4 A102 y2z3

A23 y3 xy3 x2y3 x3y3 A63 y3z3 xy3z3 A103 y2z2

A24 y2z2 xy2z2 x2y2z2 x3y2z2 A64 y3z2 xy3z2 A104 y2z

A25 y2z xy2z x2y2z x3y2z A65 y3z xy3z A105 y2

A26 y2 xy2 x2y2 x3y2 A66 y3 xy3 A106 yz6

A27 yz3 xyz3 x2yz3 x3yz3 A67 y2z4 xy2z4 A107 yz5

A28 yz2 xyz2 x2yz2 x3yz2 A68 y2z3 xy2z3 A108 yz4

A29 yz xyz x2yz x3yz A69 y2z2 xy2z2 A109 yz3

A30 y xy x2y x3y A70 y2z xy2z A110 yz2

A31 z4 xz4 x2z4 x3z4 A71 y2 xy2 A111 yz

A32 z3 xz3 x2z3 x3z3 A72 yz5 xyz5 A112 y

A33 z2 xz2 x2z2 x3z2 A73 yz4 xyz4 A113 z7

A34 z xz x2z x3z A74 yz3 xyz3 A114 z6

A35 1 x x2 x3 A75 yz2 xyz2 A115 z5

A36 y5 xy5 x2y5 A76 yz xyz A116 z4

A37 y4z xy4z x2y4z A77 y xy A117 z3

A38 y4 xy4 x2y4 A78 z6 xz6 A118 z2

A39 y3z2 xy3z2 x2y3z2 A79 z5 xz5 A119 z

A40 y3z xy3z x2y3z A80 z4 xz4 A120 1

Table 3.4: Cubic and quartic polynomial terms

172 Objects

Poly, cubic and quartics are just like quadrics in that you don’t have to understand one
to use one. The fileshapesq.inc has plenty of pre-defined quartics for you to play
with.

Polys use highly complex computations and will not always render perfectly. If the
surface is not smooth, has dropouts, or extra random pixels, try using the optional
keywordsturm in the definition. This will cause a slower but more accurate calculation
method to be used. Usually, but not always, this will solve the problem. If sturm doesn’t
work, try rotating or translating the shape by some small amount.

There are really so many different polynomial shapes, we can’t even begin to list or
describe them all. We suggest you find a good reference or text book if you want to
investigate the subject further.

3.3.3 Quadric

Thequadric object can produce shapes like paraboloids (dish shapes) and hyperboloids
(saddle or hourglass shapes). It can also produce ellipsoids, spheres, cones, and cylin-
ders but you should use thesphere, cone, andcylinder objects built into POV-Ray
because they are faster than the quadric version.

Note: do not confuse ”quaDRic” with ”quaRTic”. A quadric is a 2nd order polynomial
while a quartic is 4th order.

Quadrics render much faster and are less error-prone but produce less complex objects.
The syntax is:

QUADRIC:

quadric

{

<A,B,C>,<D,E,F>,<G,H,I>,J

[OBJECT_MODIFIERS...]

}

Although the syntax actually will parse 3 vector expressions followed by a float, we
traditionally have written the syntax as above whereA throughJ are float expressions.
These 10 float that define a surface of x, y, z points which satisfy the equation A x2 +

B y2 + C z2 + D xy + E xz+ F yz+ G x + H y + I z + J= 0

Different values ofA, B, C, ... J will give different shapes. If you take any three
dimensional point and use its x, y and z coordinates in the above equation the answer
will be 0 if the point is on the surface of the object. The answer will be negative if the
point is inside the object and positive if the point is outside the object. Here are some
examples:

X2 + Y2 + Z2 - 1 = 0 Sphere
X2 + Y2 - 1 = 0 Infinite cylinder along the Z axis
X2 + Y2 - Z2 = 0 Infinite cone along the Z axis

Table 3.5: Some quartic shapes

The easiest way to use these shapes is to include the standard fileshapes.inc into
your program. It contains several pre-defined quadrics and you can transform these

3.4 Isosurface Object 173

pre-defined shapes (using translate, rotate and scale) into the ones you want. For a
complete list, see the fileshapes.inc.

3.4 Isosurface Object

Details about many of the things that can be done with the isosurface object are dis-
cussed in the isosurface tutorial section. Below you will only find the syntax basics:

isosurface {

function { FUNCTION_ITEMS }

[contained_by { SPHERE | BOX }]

[threshold FLOAT_VALUE]

[accuracy FLOAT_VALUE]

[max_gradient FLOAT_VALUE]

[evaluate P0, P1, P2]

[open]

[max_trace INTEGER] | [all_intersections]

[OBJECT_MODIFIERS...]

}

Isosurface default values:

contained_by : box{-1,1}

threshold : 0.0

accuracy : 0.001

max_gradient : 1.1

function { ... } This must be specified and be the first item of theisosurface state-
ment. Here you place all the mathematical functions that will describe the surface.

contained by { ... } The contained by ’object’ limits the area where POV-Ray
samples for the surface of the function. This container can either be a sphere or a box,
both of which use the standard POV-Ray syntax. If not specified abox {<-1,-1,-1>,

<1,1,1>} will be used as default.

contained_by { sphere { CENTER, RADIUS } }

contained_by { box { CORNER1, CORNER2 } }

threshold This specifies how much strength, or substance to give theisosurface. The
surface appears where thefunction value equals thethreshold value. The default
threshold is 0.

function = threshold

accuracy The isosurface finding method is a recursive subdivision method. This sub-
division goes on until the length of the interval where POV-Ray finds a surface point is
less than the specifiedaccuracy. The default value is 0.001.
Smaller values produces more accurate surfaces, but it takes longer to render.

max gradient POV-Ray can find the first intersecting point between a ray and the
isosurface of any continuous function if the maximum gradient of the function is
known. Therefore you can specify amax gradient for the function. The default value
is 1.1. When themax gradient used to find the intersecting point is too high, the ren-
der slows down considerably. When it is too low, artefacts or holes may appear on the

174 Objects

isosurface. When it is way too low, the surface doesn’t show at all. While rendering
the isosurface POV-Ray records the found gradient values and prints a warning if these
values are higher or much lower than the specifiedmax gradient:

Warning: The maximum gradient found was 5.257, but max_gradient of

the isosurface was set to 5.000. The isosurface may contain holes!

Adjust max_gradient to get a proper rendering of the isosurface.

Warning: The maximum gradient found was 5.257, but max_gradient of

the isosurface was set to 7.000. Adjust max_gradient to

get a faster rendering of the isosurface.

For best performance you should specify a value close to the real maximum gradient.

evaluate POV-Ray can also dynamically adapt the used maxgradient. To activate this
technique you have to specify theevaluate keyword followed by three parameters:

• P0: the minimum maxgradient in the estimation process,

• P1: an over-estimating factor. This means that the maxgradient is multiplied by
the P1 parameter.

• P2: an attenuation parameter (1 or less)

In this case POV-Ray starts with themax gradient valueP0 and dynamically changes it
during the render usingP1 andP2. In the evaluation process, the P1 and P2 parameters
are used in quadratic functions. This means that over-estimation increases more rapidly
with higher values and attenuation more rapidly with lower values. Also with dynamic
max gradient, there can be artefacts and holes.

If you are unsure what values to use, start a render withoutevaluate to get a value for
max gradient. Now you can use it withevaluate like this:

• P0 : found maxgradient * minfactor
’min factor’ being a float between 0 and 1 to reduce themax gradient to a ’min-
imum maxgradient’. The ideal value for P0 would be the average of the found
max gradients, but we do not have access to that information.
A good starting point is 0.6 for the minfactor

• P1 : sqrt(found maxgradient/(found maxgradient * minfactor))
’min factor’ being the same as used in P0 this will give an over-estimation
factor of more than 1, based on your minimum maxgradient and the found
max gradient.

• P2 : 1 or less
0.7 is a good starting point.

#declare Min_factor= 0.6;

isosurface {

...

evaluate 356*Min_factor, sqrt(356/(356*Min_factor)), 0.7

//evaluate 213.6, 1.29, 0.7

...

}

open When the isosurface isn’t fully contained within the containedby object, there
will be a cross section. Where this happens, you will see the surface of the container.

3.5 Parametric Object 175

With the open keyword, these cross section surfaces are removed. The inside of the
isosurface becomes visible.

Note: that open slows down the render speed. Also, it is not recommended to use it
with CSG operations.

max trace Isosurfaces can be used in CSG shapes since they are solid finite objects - if
not finite by themselves, they are through the cross section with the container.
By default POV-Ray searches only for the first surface which the ray intersects. But
when using anisosurface in CSG operations, the other surfaces must also be found.
Therefore, the keywordmax trace must be added to theisosurface statement. It
must be followed by an integer value. To check for all surfaces, use the keyword
all intersections instead.
With all intersections POV-Ray keeps looking until all surfaces are found. With a
max trace it only checks until that number is reached.

3.5 Parametric Object

Where the isosurface object uses implicit surface functions, F(x,y,z)=0, the parametric
object is a set of equations for a surface expressed in the form of the parameters that
locate points on the surface, x(u,v), y(u,v), z(u,v). Each pair of values for u and v gives
a single point<x,y,z> in 3d space

The parametric object is not a solid object it is ”hollow”, like a thin shell.

Syntax:

parametric {

function { FUNCTION_ITEMS },

function { FUNCTION_ITEMS },

function { FUNCTION_ITEMS }

<u1,v1>, <u2,v2>

[contained_by { SPHERE | BOX }]

[max_gradient FLOAT_VALUE]

[accuracy FLOAT_VALUE]

[precompute DEPTH, VarList]

}

Parametric default values:

accuracy : 0.001

The first function calculates thex value of the surface, the secondy and the third thez
value. Allowed is any function that results in a float.

<u1,v1>,<u2,v2> boundaries of the(u,v) space, in which the surface has to be cal-
culated

contained by { ... } The containedby ’object’ limits the area where POV-Ray sam-
ples for the surface of the function. This container can either be a sphere or a box,
both of which use the standard POV-Ray syntax. If not specified abox {<-1,-1,-1>,

<1,1,1>} will be used as default.

176 Objects

max gradient, It’s not really the maximum gradient. It’s the maximum magnitude of
all six partial derivatives over the specified ranges of u and v. That is, if you takedx/du,
dx/dv, dy/du, dy/dv, dz/du, anddz/dv and calculate them over the entire range, the
max gradient is the maximum of the absolute values of all of those values.

accuracy The default value is 0.001. Smaller values produces more accurate surfaces,
but take longer to render.

precompute can speedup rendering of parametric surfaces. It simply divides parametric
surfaces into small ones (2ˆdepth) and precomputes ranges of the variables(x,y,z) which
you specify after depth. The maximum depth is 20. High values of depth can produce
arrays that use a lot of memory, take longer to parse and render faster. If you declare
a parametric surface with the precompute keyword and then use it twice, all arrays are
in memory only once.

Example, a unit sphere:

parametric {

function { sin(u)*cos(v) }

function { sin(u)*sin(v) }

function { cos(u) }

<0,0>, <2*pi,pi>

contained_by { sphere{0, 1.1} }

max_gradient ??

accuracy 0.0001

precompute 10 x,y,z

pigment {rgb 1}

}

3.6 Constructive Solid Geometry

In addition to all of the primitive shapes POV-Ray supports, you can also combine mul-
tiple simple shapes into complex shapes usingConstructive Solid Geometry(CSG).
There are four basic types of CSG operations: union, intersection, difference, and
merge. CSG objects can be composed of primitives or other CSG objects to create
more, and more complex shapes.

3.6.1 Inside and Outside

Most shape primitives, like spheres, boxes and blobs divide the world into two regions.
One region is inside the object and one is outside. Given any point in space you can
say it’s either inside or outside any particular primitive object. Well, it could be exactly
on the surface but this case is rather hard to determine due to numerical problems.

Even planes have an inside and an outside. By definition, the surface normal of the
plane points towards the outside of the plane. You should note that triangles cannot
be used as solid objects in CSG since they have no well defined inside and outside.
Triangle-based shapes (mesh, mesh2) can only be used in CSG when they are closed
objects and have an inside vector specified.

3.6 Constructive Solid Geometry 177

Note:: Although triangles, bicubicpatches and some other shapes have no well defined
inside and outside, they have a front- and backside which makes it possible to use a
texture on the front side and an interiortexture on the back side.

CSG uses the concepts of inside and outside to combine shapes together as explained
in the following sections.

Imagine you have two objects that partially overlap like shown in the figure below.
Four different areas of points can be distinguished: points that are neither in objectA

nor in objectB, points that are in objectA but not in objectB, points that are not in object
A but in objectB and last not least points that are in objectA and objectB.

Figure 3.9: Two overlapping objects.

Keeping this in mind it will be quite easy to understand how the CSG operations work.

When using CSG it is often useful to invert an object so that it’ll be inside-out. The
appearance of the object is not changed, just the way that POV-Ray perceives it. When
theinverse keyword is used theinsideof the shape is flipped to become theoutside
and vice versa.

The inside/outside distinction is not important for aunion, but is important for intersection,
difference, and merge.Therefore any objects may be combined usingunion but
only solid objects, i.e. objects that have a well-defined interior can be used in the
other kinds of CSG. The objects described in ”Finite Patch Primitives” have no well
defined inside/outside. All objects described in the sections ”Finite Solid Primitives”
and ”Infinite Solid Primitives”.

3.6.2 Union

The simplest kind of CSG is theunion. The syntax is:

UNION:

union

{

OBJECTS...

[OBJECT_MODIFIERS...]

}

Unions are simply glue used to bind two or more shapes into a single entity that can
be manipulated as a single object. The image above shows the union ofA andB. The

178 Objects

Figure 3.10: The union of two objects.

new object created by the union operation can be scaled, translated and rotated as a
single shape. The entire union can share a single texture but each object contained in
the union may also have its own texture, which will override any texture statements in
the parent object.

You should be aware that the surfaces inside the union will not be removed. As you
can see from the figure this may be a problem for transparent unions. If you want those
surfaces to be removed you’ll have to use themerge operations explained in a later
section.

The following union will contain a box and a sphere.

union {

box { <-1.5, -1, -1>, <0.5, 1, 1> }

cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1 }

}

Earlier versions of POV-Ray placed restrictions on unions so you often had to com-
bine objects withcomposite statements. Those earlier restrictions have been lifted so
composite is no longer needed. It is still supported for backwards compatibility.

Split Union

split union is a boolean keyword that can be added to a union. It has two states
on/off, its default ison.

split union is used when photons are shot at the CSG-object. The object is split
up in its compound parts, photons are shot at each part separately. This is to prevent
photons from being shot at ’empty spaces’ in the object, for example the holes in a grid.
With compact objects, without ’empty spaces’split union off can improve photon
gathering.

union {

object {...}

object {...}

split_union off

}

3.6 Constructive Solid Geometry 179

3.6.3 Intersection

Theintersection object creates a shape containing only those areas where all com-
ponents overlap. A point is part of an intersection if it is inside both objects,A andB,
as show in the figure below.

Figure 3.11: The intersection of two objects.

The syntax is:

INTERSECTION:

intersection

{

SOLID_OBJECTS...

[OBJECT_MODIFIERS...]

}

The component objects must have well defined inside/outside properties. Patch objects
are not allowed.

Note: if all components do not overlap, the intersection object disappears.

Here is an example that overlaps:

intersection {

box { <-1.5, -1, -1>, <0.5, 1, 1> }

cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1 }

}

3.6.4 Difference

The CSGdifference operation takes the intersection between the first object and the
inverse of all subsequent objects. Thus only points inside objectA and outside objectB
belong to the difference of both objects.

The result is a subtraction of the 2nd shape from the first shape as shown in the figure
below.

The syntax is:

DIFFERENCE:

difference

{

180 Objects

Figure 3.12: The difference between two objects.

SOLID_OBJECTS...

[OBJECT_MODIFIERS...]

}

The component objects must have well defined inside/outside properties. Patch objects
are not allowed.

Note: if the first object is entirely inside the subtracted objects, the difference object
disappears.

Here is an example of a properly formed difference:

difference {

box { <-1.5, -1, -1>, <0.5, 1, 1> }

cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1 }

}

Note: internally, POV-Ray simply adds theinverse keyword to the second (and sub-
sequent) objects and then performs an intersection.

The example above is equivalent to:

intersection {

box { <-1.5, -1, -1>, <0.5, 1, 1> }

cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1 inverse }

}

3.6.5 Merge

The union operation just glues objects together, it does not remove the objects’ sur-
faces inside theunion. Under most circumstances this doesn’t matter. However if a
transparent union is used, those interior surfaces will be visible. Themerge opera-
tions can be used to avoid this problem. It works just likeunion but it eliminates the
inner surfaces like shown in the figure below.

The syntax is:

MERGE:

merge

{

SOLID_OBJECTS...

3.7 Light Sources 181

Figure 3.13: Merge removes inner surfaces.

[OBJECT_MODIFIERS...]

}

The component objects must have well defined inside/outside properties. Patch objects
are not allowed.

Note: that in generalmerge is slower rendering thanunion when used with non trans-
parent objects. A small test may be needed to determine what is the optimal solution
regarding speed and visual result.

3.7 Light Sources

Thelight source is not really an object. Light sources have no visible shape of their
own. They are just points or areas which emit light. They are categorized as objects so
that they can be combined with regular objects usingunion. Their full syntax is:

LIGHT_SOURCE:

light_source

{

<Location>, COLOR

[LIGHT_MODIFIERS...]

}

LIGHT_MODIFIER:

LIGHT_TYPE | SPOTLIGHT_ITEM | AREA_LIGHT_ITEMS |

GENERAL_LIGHT_MODIFIERS

LIGHT_TYPE:

spotlight | shadowless | cylinder | parallel

SPOTLIGHT_ITEM:

radius Radius | falloff Falloff | tightness Tightness |

point_at <Spot>

PARALLEL_ITEM:

point_at <Spot>

AREA_LIGHT_ITEM:

area_light <Axis_1>, <Axis_2>, Size_1, Size_2 |

adaptive Adaptive | jitter Jitter | circular | orient

GENERAL_LIGHT_MODIFIERS:

looks_like { OBJECT } |

TRANSFORMATION fade_distance Fade_Distance |

182 Objects

fade_power Fade_Power | media_attenuation [Bool] |

media_interaction [Bool] | projected_through

Light source default values:

LIGHT_TYPE : pointlight

falloff : 70

media_interaction : on

media_attenuation : off

point_at : <0,0,0>

radius : 70

tightness : 10

The different types of light sources and the optional modifiers are described in the
following sections.

The first two items are common to all light sources. The<Location> vector gives the
location of the light. TheCOLORgives the color of the light. Only the red, green, and
blue components are significant. Any transmit or filter values are ignored.

Note: you vary the intensity of the light as well as the color using this parameter. A
color such asrgb <0.5,0.5,0.5> gives a white light that is half the normal intensity.

All of the keywords or items in the syntax specification above may appear in any order.
Some keywords only have effect if specified with other keywords. The keywords are
grouped into functional categories to make it clear which keywords work together. The
GENERALLIGHT MODIFIERSwork with all types of lights and all options.

Note: thatTRANSFORMATIONSsuch astranslate, rotate etc. may be applied but
no otherOBJECTMODIFIERSmay be used.

There are three mutually exclusive light types. If noLIGHT TYPEis specified it is a
point light. The other choices arespotlight andcylinder.

3.7.1 Point Lights

The simplest kind of light is a point light. A point light source sends light of the
specified color uniformly in all directions. The default light type is a point source. The
<Location> and COLORis all that is required. For example:

light_source {

<1000,1000,-1000>, rgb <1,0.75,0> //an orange light

}

3.7.2 Spotlights

Normally light radiates outward equally in all directions from the source. However the
spotlight keyword can be used to create a cone of light that is bright in the center and
falls of to darkness in a soft fringe effect at the edge.

Although the cone of light fades to soft edges, objects illuminated by spotlights still
cast hard shadows. The syntax is:

3.7 Light Sources 183

SPOTLIGHT_SOURCE:

light_source

{

<Location>, COLOR spotlight

[LIGHT_MODIFIERS...]

}

LIGHT_MODIFIER:

SPOTLIGHT_ITEM | AREA_LIGHT_ITEMS | GENERAL_LIGHT_MODIFIERS

SPOTLIGHT_ITEM:

radius Radius | falloff Falloff | tightness Tightness |

point_at <Spot>

radius: 30 degrees

falloff: 45 degrees

tightness: 0

Thepoint at keyword tells the spotlight to point at a particular 3D coordinate. A line
from the location of the spotlight to thepoint at coordinate forms the center line of
the cone of light. The following illustration will be helpful in understanding how these
values relate to each other.

Figure 3.14: The geometry of a spotlight.

Thefalloff, radius, and tightness keywords control the way that light tapers off
at the edges of the cone. These four keywords apply only when thespotlight or
cylinder keywords are used.

Thefalloff keyword specifies the overall size of the cone of light. This is the point
where the light falls off to zero intensity. The float value you specify is the angle, in
degrees, between the edge of the cone and center line. Theradius keyword specifies
the size of the ”hot-spot” at the center of the cone of light. The ”hot-spot” is a brighter
cone of light inside the spotlight cone and has the same center line. Theradius value
specifies the angle, in degrees, between the edge of this bright, inner cone and the
center line. The light inside the inner cone is of uniform intensity. The light between
the inner and outer cones tapers off to zero.

For example, assuming atightness 0, with radius 10 andfalloff 20 the light from
the center line out to 10 degrees is full intensity. From 10 to 20 degrees from the center
line the light falls off to zero intensity. At 20 degrees or greater there is no light.

Note: if the radius and falloff values are close or equal the light intensity drops rapidly

184 Objects

and the spotlight has a sharp edge.

The values for theradius, andtightness parameters are half the opening angles of
the corresponding cones, both angles have to be smaller than 90 degrees. The light
smoothly falls off between the radius and the falloff angle like shown in the figures
below (as long as the radius angle is not negative).

Figure 3.15: Intensity multiplier curve with a fixed falloff angle of 45 degrees.

Figure 3.16: Intensity multiplier curve with a fixed radius angle of 45 degrees.

Thetightness keyword is used to specify anadditionalexponential softening of the
edges. A value other than 0, will affect light within the radius cone as well as light
in the falloff cone. The intensity of light at an angle from the center line is given
by: intensity * cos(angle)tightness. The default value for tightness is 0. Lower
tightness values will make the spotlight brighter, making the spot wider and the edges
sharper. Higher values will dim the spotlight, making the spot tighter and the edges
softer. Values from 0 to 100 are acceptable.

You should note from the figures that the radius and falloff angles interact with the
tightness parameter. To give the tightness value full control over the spotlight’s ap-
pearance use radius 0 falloff 90. As you can see from the figure below. In that case the
falloff angle has no effect and the lit area is only determined by the tightness parameter.

Spotlights may be used anyplace that a normal light source is used. Like any light
sources, they are invisible. They may also be used in conjunction with area lights.

3.7 Light Sources 185

Figure 3.17: Intensity multiplier curve with fixed angle and falloff angles of 30 and 60
degrees respectively and different tightness values.

Figure 3.18: Intensity multiplier curve with a negative radius angle and different tight-
ness values.

186 Objects

3.7.3 Cylindrical Lights

Thecylinder keyword specifies a cylindrical light source that is great for simulating
laser beams. Cylindrical light sources work pretty much like spotlights except that the
light rays are constrained by a cylinder and not a cone. The syntax is:

CYLINDER_LIGHT_SOURCE:

light_source

{

<Location>, COLOR cylinder

[LIGHT_MODIFIERS...]

}

LIGHT_MODIFIER:

SPOTLIGHT_ITEM | AREA_LIGHT_ITEMS | GENERAL_LIGHT_MODIFIERS

SPOTLIGHT_ITEM:

radius Radius | falloff Falloff | tightness Tightness |

point_at <Spot>

radius: 0.75 degrees

falloff: 1 degrees

tightness: 0

Thepoint at, radius, falloff andtightness keywords control the same features as
with the spotlight. See ”Spotlights” for details.

You should keep in mind that the cylindrical light source is still a point light source.
The rays are emitted from one point and are only constraint by a cylinder. The light
rays are not parallel.

3.7.4 Parallel Lights

syntax:

light_source {

LOCATION_VECTOR, COLOR

[LIGHT_SOURCE_ITEMS...]

parallel

point_at VECTOR

}

Theparallel keyword can be used with any type of light source.

Note: for normal point lights,point at must come afterparallel.

Parallel lights are useful for simulating very distant light sources, such as sunlight. As
the name suggests, it makes the light rays parallel.

Technically this is done by shooting rays from the closest point on a plane to the object
intersection point. The plane is determined by a perpendicular defined by the light
location and thepoint at vector.

Two things must be considered when choosing the light location (specifically, its dis-
tance):

3.7 Light Sources 187

1. Any parts of an object ”above” the light plane still get illuminated according to
the light direction, but they will not cast or receive shadows.

2. fade distance andfade power use the lightlocation to determine distance for
light attenuation, so the attenuation still looks like that of a point source.
Area light also uses the light location in its calculations.

3.7.5 Area Lights

Area light sources occupy a finite, one- or two-dimensional area of space. They can
cast soft shadows because an object can partially block their light. Point sources are
either totally blocked or not blocked.

The area light keyword in POV-Ray creates sources that are rectangular in shape,
sort of like a flat panel light. Rather than performing the complex calculations that
would be required to model a true area light, it is approximated as an array of point
light sources spread out over the area occupied by the light. The array-effect applies
to shadows only. The object’s illumination is still that of a point source. The intensity
of each individual point light in the array is dimmed so that the total amount of light
emitted by the light is equal to the light color specified in the declaration. The syntax
is:

AREA_LIGHT_SOURCE:

light_source {

LOCATION_VECTOR, COLOR

area_light

AXIS_1_VECTOR, AXIS_2_VECTOR, Size_1, Size_2

[adaptive Adaptive] [jitter]

[circular] [orient]

[[LIGHT_MODIFIERS...]

}

Any type of light source may be an area light.

The arealight command defines the location, the size and orientation of the area light
as well as the number of lights in the light source array. The location vector is the
centre of a rectangle defined by the two vectors<Axis 1> and<Axis 2>. These specify
the lengths and directions of the edges of the light.

Since the area lights are rectangular in shape these vectors should be perpendicular to
each other. The larger the size of the light the thicker the soft part of shadows will
be. The integers Size1 and Size2 specify the number of rows and columns of point
sources of the. The more lights you use the smoother your shadows will be but the
longer they will take to render.

Note: it is possible to specify spotlight parameters along with the area light parameters
to create area spotlights. Using area spotlights is a good way to speed up scenes that
use area lights since you can confine the lengthy soft shadow calculations to only the
parts of your scene that need them.

An interesting effect can be created using a linear light source. Rather than having a
rectangular shape, a linear light stretches along a line sort of like a thin fluorescent

188 Objects

Figure 3.19: 4x4 Area light, location and vectors.

tube. To create a linear light just create an area light with one of the array dimensions
set to 1.

Thejitter command is optional. When used it causes the positions of the point lights
in the array to be randomly jittered to eliminate any shadow banding that may occur.
The jittering is completely random from render to render and should not be used when
generating animations.

The adaptive command is used to enable adaptive sampling of the light source. By
default POV-Ray calculates the amount of light that reaches a surface from an area
light by shooting a test ray at every point light within the array. As you can imagine
this is very slow. Adaptive sampling on the other hand attempts to approximate the
same calculation by using a minimum number of test rays. The number specified after
the keyword controls how much adaptive sampling is used. The higher the number the
more accurate your shadows will be but the longer they will take to render. If you’re not
sure what value to use a good starting point isadaptive 1. Theadaptive keyword
only accepts integer values and cannot be set lower than 0.

When performing adaptive sampling POV-Ray starts by shooting a test ray at each of
the four corners of the area light. If the amount of light received from all four corners
is approximately the same then the area light is assumed to be either fully in view or
fully blocked. The light intensity is then calculated as the average intensity of the light
received from the four corners. However, if the light intensity from the four corners
differs significantly then the area light is partially blocked. The area light is split into
four quarters and each section is sampled as described above. This allows POV-Ray to
rapidly approximate how much of the area light is in view without having to shoot a
test ray at every light in the array. Visually the sampling goes like shown below.

While the adaptive sampling method is fast (relatively speaking) it can sometimes pro-
duce inaccurate shadows. The solution is to reduce the amount of adaptive sampling
without completely turning it off. The number after the adaptive keyword adjusts the
number of times that the area light will be split before the adaptive phase begins. For
example if you use adaptive 0 a minimum of 4 rays will be shot at the light. If
you use adaptive 1 a minimum of 9 rays will be shot (adaptive 2 gives 25 rays,
adaptive 3 gives 81 rays, etc). Obviously the more shadow rays you shoot the slower
the rendering will be so you should use the lowest value that gives acceptable results.

3.7 Light Sources 189

Figure 3.20: Area light adaptive samples.

The number of rays never exceeds the values you specify for rows and columns of
points. For examplearea light x,y,4,4 specifies a 4 by 4 array of lights. If you
specifyadaptive 3 it would mean that you should start with a 9 by 9 array. In this case
no adaptive sampling is done. The 4 by 4 array is used.

Thecircular command has been added to area lights in order to better create circular
soft shadows. With ordinary area lights the pseudo-lights are arranged in a rectangular
grid and thus project partly rectangular shadows around all objects, including circular
objects.
By including thecircular tag in an area light, the light is stretched and squashed
so that it looks like a circle: this way, circular or spherical light sources are better
simulated.

A few things to remember:

• Circular area lights can be ellipses: the AXIS1 VECTOR and AXIS2 VECTOR
define the shape and orientation of the circle; if the vectors are not equal, the light
source is elliptical in shape.

• Rectangular artefacts may still show up with very large area grids.

• There is no point in usingcircular with linear area lights or area lights which
have a 2x2 size.

• The area of a circular light is roughly 78.5 per cent of a similar size rectangular
area light. Increase your axis vectors accordingly if you wish to keep the light
source area constant.

Theorient command has been added to area lights in order to better create soft shad-
ows. Without this modifier, you have to take care when choosing the axis vectors of an
arealight, since they define both its area and orientation.
Area lights are two dimensional: shadows facing the area light receive light from a
larger surface area than shadows at the sides of the area light.

Actually, the area from which light is emitted at the sides of the area light is reduced to
a single line, only casting soft shadows in one direction.

Between these two extremes the surface area emitting light progresses gradually.
By including theorient modifier in an area light, the light is rotated so that for every

190 Objects

Figure 3.21: Area light facing object

Figure 3.22: Area light not facing object

shadow test, it always faces the point being tested. The initial orientation is no longer
important, so you only have to consider the desired dimensions (area) of the light source
when specifying the axis vectors.
In effect, this makes the area light source appear 3-dimensional (e.g. an arealight with
perpendicular axis vectors of the same size and dimensions usingcircular andorient
simulates a spherical light source).

Orient has a few restrictions:

1. It can be used with ”circular” lights only.

2. The two axes of the area light must be of equal length.

3. The two axes of the area light should use an equal number of samples, and that
number should be greater than one

These three rules exist because without them, you can get unpredictable results from
the orient feature.

If one of the first two rules is broken, POV will issue a warning and correct the problem.
If the third rule is broken, you will only get the error message, and POV will not
automatically correct the problem.

3.7 Light Sources 191

3.7.6 Shadowless Lights

Using theshadowless keyword you can stop a light source from casting shadows.
These lights are sometimes called ”fill lights”. They are another way to simulate ambi-
ent light however shadowless lights have a definite source. The syntax is:

SHADOWLESS_LIGHT_SOURCE:

light_source

{

<Location>, COLOR shadowless

[LIGHT_MODIFIERS...]

}

LIGHT_MODIFIER:

AREA_LIGHT_ITEMS | GENERAL_LIGHT_MODIFIERS

shadowless may be used with all types of light sources. The only restriction is that
shadowless should be before or afterall spotlight or cylinder option keywords. Don’t
mix or you get the message ”Keyword ’the one following shadowless’ cannot be used
with standard light source”. Also note that shadowless lights will not cause highlights
on the illuminated objects.

3.7.7 Lookslike

Normally the light source itself has no visible shape. The light simply radiates from an
invisible point or area. You may give a light source any shape by adding alooks like

{ OBJECT} statement.

There is an impliedno shadow attached to thelooks like object so that light is not
blocked by the object. Without the automaticno shadow the light inside the object
would not escape. The object would, in effect, cast a shadow over everything.

If you want the attached object to block light then you should attach it with aunion

and not alooks like as follows:

union {

light_source { <100, 200, -300> color White }

object { My_Lamp_Shape }

}

Presumably parts of the lamp shade are transparent to let some light out.

3.7.8 ProjectedThrough

Syntax:

light_source {

LOCATION_VECTOR, COLOR

[LIGHT_SOURCE_ITEMS...]

projected_through { OBJECT }

}

Projectedthrough can be used with any type of light source. Any object can be used,
provided it has been declared before.

192 Objects

Projecting a light through an object can be thought of as the opposite of shadowing:
only the light rays that hit the projectedthrough object will contribute to the scene.
This also works with arealights, producing spots of light with soft edges.
Any objects between the light and the projected through object will not cast shadows
for this light. Also any surface within the projected through object will not cast shad-
ows.
Any textures or interiors on the object will be stripped and the object will not show up
in the scene.

3.7.9 Light Fading

By default POV-Ray does not diminish light from any light source as it travels through
space. In order to get a more realistic effect fade distance andfade power keywords
followed by float values can be used to model the distance based falloff in light inten-
sity.

Thefade distance is used to specify the distance at which the full light intensity ar-
rives, i. e. the intensity which was given by theCOLORspecification. The actual
attenuation is described by thefade power Fade Power, which determines the falloff
rate. For example linear or quadratic falloff can be used by settingfade power to 1
or 2 respectively. The complete formula to calculate the factor by which the light is
attenuated is

attenuation=
2

1+
(

d
fade distance

)fade power

Equation 3.5:

with d being the distance the light has traveled.

Figure 3.23: Light fading functions for different fading powers.

You should note two important facts: First, forFade Distance larger than one the light
intensity at distances smaller thanFade Distance actually increases. This is necessary
to get the light source color if the distance traveled equals theFade Distance. Second,

3.8 Light Groups 193

only light coming directly from light sources is attenuated. Reflected or refracted light
is not attenuated by distance.

3.7.10 Atmospheric Media Interaction

By default light sources will interact with an atmosphere added to the scene. This
behavior can be switched off by usingmedia interaction off inside the light source
statement.

Note: in POV-Ray 3.0 this feature was turned off and on with the atmosphere keyword.

3.7.11 Atmospheric Attenuation

Normally light coming from light sources is not influenced by fog or atmospheric me-
dia. This can be changed by turning themedia attenuation on for a given light source
on. All light coming from this light source will now be diminished as it travels through
the fog or media. This results in an distance-based, exponential intensity falloff ruled
by the used fog or media. If there is no fog or media no change will be seen.

Note:in POV-Ray 3.0 this feature was turned off and on with the atmosphericattenuation
keyword.

3.8 Light Groups

Light groups make it possible to create a ’union’ of lightsources and objects, where
the objects in the group are illuminated by the lights in the group or, if desired, also by
the global lightsources. The lightsources in the group can only illuminate the objects
that are in the group.

Light groups are for example useful when creating scenes in which some objects turn
out to be too dark but the average light is exactly how it should be, as the lightsources
in the group don’t contribute to the global lighting.

Syntax :

light_group {

LIGHT_GROUP LIGHT |

LIGHT_GROUP OBJECT |

LIGHT_GROUP

[LIGHT_GROUP MODIFIER]

}

LIGHT_GROUP LIGHT:

light_source | light_source IDENTIFIER

LIGHT_GROUP OBJECT:

OBJECT | OBJECT IDENTIFIER

LIGHT_GROUP MODIFIER:

global_lights BOOL | TRANSFORMATION

194 Objects

global lights. Add this command to the lightgroup to have objects in the group also
be illuminated by global light sources.

Light groups may be nested. In this case light groups inherit the light sources of the
light group they are contained by.

Light groups can be seen as a ’union of an object with lightsource’ and can be used in
CSG.

Examples, simple lightgroup:

#declare RedLight = light_source {

<-500,500,-500>

rgb <1,0,0>

}

light_group {

light_source {RedLight}

sphere {0,1 pigment {rgb 1}}

global_lights off

}

Nested lightgroup:

#declare L1 = light_group {

light_source {<10,10,0>, rgb <1,0,0>}

light_source {<0,0,-100>, rgb <0,0,1>}

sphere {0,1 pigment {rgb 1}}

}

light_group {

light_source {<0,100,0>, rgb 0.5}

light_group {L1}

}

Light groups in CSG:

difference {

light_group {

sphere {0,1 pigment {rgb 1}}

light_source {<-100,0,-100> rgb <1,0,0>}

global_lights off

}

light_group {

sphere {<0,1,0>,1 pigment {rgb 1}}

light_source {<100,100,0> rgb <0,0,1>}

global_lights off

}

rotate <-45,0,0>

}

In the last example the result will be a sphere illuminated red, where the part that is
differenced away is illuminated blue. In result comparable to the difference between
two spheres with a different pigment.

3.9 Object Modifiers 195

3.9 Object Modifiers

A variety of modifiers may be attached to objects. The following items may be applied
to any object:

OBJECT_MODIFIER:

clipped_by { UNTEXTURED_SOLID_OBJECT... } |

clipped_by { bounded_by } |

bounded_by { UNTEXTURED_SOLID_OBJECT... } |

bounded_by { clipped_by } |

no_shadow |

no_image [Bool] |

no_reflection [Bool] |

inverse |

sturm [Bool] |

hierarchy [Bool] |

double_illuminate [Bool] |

hollow [Bool] |

interior { INTERIOR_ITEMS... } |

material { [MATERIAL_IDENTIFIER][MATERIAL_ITEMS...] } |

texture { TEXTURE_BODY } |

interior_texture { TEXTURE_BODY } |

pigment { PIGMENT_BODY } |

normal { NORMAL_BODY } |

finish { FINISH_ITEMS... } |

photons { PHOTON_ITEMS...}

TRANSFORMATION

Transformations such as translate, rotate and scale have already been discussed. The
modifiers ”Textures” and its parts ”Pigment”, ”Normal”, and ”Finish” as well as ”Inte-
rior”, and ”Media” (which is part of interior) are each in major chapters of their own be-
low. In the sub-sections below we cover several other important modifiers:clipped by,
bounded by, material, inverse, hollow, no shadow, no image, no reflection, double illuminate
andsturm. Although the examples below use object statements and object identifiers,
these modifiers may be used on any type of object such as sphere, box etc.

3.9.1 ClippedBy

The clipped by statement is technically an object modifier but it provides a type of
CSG similar to CSG intersection. The syntax is:

CLIPPED_BY:

clipped_by { UNTEXTURED_SOLID_OBJECT... } |

clipped_by { bounded_by }

WhereUNTEXTUREDSOLID OBJECTis one or more solid objects which have had
no texture applied. For example:

object {

My_Thing

clipped_by{plane{y,0}}

}

196 Objects

Every part of the objectMy Thing that is inside the plane is retained while the remaining
part is clipped off and discarded. In anintersection object the hole is closed off.
With clipped by it leaves an opening. For example the following figure shows object
A being clipped by objectB.

Figure 3.24: An object clipped by another object.

You may useclipped by to slice off portions of any shape. In many cases it will also
result in faster rendering times than other methods of altering a shape. Occasionally
you will want to use the clipped by andbounded by options with the same object.
The following shortcut saves typing and uses less memory.

object {

My_Thing

bounded_by { box { <0,0,0>, <1,1,1> } }

clipped_by { bounded_by }

}

This tells POV-Ray to use the same box as a clip that was used as a bound.

3.9.2 BoundedBy

The calculations necessary to test if a ray hits an object can be quite time consuming.
Each ray has to be tested against every object in the scene. POV-Ray attempts to speed
up the process by building a set of invisible boxes, called bounding boxes, which clus-
ter the objects together. This way a ray that travels in one part of the scene doesn’t
have to be tested against objects in another, far away part of the scene. When a large
number of objects are present the boxes are nested inside each other. POV-Ray can use
bounding boxes on any finite object and even some clipped or bounded quadrics. How-
ever infinite objects (such as a planes, quartic, cubic and poly) cannot be automatically
bound. CSG objects are automatically bound if they contain finite (and in some cases
even infinite) objects. This works by applying the CSG set operations to the bounding
boxes of all objects used inside the CSG object. For difference and intersection op-
erations this will hardly ever lead to an optimal bounding box. It’s sometimes better
(depending on the complexity of the CSG object) to have you place a bounding shape
yourself using a bounded by statement.

Normally bounding shapes are not necessary but there are cases where they can be used
to speed up the rendering of complex objects. Bounding shapes tell the ray-tracer that
the object is totally enclosed by a simple shape. When tracing rays, the ray is first tested

3.9 Object Modifiers 197

against the simple bounding shape. If it strikes the bounding shape the ray is further
tested against the more complicated object inside. Otherwise the entire complex shape
is skipped, which greatly speeds rendering. The syntax is:

BOUNDED_BY:

bounded_by { UNTEXTURED_SOLID_OBJECT... } |

bounded_by { clipped_by }

WhereUNTEXTUREDSOLID OBJECTis one or more solid objects which have had
no texture applied. For example:

intersection {

sphere { <0,0,0>, 2 }

plane { <0,1,0>, 0 }

plane { <1,0,0>, 0 }

bounded_by { sphere { <0,0,0>, 2 } }

}

The best bounding shape is a sphere or a box since these shapes are highly optimized,
although, any shape may be used. If the bounding shape is itself a finite shape which
responds to bounding slabs then the object which it encloses will also be used in the
slab system.

While it may a good idea to manually add abounded by to intersection, difference and
merge, it is best toneverbound a union. If a union has nobounded by POV-Ray can
internally split apart the components of a union and apply automatic bounding slabs to
any of its finite parts. Note that some utilities such asraw2pov may be able to gen-
erate bounds more efficiently than POV-Ray’s current system. However most unions
you create yourself can be easily bounded by the automatic system. For technical rea-
sons POV-Ray cannot split a merge object. It is maybe best to hand bound a merge,
especially if it is very complex.

Note: if bounding shape is too small or positioned incorrectly it may clip the object in
undefined ways or the object may not appear at all. To do true clipping, useclipped by

as explained in the previous section. Occasionally you will want to use theclipped by

andbounded by options with the same object. The following shortcut saves typing and
uses less memory.

object {

My_Thing

clipped_by{ box { <0,0,0>,<1,1,1 > }}

bounded_by{ clipped_by }

}

This tells POV-Ray to use the same box as a bound that was used as a clip.

3.9.3 Material

One of the changes in POV-Ray 3.1 was the removal of several items fromtexture {
finish{...} } and to move them to the newinterior statement. Thehalo statement,
formerly part oftexture, is now renamedmedia and made a part of theinterior.

This split was deliberate and purposeful (see ”Why are Interior and Media Neces-
sary?”) however beta testers pointed out that it made it difficult to entirely describe

198 Objects

the surface properties and interior of an object in one statement that can be referenced
by a single identifier in a texture library.

The result is that we created a ”wrapper” aroundtexture and interior which we
call material.

The syntax is:

MATERIAL:

material { [MATERIAL_IDENTIFIER][MATERIAL_ITEMS...] }

MATERIAL_ITEMS:

TEXTURE | INTERIOR_TEXTURE | INTERIOR | TRANSFORMATIONS

For example:

#declare MyGlass=material{ texture{ Glass_T } interior{ Glass_I }}

object { MyObject material{ MyGlass}}

Internally, the ”material” isn’t attached to the object. The material is just a container
that brings the texture and interior to the object. It is the texture and interior itself that
is attached to the object. Users should still consider texture and interior as separate
items attached to the object.

The material is just a ”bucket” to carry them. If the object already has a texture, then
the material texture is layered over it. If the object already has an interior, the material
interior fully replaces it and the old interior is destroyed. Transformations inside the
material affect only the textures and interiors which are inside thematerial{} wrapper
and only those textures or interiors specified are affected. For example:

object {

MyObject

material {

texture { MyTexture }

scale 4 //affects texture but not object or interior

interior { MyInterior }

translate 5*x //affects texture and interior, not object

}

}

Note: The material statement has nothing to do with thematerial map statement.
A material map is not a way to create patterned material. See ”Material Maps” for
explanation of this unrelated, yet similarly named, older feature.

3.9.4 Inverse

When using CSG it is often useful to invert an object so that it’ll be inside-out. The
appearance of the object is not changed, just the way that POV-Ray perceives it. When
theinverse keyword is used theinsideof the shape is flipped to become theoutside
and vice versa. For example:

object { MyObject inverse }

The inside/outside distinction is also important when attachinginterior to an object
especially if media is also used. Atmospheric media and fog also do not work as

3.9 Object Modifiers 199

expected if your camera is inside an object. Usinginverse is useful to correct that
problem.

3.9.5 Hollow

POV-Ray by default assumes that objects are made of a solid material that completely
fills the interior of an object. By adding thehollow keyword to the object you can
make it hollow, also see the ”Empty and Solid Objects” chapter. That is very useful if
you want atmospheric effects to exist inside an object. It is even required for objects
containing an interior media. The keyword may optionally be followed by a float ex-
pression which is interpreted as a boolean value. For examplehollow offmay be used
to force it off. When the keyword is specified alone, it is the same ashollow on. By
defaulthollow is off when not specified.

In order to get a hollow CSG object you just have to make the top level object hollow.
All children will assume the samehollow state except when their state is explicitly
set. The following example will set both spheres inside the union hollow

union {

sphere { -0.5*x, 1 }

sphere { 0.5*x, 1 }

hollow

}

while the next example will only set the second sphere hollow because the first sphere
was explicitly set to be not hollow.

union {

sphere { -0.5*x, 1 hollow off }

sphere { 0.5*x, 1 }

hollow on

}

3.9.6 NoShadow

You may specify theno shadow keyword in an object to make that object cast no
shadow. This is useful for special effects and for creating the illusion that a light source
actually is visible. This keyword was necessary in earlier versions of POV-Ray which
did not have thelooks like statement. Now it is useful for creating things like laser
beams or other unreal effects. During test rendering it speeds things up ifno shadow is
applied.

Simply attach the keyword as follows:

object {

My_Thing

no_shadow

}

200 Objects

3.9.7 NoImage, No Reflection

OBJECT {

[OBJECT_ITEMS...]

no_image

no_reflection

}

These two keywords are very similar in usage and function to theno shadow keyword,
and control an object’s visibility.
You can use any combination of the three with your object.

Whenno image is used, the object will not be seen by the camera, either directly or
through transparent/refractive objects. However, it will still cast shadows, and show up
in reflections (unlessno reflection and/or no shadow is used also).

Whenno reflection is used, the object will not show up in reflections. It will be seen
by the camera (and through transparent/refractive objects) and cast shadows, unless
no image and/or no shadow is used.

Using these three keywords you can produce interesting effects like a sphere casting a
rectangular shadow, a cube that shows up as a cone in mirrors, etc.

3.9.8 DoubleIlluminate

Syntax:

OBJECT {

[OBJECT_ITEMS...]

double_illuminate

}

A surface has two sides; usually, only the side facing the light source is illuminated,
the other side remains in shadow. Whendouble illuminate is used, the other side is
also illuminated.
This is useful for simulating effects like translucency (as in a lamp shade, sheet of
paper, etc).

Note: double illuminate only illuminates both sides of the same surface, so on a
sphere, for example, you will not see the effect unless the sphere is either partially
transparent, or if the camera is inside and the light source outside of the sphere (or vise
versa).

3.9.9 Sturm

Some of POV-Ray’s objects allow you to choose between a fast but sometimes inaccu-
rate root solver and a slower but more accurate one. This is the case for all objects that
involve the solution of a cubic or quartic polynomial. There are analytic mathematical
solutions for those polynomials that can be used.

3.9 Object Modifiers 201

Lower order polynomials are trivial to solve while higher order polynomials require
iterative algorithms to solve them. One of those algorithms is the Sturmian root solver.
For example:

blob {

threshold .65

sphere { <.5,0,0>, .8, 1 }

sphere { <-.5,0,0>,.8, 1 }

sturm

}

The keyword may optionally be followed by a float expression which is interpreted
as a boolean value. For examplesturm off may be used to force it off. When the
keyword is specified alone, it is the same assturm on. By defaultsturm is off when
not specified.

The following list shows all objects for which the Sturmian root solver can be used.

• blob

• cubic

• lathe (only with quadratic splines)

• poly

• prism (only with cubic splines)

• quartic

• sor

202 Objects

Chapter 4

Textures

The texture statement is an object modifier which describes what the surface of an
object looks like, i.e. its material. Textures are combinations of pigments, normals, and
finishes. Pigment is the color or pattern of colors inherent in the material. Normal is a
method of simulating various patterns of bumps, dents, ripples or waves by modifying
the surface normal vector. Finish describes the reflective properties of a material.

Note: that in previous versions of POV-Ray, the texture also contained information
about the interior of an object. This information has been moved to a separate object
modifier calledinterior. See ”Interior” for details.

There are three basic kinds of textures: plain, patterned, and layered. Aplain texture
consists of a single pigment, an optional normal, and a single finish. Apatterned tex-
turecombines two or more textures using a block pattern or blending function pattern.
Patterned textures may be made quite complex by nesting patterns within patterns. At
the innermost levels however, they are made up from plain textures. Alayered texture
consists of two or more semi-transparent textures layered on top of one another.

Note: although we call a plain textureplain it may be a very complex texture with pat-
terned pigments and normals. The termplain only means that it has a single pigment,
normal, and finish.

The syntax fortexture is as follows:

TEXTURE:

PLAIN_TEXTURE | PATTERNED_TEXTURE | LAYERED_TEXTURE

PLAIN_TEXTURE:

texture

{

[TEXTURE_IDENTIFIER]

[PNF_IDENTIFIER...]

[PNF_ITEMS...]

}

PNF_IDENTIFIER:

PIGMENT_IDENTIFIER | NORMAL_IDENTIFIER | FINISH_IDENTIFIER

PNF_ITEMS:

PIGMENT | NORMAL | FINISH | TRANSFORMATION

LAYERED_TEXTURE:

204 Textures

NON_PATTERNED_TEXTURE...

PATTERNED_TEXTURE:

texture

{

[PATTERNED_TEXTURE_ID]

[TRANSFORMATIONS...]

} |

texture

{

PATTERN_TYPE

[TEXTURE_PATTERN_MODIFIERS...]

} |

texture

{

tiles TEXTURE tile2 TEXTURE

[TRANSFORMATIONS...]

} |

texture

{

material_map

{

BITMAP_TYPE "bitmap.ext"

[MATERIAL_MODS...] TEXTURE... [TRANSFORMATIONS...]

}

}

TEXTURE_PATTERN_MODIFIER:

PATTERN_MODIFIER | TEXTURE_LIST |

texture_map { TEXTURE_MAP_BODY }

In the PLAIN TEXTURE, each of the items are optional but if they are present the
TEXTUREIDENTIFIERmust be first. If no texture identifier is given, then POV-Ray
creates a copy of the default texture. See ”The #default Directive” for details.

Next are optional pigment, normal, and/or finish identifiers which fully override any
pigment, normal and finish already specified in the previous texture identifier or default
texture. Typically this is used for backward compatibility to allow things like:texture
{ MyPigment } whereMyPigment is a pigment identifier.

Finally we have optionalpigment, normal or finish statements which modify any
pigment, normal and finish already specified in the identifier. If no texture identifier
is specified the pigment, normal andfinish statements modify the current default
values. This is the typical plain texture:

texture {

pigment { MyPigment }

normal { MyNormal }

finish { MyFinish }

scale SoBig

rotate SoMuch

translate SoFar

}

TheTRANSFORMATIONSmay be interspersed between the pigment, normal and fin-
ish statements but are generally specified last. If they are interspersed, then they modify
only those parts of the texture already specified. For example:

4.1 Pigment 205

texture {

pigment { MyPigment }

scale SoBig //affects pigment only

normal { MyNormal }

rotate SoMuch //affects pigment and normal

finish { MyFinish }

translate SoFar //finish is never transformable no matter what.

//Therefore affects pigment and normal only

}

Texture identifiers may be declared to make scene files more readable and to parame-
terize scenes so that changing a single declaration changes many values. An identifier
is declared as follows.

TEXTURE_DECLARATION:

#declare IDENTIFIER = TEXTURE |

#local IDENTIFIER = TEXTURE

WhereIDENTIFIER is the name of the identifier up to 40 characters long andTEX-
TURE is any validtexture statement. See ”#declare vs. #local” for information on
identifier scope.

The sections below describe all of the options available in ”Pigment”, ”Normal”, and
”Finish” which are the main part of plain textures.. There are also separate sections for
”Patterned Textures” and ”Layered Textures” which are made up of plain textures.

Note: thetiles andmaterial map versions of patterned textures are obsolete and are
only supported for backwards compatibility.

4.1 Pigment

The color or pattern of colors for an object is defined by apigment statement. All
plain textures must have a pigment. If you do not specify one the default pigment is
used. The color you define is the way you want the object to look if fully illuminated.
You pick the basic color inherent in the object and POV-Ray brightens or darkens it
depending on the lighting in the scene. The parameter is calledpigment because we
are defining the basic color the object actually is rather than how it looks.

The syntax for pigment is:

PIGMENT:

pigment {

[PIGMENT_IDENTIFIER]

[PIGMENT_TYPE]

[PIGMENT_MODIFIER...]

}

PIGMENT_TYPE:

PATTERN_TYPE | COLOR |

image_map {

BITMAP_TYPE "bitmap.ext" [IMAGE_MAP_MODS...]

}

PIGMENT_MODIFIER:

PATTERN_MODIFIER | COLOR_LIST | PIGMENT_LIST |

206 Textures

color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY } |

pigment_map { PIGMENT_MAP_BODY } | quick_color COLOR |

quick_colour COLOR

Each of the items in a pigment are optional but if they are present, they must be in
the order shown. Any items after thePIGMENTIDENTIFIER modify or override
settings given in the identifier. If no identifier is specified then the items modify the
pigment values in the current default texture. ThePIGMENTTYPEfall into roughly
four categories. Each category is discussed the sub-sections which follow. The four
categories are solid color and image map patterns which are specific topigment state-
ments or color list patterns, color mapped patterns which use POV-Ray’s wide selection
of general patterns. See ”Patterns” for details about specific patterns.

The pattern type is optionally followed by one or more pigment modifiers. In addition
to general pattern modifiers such as transformations, turbulence, and warp modifiers,
pigments may also have aCOLORLIST, PIGMENTLIST, color map, pigment map,
andquick color which are specific to pigments. See ”Pattern Modifiers” for informa-
tion on general modifiers. The pigment-specific modifiers are described in sub-sections
which follow. Pigment modifiers of any kind apply only to the pigment and not to other
parts of the texture. Modifiers must be specified last.

A pigment statement is part of atexture specification. However it can be tedious to
use atexture statement just to add a color to an object. Therefore you may attach a
pigment directly to an object without explicitly specifying that it as part of a texture.
For example instead of this:

object { My_Object texture {pigment { color Red } } }

you may shorten it to:

object { My_Object pigment {color Red } }

Doing so creates an entiretexture structure with defaultnormal andfinish statements
just as if you had explicitly typed the fulltexture {...} around it.

Pigment identifiers may be declared to make scene files more readable and to parame-
terize scenes so that changing a single declaration changes many values. An identifier
is declared as follows.

PIGMENT_DECLARATION:

#declare IDENTIFIER = PIGMENT |

#local IDENTIFIER = PIGMENT

WhereIDENTIFIER is the name of the identifier up to 40 characters long andPIG-
MENT is any validpigment statement. See ”#declare vs. #local” for information on
identifier scope.

4.1.1 Solid Color Pigments

The simplest type of pigment is a solid color. To specify a solid color you simply put a
color specification inside apigment statement. For example:

pigment { color Orange }

4.1 Pigment 207

A color specification consists of the optional keywordcolor followed by a color iden-
tifier or by a specification of the amount of red, green, blue, filtered and unfiltered
transparency in the surface. See section ”Specifying Colors” for more details about
colors. Any pattern modifiers used with a solid color are ignored because there is no
pattern to modify.

4.1.2 Color List Pigments

There are four color list patterns:checker, hexagon, brick andobject. The result is a
pattern of solid colors with distinct edges rather than a blending of colors as with color
mapped patterns. Each of these patterns is covered in more detail in a later section.
The syntax is:

COLOR_LIST_PIGMENT:

pigment {brick [COLOR_1, [COLOR_2]] [PIGMENT_MODIFIERS...] }|

pigment {checker [COLOR_1, [COLOR_2]] [PIGMENT_MODIFIERS...]}|

pigment {

hexagon [COLOR_1, [COLOR_2, [COLOR_3]]] [PIGMENT_MODIFIERS...]

}|

pigment {object OBJECT_IDENTIFIER | OBJECT {} [COLOR_1, COLOR_2]}

EachCOLORn is any valid color specification. There should be a comma between
each color or thecolor keyword should be used as a separator so that POV-Ray can
determine where each color specification starts and ends. Thebrick andchecker pat-
tern expects two colors andhexagon expects three. If an insufficient number of colors
is specified then default colors are used.

4.1.3 Color Maps

Most of the color patterns do not use abrupt color changes of just two or three colors
like those in the brick, checker or hexagon patterns. They instead use smooth transi-
tions of many colors that gradually change from one point to the next. The colors are
defined in a pigment modifier called acolor map that describes how the pattern blends
from one color to the next.

Each of the various pattern types available is in fact a mathematical function that takes
any x, y, z location and turns it into a number between 0.0 and 1.0 inclusive. That
number is used to specify what mix of colors to use from the color map.

The syntax for color map is as follows:

COLOR_MAP:

color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY }

COLOR_MAP_BODY:

COLOR_MAP_IDENTIFIER | COLOR_MAP_ENTRY...

COLOR_MAP_ENTRY:

[Value COLOR] |

[Value_1, Value_2 color COLOR_1 color COLOR_2]

Where eachValue n is a float values between 0.0 and 1.0 inclusive and eachCOLORn,
is color specifications.

208 Textures

Note: the[] brackets are part of the actualCOLORMAP ENTRY. They are not nota-
tional symbols denoting optional parts. The brackets surround each entry in the color
map.

There may be from 2 to 256 entries in the map. The alternate spellingcolour mapmay
be used.

Here is an example:

sphere {

<0,1,2>, 2

pigment {

gradient x //this is the PATTERN_TYPE

color_map {

[0.1 color Red]

[0.3 color Yellow]

[0.6 color Blue]

[0.6 color Green]

[0.8 color Cyan]

}

}

}

The pattern functiongradient x is evaluated and the result is a value from 0.0 to 1.0.
If the value is less than the first entry (in this case 0.1) then the first color (red) is used.
Values from 0.1 to 0.3 use a blend of red and yellow using linear interpolation of the
two colors. Similarly values from 0.3 to 0.6 blend from yellow to blue.

The 3rd and 4th entries both have values of 0.6. This causes an immediate abrupt shift
of color from blue to green. Specifically a value that is less than 0.6 will be blue but
exactly equal to 0.6 will be green. Moving along, values from 0.6 to 0.8 will be a blend
of green and cyan. Finally any value greater than or equal to 0.8 will be cyan.

If you want areas of unchanging color you simply specify the same color for two adja-
cent entries. For example:

color_map {

[0.1 color Red]

[0.3 color Yellow]

[0.6 color Yellow]

[0.8 color Green]

}

In this case any value from 0.3 to 0.6 will be pure yellow.

The first syntax version ofCOLORMAP ENTRYwith one float and one color is the
current standard. The other double entry version is obsolete and should be avoided.
The previous example would look as follows using the old syntax.

color_map {

[0.0 0.1 color Red color Red]

[0.1 0.3 color Red color Yellow]

[0.3 0.6 color Yellow color Yellow]

[0.6.0.8 color Yellow color Green]

[0.8 1.0 color Green color Green]

}

4.1 Pigment 209

You may usecolor map with any patterns exceptbrick, checker, hexagon, object
and image map. You may declare and usecolor map identifiers. For example:

#declare Rainbow_Colors=

color_map {

[0.0 color Magenta]

[0.33 color Yellow]

[0.67 color Cyan]

[1.0 color Magenta]

}

object {

My_Object

pigment {

gradient x

color_map { Rainbow_Colors }

}

}

4.1.4 Pigment Maps and Pigment Lists

In addition to specifying blended colors with a color map you may create a blend of
pigments using apigment map. The syntax for a pigment map is identical to a color
map except you specify a pigment in each map entry (and not a color).

The syntax forpigment map is as follows:

PIGMENT_MAP:

pigment_map { PIGMENT_MAP_BODY }

PIGMENT_MAP_BODY:

PIGMENT_MAP_IDENTIFIER | PIGMENT_MAP_ENTRY...

PIGMENT_MAP_ENTRY:

[Value PIGMENT_BODY]

WhereValue is a float value between 0.0 and 1.0 inclusive and eachPIGMENTBODY
is anything which can be inside apigment{...} statement. Thepigment keyword and
{} braces need not be specified.

Note: that the[] brackets are part of the actualPIGMENTMAP ENTRY. They are
not notational symbols denoting optional parts. The brackets surround each entry in
the pigment map.

There may be from 2 to 256 entries in the map.

For example

sphere {

<0,1,2>, 2

pigment {

gradient x //this is the PATTERN_TYPE

pigment_map {

[0.3 wood scale 0.2]

[0.3 Jade] //this is a pigment identifier

[0.6 Jade]

[0.9 marble turbulence 1]

}

210 Textures

}

}

When thegradient x function returns values from 0.0 to 0.3 the scaled wood pigment
is used. From 0.3 to 0.6 the pigment identifier Jade is used. From 0.6 up to 0.9 a blend
of Jade and a turbulent marble is used. From 0.9 on up only the turbulent marble is
used.

Pigment maps may be nested to any level of complexity you desire. The pigments in
a map may have color maps or pigment maps or any type of pigment you want. Any
entry of a pigment map may be a solid color however if all entries are solid colors you
should use acolor map which will render slightly faster.

Entire pigments may also be used with the block patterns such aschecker, hexagon
andbrick. For example...

pigment {

checker

pigment { Jade scale .8 }

pigment { White_Marble scale .5 }

}

Note: that in the case of block patterns thepigment wrapping is required around the
pigment information.

A pigment map is also used with theaverage pigment type. See ”Average” for details.

You may not usepigment map or individual pigments with animage map. See section
”Texture Maps” for an alternative way to do this.

You may declare and use pigment map identifiers but the only way to declare a pigment
block pattern list is to declare a pigment identifier for the entire pigment.

4.1.5 Image Maps

When all else fails and none of the above pigment pattern types meets your needs you
can use animage map to wrap a 2-D bit-mapped image around your 3-D objects.

Specifying an Image Map

The syntax for animage map is:

IMAGE_MAP:

pigment

{

image_map

{

[BITMAP_TYPE] "bitmap[.ext]"

[IMAGE_MAP_MODS...]

}

[PIGMENT_MODFIERS...]

}

BITMAP_TYPE:

gif | tga | iff | ppm | pgm | png | jpeg | tiff | sys

4.1 Pigment 211

IMAGE_MAP_MOD:

map_type Type | once | interpolate Type |

filter Palette, Amount | filter all Amount |

transmit Palette, Amount | transmit all Amount

After the optionalBITMAP TYPEkeyword is a string expression containing the name
of a bitmapped image file of the specified type. If theBITMAP TYPEis not given, the
same type is expected as the type set for output.
Example:

plane {

-z,0

pigment {

image_map {png "Eggs.png"}

}

}

plane {

-z,0

pigment {

image_map {"Eggs"}

}

}

pngimage map

Several optional modifiers may follow the file specification. The modifiers are de-
scribed below.

Note: earlier versions of POV-Ray allowed some modifiers before theBITMAP TYPE
but that syntax is being phased out in favor of the syntax described here.

Note: sys format is a system-specific format such as BMP for Windows or Pict for
Macintosh.

Filenames specified in theimage map statements will be searched for in the home (cur-
rent) directory first and, if not found, will then be searched for in directories specified
by any+L or Library Path options active. This would facilitate keeping all your im-
age maps files in a separate subdirectory and giving aLibrary Path option to specify
where your library of image maps are. See ”Library Paths” for details.

By default, the image is mapped onto the x-y-plane. The image isprojectedonto
the object as though there were a slide projector somewhere in the -z-direction. The
image exactly fills the square area from (x,y) coordinates (0,0) to (1,1) regardless of
the image’s original size in pixels. If you would like to change this default you may
translate, rotate or scale the pigment or texture to map it onto the object’s surface as
desired.

In the section ”Checker”, thechecker pigment pattern is explained. The checks are
described as solid cubes of colored clay from which objects are carved. With image
maps you should imagine that each pixel is a long, thin, square, colored rod that extends
parallel to the z-axis. The image is made from rows and columns of these rods bundled
together and the object is then carved from the bundle.

If you would like to change this default orientation you may translate, rotate or scale
the pigment or texture to map it onto the object’s surface as desired.

212 Textures

The file name is optionally followed by one or moreBITMAP MODIFIERS. The
filter, filter all, transmit, and transmit all modifiers are specific to image
maps and are discussed in the following sections. Animage mapmay also use generic
bitmap modifiersmap type, once and interpolate described in ”Bitmap Modifiers”

The Filter and Transmit Bitmap Modifiers

To make all or part of an image map transparent you can specifyfilter and/or
transmit values for the color palette/registers of PNG, GIF or IFF pictures (at least
for the modes that use palettes). You can do this by adding the keywordfilter or
transmit following the filename. The keyword is followed by two numbers. The first
number is the palette number value and the second is the amount of transparency. The
values should be separated by a comma. For example:

image_map {

gif "mypic.gif"

filter 0, 0.5 // Make color 0 50\% filtered transparent

filter 5, 1.0 // Make color 5 100\% filtered transparent

transmit 8, 0.3 // Make color 8 30\% non-filtered transparent

}

You can give the entire image afilter or transmit value usingfilter all Amount
or transmit all Amount. For example:

image_map {

gif "stnglass.gif"

filter all 0.9

}

Note: early versions of POV-Ray used the keywordalpha to specify filtered trans-
parency however that word is often used to describe non-filtered transparency. For this
reasonalpha is no longer used.

See section ”Specifying Colors” for details on the differences between filtered and non-
filtered transparency.

Using the Alpha Channel

Another way to specify non-filtered transmit transparency in an image map is by using
thealpha channel. POV-Ray will automatically use the alpha channel for transmittance
when one is stored in the image. PNG file format allows you to store a different trans-
parency for each color index in the PNG file, if desired. If your paint programs support
this feature of PNG you can do the transparency editing within your paint program
rather than specifying transmit values for each color in the POV file. Since PNG and
TGA image formats can also store full alpha channel (transparency) information you
can generate image maps that have transparency which isn’t dependent on the color of
a pixel but rather its location in the image.

Although POV usestransmit 0.0 to specify no transparency and1.0 to specify full
transparency, the alpha data ranges from 0 to 255 in the opposite direction. Alpha data
0 means the same astransmit 1.0 and alpha data 255 producestransmit 0.0.

4.2 Normal 213

4.1.6 Quick Color

When developing POV-Ray scenes it’s often useful to do low quality test runs that
render faster. The+Q command line switch orQuality INI option can be used to turn
off some time consuming color pattern and lighting calculations to speed things up.
See ”Quality Settings” for details. However all settings of+Q5 or Quality=5 or lower
turns off pigment calculations and creates gray objects.

By adding aquick color to a pigment you tell POV-Ray what solid color to use for
quick renders instead of a patterned pigment. For example:

pigment {

gradient x

color_map{

[0.0 color Yellow]

[0.3 color Cyan]

[0.6 color Magenta]

[1.0 color Cyan]

}

turbulence 0.5

lambda 1.5

omega 0.75

octaves 8

quick_color Neon_Pink

}

This tells POV-Ray to use solidNeon Pink for test runs at quality+Q5 or lower but to
use the turbulent gradient pattern for rendering at+Q6 and higher. Solid color pigments
such as

pigment {color Magenta}

automatically set thequick color to that value. You may override this if you want.
Suppose you have 10 spheres on the screen and all are yellow. If you want to identify
them individually you could give each a differentquick color like this:

sphere {

<1,2,3>,4

pigment { color Yellow quick_color Red }

}

sphere {

<-1,-2,-3>,4

pigment { color Yellow quick_color Blue }

}

and so on. At+Q6 or higher they will all be yellow but at+Q5 or lower each would be
different colors so you could identify them.

The alternate spellingquick colour is also supported.

4.2 Normal

Ray-tracing is known for the dramatic way it depicts reflection, refraction and lighting
effects. Much of our perception depends on the reflective properties of an object. Ray

214 Textures

tracing can exploit this by playing tricks on our perception to make us see complex
details that aren’t really there.

Suppose you wanted a very bumpy surface on the object. It would be very difficult to
mathematically model lots of bumps. We can however simulate the way bumps look
by altering the way light reflects off of the surface. Reflection calculations depend on
a vector called asurface normalvector. This is a vector which points away from the
surface and is perpendicular to it. By artificially modifying (or perturbing) this normal
vector you can simulate bumps. This is done by adding an optionalnormal statement.

Note: that attaching a normal pattern does not really modify the surface. It only affects
the way light reflects or refracts at the surface so that it looks bumpy.

The syntax is:

NORMAL:

normal { [NORMAL_IDENTIFIER] [NORMAL_TYPE] [NORMAL_MODIFIER...] }

NORMAL_TYPE:

PATTERN_TYPE Amount |

bump_map { BITMAP_TYPE "bitmap.ext" [BUMP_MAP_MODS...]}

NORMAL_MODIFIER:

PATTERN_MODIFIER | NORMAL_LIST | normal_map { NORMAL_MAP_BODY } |

slope_map{ SLOPE_MAP_BODY } | bump_size Amount |

no_bump_scale Bool | accuracy Float

Each of the items in a normal are optional but if they are present, they must be in the
order shown. Any items after theNORMALIDENTIFIERmodify or override settings
given in the identifier. If no identifier is specified then the items modify the normal
values in the current default texture. ThePATTERNTYPEmay optionally be followed
by a float value that controls the apparent depth of the bumps. Typical values range
from 0.0 to 1.0 but any value may be used. Negative values invert the pattern. The
default value if none is specified is 0.5.

There are four basic types ofNORMALTYPEs. They are block pattern normals, con-
tinuous pattern normals, specialized normals and bump maps. They differ in the types
of modifiers you may use with them. The pattern type is optionally followed by one
or more normal modifiers. In addition to general pattern modifiers such as transfor-
mations, turbulence, and warp modifiers, normals may also have aNORMALLIST,
slope map, normal map, andbump size which are specific to normals. See ”Pattern
Modifiers” for information on general modifiers. The normal-specific modifiers are
described in sub-sections which follow. Normal modifiers of any kind apply only to
the normal and not to other parts of the texture. Modifiers must be specified last.

Originally POV-Ray had some patterns which were exclusively used for pigments while
others were exclusively used for normals. Since POV-Ray 3.0 you can use any pattern
for either pigments or normals. For example it is now valid to useripples as a pigment
or wood as a normal type. The patternsbumps, dents, ripples, waves, wrinkles, and
bump map were once exclusively normal patterns which could not be used as pigments.
Because these six types use specialized normal modification calculations they cannot
have slope map, normal map or wave shape modifiers. All other normal pattern types
may use them. Because block patternschecker, hexagon, object and brick do
not return a continuous series of values, they cannot use these modifiers either. See
”Patterns” for details about specific patterns.

4.2 Normal 215

A normal statement is part of atexture specification. However it can be tedious to
use a texture statement just to add bumps to an object. Therefore you may attach
a normal directly to an object without explicitly specifying that it as part of a texture.
For example instead of this:

object {My_Object texture { normal { bumps 0.5 } } }

you may shorten it to:

object { My_Object normal { bumps 0.5 } }

Doing so creates an entiretexture structure with defaultpigment andfinish state-
ments just as if you had explicitly typed the fulltexture {...} around it. Normal
identifiers may be declared to make scene files more readable and to parameterize
scenes so that changing a single declaration changes many values. An identifier is
declared as follows.

NORMAL_DECLARATION:

#declare IDENTIFIER = NORMAL |

#local IDENTIFIER = NORMAL

WhereIDENTIFIERis the name of the identifier up to 40 characters long andNORMAL
is any validnormal statement. See ”#declare vs. #local” for information on identifier
scope.

4.2.1 Slope Maps

A slope map is a normal pattern modifier which gives the user a great deal of control
over the exact shape of the bumpy features. Each of the various pattern types available
is in fact a mathematical function that takes any x, y, z location and turns it into a num-
ber between 0.0 and 1.0 inclusive. That number is used to specify where the various
high and low spots are. Theslope map lets you further shape the contours. It is best
illustrated with a gradient normal pattern. Suppose you have...

plane{ z, 0

pigment{ White }

normal { gradient x }

}

This gives a ramp wave pattern that looks like small linear ramps that climb from the
points at x=0 to x=1 and then abruptly drops to 0 again to repeat the ramp from x=1 to
x=2. A slope map turns this simple linear ramp into almost any wave shape you want.
The syntax is as follows...

SLOPE_MAP:

slope_map { SLOPE_MAP_BODY }

SLOPE_MAP_BODY:

SLOPE_MAP_IDENTIFIER | SLOPE_MAP_ENTRY...

SLOPE_MAP_ENTRY:

[Value, <Height, Slope>]

Note: the[] brackets are part of the actualSLOPEMAP ENTRY. They are not nota-
tional symbols denoting optional parts. The brackets surround each entry in the slope
map.

216 Textures

There may be from 2 to 256 entries in the map.

EachValue is a float value between 0.0 and 1.0 inclusive and each<Height, Slope>
is a 2 component vector such as<0,1> where the first value represents the apparent
height of the wave and the second value represents the slope of the wave at that point.
The height should range between 0.0 and 1.0 but any value could be used.

The slope value is the change in height per unit of distance. For example a slope of
zero means flat, a slope of 1.0 means slope upwards at a 45 degree angle and a slope
of -1 means slope down at 45 degrees. Theoretically a slope straight up would have
infinite slope. In practice, slope values should be kept in the range -3.0 to+3.0. Keep
in mind that this is only the visually apparent slope. A normal does not actually change
the surface.

For example here is how to make the ramp slope up for the first half and back down on
the second half creating a triangle wave with a sharp peak in the center.

normal {

gradient x // this is the PATTERN_TYPE

slope_map {

[0 <0, 1>] // start at bottom and slope up

[0.5 <1, 1>] // halfway through reach top still climbing

[0.5 <1,-1>] // abruptly slope down

[1 <0,-1>] // finish on down slope at bottom

}

}

The pattern function is evaluated and the result is a value from 0.0 to 1.0. The first
entry says that at x=0 the apparent height is 0 and the slope is 1. At x=0.5 we are at
height 1 and slope is still up at 1. The third entry also specifies that at x=0.5 (actually
at some tiny fraction above 0.5) we have height 1 but slope -1 which is downwards.
Finally at x=1 we are at height 0 again and still sloping down with slope -1.

Although this example connects the points using straight lines the shape is actually a
cubic spline. This example creates a smooth sine wave.

normal {

gradient x // this is the PATTERN_TYPE

slope_map {

[0 <0.5, 1>] // start in middle and slope up

[0.25 <1.0, 0>] // flat slope at top of wave

[0.5 <0.5,-1>] // slope down at mid point

[0.75 <0.0, 0>] // flat slope at bottom

[1 <0.5, 1>] // finish in middle and slope up

}

}

This example starts at height 0.5 sloping up at slope 1. At a fourth of the way through
we are at the top of the curve at height 1 with slope 0 which is flat. The space between
these two is a gentle curve because the start and end slopes are different. At half way
we are at half height sloping down to bottom out at 3/4ths. By the end we are climbing
at slope 1 again to complete the cycle. There are more examples inslopemap.pov in
the sample scenes.

A slope map may be used with any pattern exceptbrick, checker, object, hexagon,
bumps, dents, ripples, waves, wrinkles and bump map.

4.2 Normal 217

You may declare and use slope map identifiers. For example:

#declare Fancy_Wave =

slope_map { // Now let’s get fancy

[0.0 <0, 1>] // Do tiny triangle here

[0.2 <1, 1>] // down

[0.2 <1,-1>] // to

[0.4 <0,-1>] // here.

[0.4 <0, 0>] // Flat area

[0.5 <0, 0>] // through here.

[0.5 <1, 0>] // Square wave leading edge

[0.6 <1, 0>] // trailing edge

[0.6 <0, 0>] // Flat again

[0.7 <0, 0>] // through here.

[0.7 <0, 3>] // Start scallop

[0.8 <1, 0>] // flat on top

[0.9 <0,-3>] // finish here.

[0.9 <0, 0>] // Flat remaining through 1.0

}

object{ My_Object

pigment { White }

normal {

wood

slope_map { Fancy_Wave }

}

}

Normals, Accuracy

Surface normals that use patterns that were not designed for use with normals (anything
other than bumps, dents, waves, ripples, and wrinkles) uses aslope map whether you
specify one or not. To create a perturbed normal from a pattern, POV-Ray samples
the pattern at four points in a pyramid surrounding the desired point to determine the
gradient of the pattern at the center of the pyramid. The distance that these points are
from the center point determines the accuracy of the approximation. Using points too
close together causes floating-point inaccuracies. However, using points too far apart
can lead to artefacts as well as smoothing out features that should not be smooth.

Usually, points very close together are desired. POV-Ray currently uses a delta or
accuracy distance of 0.02. Sometimes it is necessary to decrease this value to get better
accuracy if you are viewing a close-up of the texture. Other times, it is nice to increase
this value to smooth out sharp edges in the normal (for example, when using a ’solid’
crackle pattern). For this reason, a new property,accuracy, has been added to normals.
It only makes a difference if the normal uses aslope map (either specified or implied).

You can specify the value of this accuracy (which is the distance between the sample
points when determining the gradient of the pattern for slopemap) by addingaccuracy
<float> to your normal. For all patterns, the default is 0.02.

218 Textures

4.2.2 Normal Maps and Normal Lists

Most of the time you will apply single normal pattern to an entire surface but you
may also create a pattern or blend of normals using anormal map. The syntax for a
normal map is identical to apigment map except you specify anormal in each map
entry. The syntax fornormal map is as follows:

NORMAL_MAP:

normal_map { NORMAL_MAP_BODY }

NORMAL_MAP_BODY:

NORMAL_MAP_IDENTIFIER | NORMAL_MAP_ENTRY...

NORMAL_MAP_ENTRY:

[Value NORMAL_BODY]

WhereValue is a float value between 0.0 and 1.0 inclusive and eachNORMALBODY
is anything which can be inside anormal{...} statement. Thenormal keyword and{}
braces need not be specified.

Note: that the[] brackets are part of the actualNORMALMAP ENTRY. They are not
notational symbols denoting optional parts. The brackets surround each entry in the
normal map.

There may be from 2 to 256 entries in the map.

For example

normal {

gradient x //this is the PATTERN_TYPE

normal_map {

[0.3 bumps scale 2]

[0.3 dents]

[0.6 dents]

[0.9 marble turbulence 1]

}

}

When thegradient x function returns values from 0.0 to 0.3 then the scaled bumps
normal is used. From 0.3 to 0.6 dents pattern is used. From 0.6 up to 0.9 a blend of
dents and a turbulent marble is used. From 0.9 on up only the turbulent marble is used.

Normal maps may be nested to any level of complexity you desire. The normals in a
map may have slope maps or normal maps or any type of normal you want.

A normal map is also used with theaverage normal type. See ”Average” for details.

Entire normals in a normal list may also be used with the block patterns such as
checker, hexagon andbrick. For example...

normal {

checker

normal { gradient x scale .2 }

normal { gradient y scale .2 }

}

Note: in the case of block patterns thenormal wrapping is required around the normal
information.

4.2 Normal 219

You may not use normal map or individual normals with a bump map. See section
”Texture Maps” for an alternative way to do this.

You may declare and use normal map identifiers but the only way to declare a normal
block pattern list is to declare a normal identifier for the entire normal.

4.2.3 Bump Maps

When all else fails and none of the above normal pattern types meets your needs you
can use abump map to wrap a 2-D bit-mapped bump pattern around your 3-D objects.

Instead of placing the color of the image on the shape like animage map a bump map
perturbs the surface normal based on the color of the image at that point. The result
looks like the image has been embossed into the surface. By default, a bump map
uses the brightness of the actual color of the pixel. Colors are converted to gray scale
internally before calculating height. Black is a low spot, white is a high spot. The
image’s index values may be used instead (see section ”UseIndex and UseColor”
below).

Specifying a Bump Map

The syntax for abump map is:

BUMP_MAP:

normal

{

bump_map

{

BITMAP_TYPE "bitmap.ext"

[BUMP_MAP_MODS...]

}

[NORMAL_MODFIERS...]

}

BITMAP_TYPE:

gif | tga | iff | ppm | pgm | png | jpeg | tiff | sys

BUMP_MAP_MOD:

map_type Type | once | interpolate Type | use_color |

use_colour | bump_size Value

After the requiredBITMAP TYPEkeyword is a string expression containing the name
of a bitmapped bump file of the specified type. Several optional modifiers may follow
the file specification. The modifiers are described below.

Note: earlier versions of POV-Ray allowed some modifiers before theBITMAP TYPE
but that syntax is being phased out in favor of the syntax described here.

Note: sys format is a system-specific format such as BMP for Windows or Pict for
Macintosh.

Filenames specified in thebump map statements will be searched for in the home (cur-
rent) directory first and, if not found, will then be searched for in directories specified
by any +L or Library Path options active. This would facilitate keeping all your

220 Textures

bump maps files in a separate subdirectory and giving aLibrary Path option to spec-
ify where your library of bump maps are. See ”Library Paths” for details.

By default, the bump pattern is mapped onto the x-y-plane. The bump pattern ispro-
jected onto the object as though there were a slide projector somewhere in the -z-
direction. The pattern exactly fills the square area from (x,y) coordinates (0,0) to (1,1)
regardless of the pattern’s original size in pixels. If you would like to change this
default you may translate, rotate or scale the pigment or texture to map it onto the ob-
ject’s surface as desired. If you would like to change this default orientation you may
translate, rotate or scale the pigment or texture to map it onto the object’s surface as
desired.

The file name is optionally followed by one or moreBITMAP MODIFIERS. The
bump size, use color and use index modifiers are specific to bump maps and are
discussed in the following sections. See section ”Bitmap Modifiers” for the generic
bitmap modifiersmap type, once and interpolate described in ”Bitmap Modifiers”

Bump Size

The relative bump size can be scaled using thebump size modifier. The bump size
number can be any number other than 0 but typical values are from about 0.1 to as high
as 4.0 or 5.0.

normal {

bump_map {

gif "stuff.gif"

bump_size 5.0

}

}

Originally bump size could only be used inside a bump map but it can now be used with
any normal. Typically it is used to override a previously defined size. For example:

normal {

My_Normal //this is a previously defined normal identifier

bump_size 2.0

}

Use Index and UseColor

Usually the bump map converts the color of the pixel in the map to a gray scale intensity
value in the range 0.0 to 1.0 and calculates the bumps based on that value. If you
specifyuse index, the bump map uses the color’s palette number to compute as the
height of the bump at that point. So, color number 0 would be low and color number
255 would be high (if the image has 256 palette entries). The actual color of the pixels
doesn’t matter when using the index. This option is only available on palette based
formats. Theuse color keyword may be specified to explicitly note that the color
methods should be used instead. The alternate spellinguse colour is also valid. These
modifiers may only be used inside thebump map statement.

4.3 Finish 221

4.2.4 Scaling normals

When scaling a normal, or when scaling an object after a normal is applied to it, the
depth of the normal is affected by the scaling. This is not always wanted. If you want
to turn off bump scaling for a texture or normal, you can do this by adding the keyword
no bump scale to the texture’s or normal’s modifiers. This modifier will get passed on
to all textures or normals contained in that texture or normal. Think of this like the way
no shadow gets passed on to objects contained in a CSG.

It is also important to note that if you addno bump scale to a normal or texture that is
contained within another pattern (such as within atexture map or normal map), then
the only scaling that will be ignored is the scaling of that texture or normal. Scaling of
the parent texture or normal or of the object will affect the depth of the bumps, unless
no bump scale is specified at the top-level of the texture (or normal, if the normal is not
wrapped in a texture).

4.3 Finish

The finish properties of a surface can greatly affect its appearance. How does light
reflect? What happens in shadows? What kind of highlights are visible. To answer
these questions you need afinish.

The syntax forfinish is as follows:

FINISH:

finish { [FINISH_IDENTIFIER] [FINISH_ITEMS...] }

FINISH_ITEMS:

ambient COLOR | diffuse Amount | brilliance Amount |

phong Amount | phong_size Amount | specular Amount |

roughness Amount | metallic [Amount] | reflection COLOR |

crand Amount | conserve_energy BOOL_ON_OF |

reflection { Color_Reflecting_Min [REFLECTION_ITEMS...] }|

irid { Irid_Amount [IRID_ITEMS...] }

REFLECTION_ITEMS:

COLOR_REFLECTION_MAX | fresnel BOOL_ON_OFF |

falloff FLOAT_FALLOFF | exponent FLOAT_EXPONENT |

metallic FLOAT_METALLIC

IRID_ITEMS:

thickness Amount | turbulence Amount

TheFINISH IDENTIFIERis optional but should proceed all other items. Any items af-
ter theFINISH IDENTIFIERmodify or override settings given in theFINISH IDENTIFIER.
If no identifier is specified then the items modify the finish values in the current default
texture.

Note: transformations are not allowed inside a finish because finish items cover the
entire surface uniformly. Each of theFINISH ITEMS listed above is described in
sub-sections below.

In earlier versions of POV-Ray, therefraction, ior, andcaustics keywords were
part of the finish statement but they are now part of theinterior statement. They
are still supported underfinish for backward compatibility but the results may not be

222 Textures

100% identical to previous versions. See ”Why are Interior and Media Necessary?” for
details.

A finish statement is part of atexture specification. However it can be tedious to use
a texture statement just to add a highlights or other lighting properties to an object.
Therefore you may attach a finish directly to an object without explicitly specifying
that it as part of a texture. For example instead of this:

object { My_Object texture { finish { phong 0.5 } } }

you may shorten it to:

object { My_Object finish { phong 0.5 } }

Doing so creates an entiretexture structure with defaultpigment andnormal state-
ments just as if you had explicitly typed the fulltexture {...} around it.

Finish identifiers may be declared to make scene files more readable and to parameter-
ize scenes so that changing a single declaration changes many values. An identifier is
declared as follows.

FINISH_DECLARATION:

#declare IDENTIFIER = FINISH |

#local IDENTIFIER = FINISH

WhereIDENTIFIER is the name of the identifier up to 40 characters long andFINISH
is any validfinish statement. See ”#declare vs. #local” for information on identifier
scope.

4.3.1 Ambient

The light you see in dark shadowed areas comes from diffuse reflection off of other
objects. This light cannot be directly modeled using ray-tracing. However we can use
a trick calledambient lightingto simulate the light inside a shadowed area.

Ambient light is light that is scattered everywhere in the room. It bounces all over
the place and manages to light objects up a bit even where no light is directly shining.
Computing real ambient light would take far too much time, so we simulate ambient
light by adding a small amount of white light to each texture whether or not a light is
actually shining on that texture.

This means that the portions of a shape that are completely in shadow will still have a
little bit of their surface color. It’s almost as if the texture glows, though the ambient
light in a texture only affects the shape it is used on.

Theambient keyword controls the amount of ambient light. Usually a single float value
is specified even though the syntax calls for a color. For example a float value of0.3

gets promoted to the full color vector<0.3,0.3,0.3,0.3,0.3> which is acceptable
because only the red, green and blue parts are used.

The default value is 0.1 which gives very little ambient light. The value can range from
0.0 to 1.0. Ambient light affects both shadowed and non-shadowed areas so if you turn
up the ambient value you may want to turn down thediffuse andreflection values.

Note: that this method doesn’t account for the color of surrounding objects. If you
walk into a room that has red walls, floor and ceiling then your white clothing will

4.3 Finish 223

look pink from the reflected light. POV-Ray’s ambient shortcut doesn’t account for
this. There is also no way to model specular reflected indirect illumination such as the
flashlight shining in a mirror.

You may color the ambient light using one of two methods. You may specify a color
rather than a float after the ambient keyword in each finish statement. For example

finish { ambient rgb <0.3,0.1,0.1> } //a pink ambient

You may also specify the overall ambient light source used when calculating the ambi-
ent lighting of an object using the globalambient light setting. The formula is given
by Ambient= Finish Ambient * GlobalAmbientLight SourceSee section ”Ambient
Light” for details.

4.3.2 Diffuse Reflection Items

When light reflects off of a surface the laws of physics say that it should leave the sur-
face at the exact same angle it came in. This is similar to the way a billiard ball bounces
off a bumper of a pool table. This perfect reflection is calledspecular reflection. How-
ever only very smooth polished surfaces reflect light in this way. Most of the time,
light reflects and is scattered in all directions by the roughness of the surface. This
scattering is calleddiffuse reflectionbecause the light diffuses or spreads in a variety of
directions. It accounts for the majority of the reflected light we see.

Diffuse

The keyworddiffuse is used in afinish statement to control how much of the light
coming directly from any light sources is reflected via diffuse reflection. For example

finish { diffuse 0.7 }

means that 70% of the light seen comes from direct illumination from light sources.
The default value isdiffuse 0.6.

Brilliance

The amount of direct light that diffuses from an object depends upon the angle at which
it hits the surface. When light hits at a shallow angle it illuminates less. When it is
directly above a surface it illuminates more. Thebrilliance keyword can be used in a
finish statement to vary the way light falls off depending upon the angle of incidence.
This controls the tightness of the basic diffuse illumination on objects and slightly
adjusts the appearance of surface shininess. Objects may appear more metallic by
increasing their brilliance. The default value is 1.0. Higher values from 5.0 to about
10.0 cause the light to fall off less at medium to low angles. There are no limits to the
brilliance value. Experiment to see what works best for a particular situation. This is
best used in concert with highlighting.

224 Textures

Crand Graininess

Very rough surfaces, such as concrete or sand, exhibit a dark graininess in their apparent
color. This is caused by the shadows of the pits or holes in the surface. Thecrand

keyword can be added to afinish to cause a minor random darkening in the diffuse
reflection of direct illumination. Typical values range fromcrand 0.01 to crand 0.5
or higher. The default value is 0. For example:

finish { crand 0.05 }

This feature is carried over from the earliest versions of POV-Ray and is considered
obsolete. This is because the grain or noise introduced by this feature is applied on a
pixel-by-pixel basis. This means that it will look the same on far away objects as on
close objects. The effect also looks different depending upon the resolution you are
using for the rendering.

Note: this should not be used when rendering animations. This is the one of a few truly
random features in POV-Ray and will produce an annoying flicker of flying pixels on
any textures animated with acrand value. For these reasons it is not a very accurate
way to model the rough surface effect.

4.3.3 Highlights

Highlights are the bright spots that appear when a light source reflects off of a smooth
object. They are a blend of specular reflection and diffuse reflection. They are specular-
like because they depend upon viewing angle and illumination angle. However they
are diffuse-like because some scattering occurs. In order to exactly model a highlight
you would have to calculate specular reflection off of thousands of microscopic bumps
called micro facets. The more that micro facets are facing the viewer the shinier the
object appears and the tighter the highlights become. POV-Ray uses two different
models to simulate highlights without calculating micro facets. They are thespecular
andPhongmodels.

Note: specular and Phong highlights arenot mutually exclusive. It is possible to spec-
ify both and they will both take effect. Normally, however, you will only specify one
or the other.

Phong Highlights

Thephong keyword in thefinish statement controls the amount of Phong highlighting
on the object. It causes bright shiny spots on the object that are the color of the light
source being reflected.

The Phong method measures the average of the facets facing in the mirror direction
from the light sources to the viewer.

Phong’s value is typically from 0.0 to 1.0, where 1.0 causes complete saturation to the
light source’s color at the brightest area (center) of the highlight. The defaultphong

0.0 gives no highlight.

4.3 Finish 225

The size of the highlight spot is defined by thephong size value. The larger the phong
size the tighter, or smaller, the highlight and the shinier the appearance. The smaller
the phong size the looser, or larger, the highlight and the less glossy the appearance.

Typical values range from 1.0 (very dull) to 250 (highly polished) though any values
may be used. Default phong size is 40 (plastic) ifphong size is not specified. For
example:

finish { phong 0.9 phong_size 60 }

If phong is not specifiedphong size has no effect.

Specular Highlight

Thespecular keyword in afinish statement produces a highlight which is very similar
to Phong highlighting but it uses slightly different model. The specular model more
closely resembles real specular reflection and provides a more credible spreading of
the highlights occurring near the object horizons.

The specular value is typically from 0.0 to 1.0, where 1.0 causes complete saturation
to the light source’s color at the brightest area (center) of the highlight. The default
specular 0.0 gives no highlight.

The size of the spot is defined by the value given theroughness keyword. Typical
values range from 1.0 (very rough - large highlight) to 0.0005 (very smooth - small
highlight). The default value, if roughness is not specified, is 0.05 (plastic).

It is possible to specify wrong values for roughness that will generate an error when
you try to render the file. Don’t use 0 and if you get errors check to see if you are using
a very, very small roughness value that may be causing the error. For example:

finish { specular 0.9 roughness 0.02 }

If specular is not specifiedroughness has no effect.

Note: that when light is reflected by a surface such as a mirror, it is calledspecular
reflectionhowever such reflection is not controlled by thespecular keyword. The
reflection keyword controls mirror-like specular reflection.

Metallic Highlight Modifier

The keywordmetallicmay be used withphong or specular highlights. This keyword
indicates that the color of the highlights will be calculated by an empirical function that
models the reflectivity of metallic surfaces.

Normally highlights are the color of the light source. Adding this keyword filters the
highlight so that white light reflected from a metallic surface takes the color specified
by the pigment

The metallic keyword may optionally be follow by a numeric value to specify the
influence the amount of the effect. If no keyword is specified, the default value is zero.
If the keyword is specified without a value, the default value is one. For example:

226 Textures

finish {

phong 0.9

phong_size 60

metallic

}

If phong or specular keywords are not specified thenmetallic has no effect.

4.3.4 Specular Reflection

When light does not diffuse and itdoesreflect at the same angle as it hits an object, it is
calledspecular reflection. Such mirror-like reflection is controlled by thereflection
{...} block in afinish statement.

Syntax:

finish {

reflection {

[COLOR_REFLECTION_MIN,] COLOR_REFLECTION_MAX

[fresnel BOOL_ON_OFF]

[falloff FLOAT_FALLOFF]

[exponent FLOAT_EXPONENT]

[metallic FLOAT_METALLIC]

}

}

[interior { ior IOR }]

The simplest use would be a perfect mirror:

finish { reflection {1.0} ambient 0 diffuse 0 }

This gives the object a mirrored finish. It will reflect all other elements in the scene.
Usually a single float value is specified after the keyword even though the syntax calls
for a color. For example a float value of 0.3 gets promoted to the full color vector
<0.3,0.3,0.3,0.3,0.3> which is acceptable because only the red, green and blue parts
are used.

The value can range from 0.0 to 1.0. By default there is no reflection.

Note:

• Adding reflection to a texture makes it take longer to render because an additional
ray must be traced.

• The reflected light may be tinted by specifying a color rather than a float.
For example:
finish { reflection rgb <1,0,0> }

gives a red mirror that only reflects red light.

• Although such reflection is called specular it is not controlled by thespecular

keyword. That keyword controls a specular highlight.

• The old syntax for simple reflection: ”reflection COLOR” and ”reflectionexponent
Float” without braces is still supported for backward compatibility.

4.3 Finish 227

falloff sets a falloff exponent in the variable reflection. This is the exponent telling
how fast the reflectivity will fall off, i.e. linear, squared, cubed, etc.

The metallic keyword is similar in function to the ”metallic” keyword used for high-
lights in finishes: it simulates the reflective properties of metallic surfaces, where re-
flected light takes on the colour of the surface. Whenmetallic is used, the ”reflection”
color is multiplied by the pigment color at each point. You can specify an optional
float value, which is the amount of influence themetallic keyword has on the reflected
color. metallic uses the Fresnel equation so that the color of the light is reflected at
glancing angles, and the color of the metal is reflected for angles close to the surface’s
normal.

exponent
POV-Ray uses a limited light model that cannot distinguish between objects which
are simply brightly colored and objects which are extremely bright. A white piece of
paper, a light bulb, the sun, and a supernova, all would be modeled asrgb<1,1,1>

and slightly off-white objects would be only slightly darker. It is especially difficult
to model partially reflective surfaces in a realistic way. Middle and lower brightness
objects typically look too bright when reflected. If you reduce thereflection value, it
tends to darken the bright objects too much. Therefore the optionalexponent keyword
has been added. It produces non-linear reflection intensities. The default value of 1.0
produces a linear curve. Lower values darken middle and low intensities and keeps
high intensity reflections bright. This is a somewhat experimental feature designed for
artistic use. It does not directly correspond to any real world reflective properties.

Variable reflection
Many materials, such as water, ceramic glaze, and linoleum are more reflective when
viewed at shallow angles. This can be simulated by also specifying a minimum reflec-
tion in thereflection {...} statement.
For example:

finish { reflection { 0.03, 1 }}

uses the same function as the standard reflection, but the first parameter sets the mini-
mum reflectivity. It could be a color vector or a float (which is automatically promoted
to a gray vector). This minimum value is how reflective the surface will be when
viewed from a direction parallel to its normal.
The second parameter sets the maximum reflectivity, which could also be a color vector
or a float (which is automatically promoted to a gray vector). This maximum parameter
is how reflective the surface will be when viewed at a 90-degree angle to its normal.

Note: You can make maximum reflection less than minimum reflection if you want,
although the result is something that doesn’t occur in nature.

When adding thefresnel keyword, the Fresnel reflectivity function is used instead of
standard reflection. It calculates reflectivity using the finish’s IOR. So with a fresnel
reflectiontype aninterior { ior IOR } statement is required, even with opaque pig-
ments. Remember that in real life many opaque objects have a thin layer of transparent
glaze on their surface, and it is the glaze (which -does- have an IOR) that is reflective.

228 Textures

4.3.5 Conserve Energy for Reflection

One of the features in POV-Ray is variable reflection, including realistic Fresnel re-
flection (see section ”Variable Reflection ”). Unfortunately, when this is coupled with
constant transmittance, the texture can look unrealistic. This unrealism is caused by
the scene breaking the law of conservation of energy. As the amount of light reflected
changes, the amount of light transmitted should also change (in a give-and-take rela-
tionship).

This can be achieved by adding theconserve energy keyword to the object’sfinish
{}.
When conserveenergy is enabled, POV-Ray will multiply the amount filtered and
transmitted by what is left over from reflection (for example, if reflection is 80%, fil-
ter/transmit will be multiplied by 20%).

4.3.6 Iridescence

Iridescence, or Newton’s thin film interference, simulates the effect of light on surfaces
with a microscopic transparent film overlay. The effect is like an oil slick on a puddle
of water or the rainbow hues of a soap bubble. This effect is controlled by theirid
statement specified inside afinish statement.

This parameter modifies the surface color as a function of the angle between the light
source and the surface. Since the effect works in conjunction with the position and
angle of the light sources to the surface it does not behave in the same ways as a
procedural pigment pattern.

The syntax is:

IRID:

irid { Irid_Amount [IRID_ITEMS...] }

IRID_ITEMS:

thickness Amount | turbulence Amount

The requiredIrid Amount parameter is the contribution of the iridescence effect to the
overall surface color. As a rule of thumb keep to around 0.25 (25% contribution) or
less, but experiment. If the surface is coming out too white, try lowering thediffuse
and possibly theambient values of the surface.

The thickness keyword represents the film’s thickness. This is an awkward parameter
to set, since the thickness value has no relationship to the object’s scale. Changing it
affects the scale orbusy-nessof the effect. A very thin film will have a high frequency
of color changes while a thick film will have large areas of color. The default value is
zero.

The thickness of the film can be varied with theturbulence keyword. You can only
specify the amount of turbulence with iridescence. The octaves, lambda, and omega
values are internally set and are not adjustable by the user at this time. This parameter
varies only a single value: the thickness. Therefore the value must be a single float
value. It cannot be a vector as in other uses of theturbulence keyword.

In addition, perturbing the object’s surface normal through the use of bump patterns
will affect iridescence.

4.4 Halo 229

For the curious, thin film interference occurs because, when the ray hits the surface of
the film, part of the light is reflected from that surface, while a portion is transmitted
into the film. Thissubsurfaceray travels through the film and eventually reflects off
the opaque substrate. The light emerges from the film slightly out of phase with the ray
that was reflected from the surface.

This phase shift creates interference, which varies with the wavelength of the compo-
nent colors, resulting in some wavelengths being reinforced, while others are cancelled
out. When these components are recombined, the result is iridescence. See also the
global setting ”IridWavelength”.

The concept used for this feature came from the bookFundamentals of Three-Dimensional
Computer Graphicsby Alan Watt (Addison-Wesley).

4.4 Halo

Earlier versions of POV-Ray used a feature calledhalo to simulate fine particles such as
smoke, steam, fog, or flames. Thehalo statement was part of thetexture statement.
This feature has been discontinued and replaced by theinterior andmedia statements
which are object modifiers outside thetexture statement.

See ”Why are Interior and Media Necessary?” for a detailed explanation on the reasons
for the change. See ”Media” for details onmedia.

4.5 Patterned Textures

Patterned textures are complex textures made up of multiple textures. The component
textures may be plain textures or may be made up of patterned textures. A plain texture
has just one pigment, normal and finish statement. Even a pigment with a pigment map
is still one pigment and thus considered a plain texture as are normals with normal map
statements.

Patterned textures use either atexture map statement to specify a blend or pattern of
textures or they use block textures such ascheckerwith a texture list or a bitmap similar
to an image map called amaterial mapspecified with amaterial map statement.

The syntax is...

PATTERNED_TEXTURE:

texture

{

[PATTERNED_TEXTURE_ID]

[TRANSFORMATIONS...]

} |

texture

{

PATTERN_TYPE

[TEXTURE_PATTERN_MODIFIERS...]

} |

texture

230 Textures

{

tiles TEXTURE tile2 TEXTURE

[TRANSFORMATIONS...]

} |

texture

{

material_map

{

BITMAP_TYPE "bitmap.ext"

[BITMAP_MODS...] TEXTURE... [TRANSFORMATIONS...]

}

}

TEXTURE_PATTERN_MODIFIER:

PATTERN_MODIFIER | TEXTURE_LIST |

texture_map { TEXTURE_MAP_BODY }

There are restrictions on using patterned textures. A patterned texture may not be used
as a default texture (see section ”The #default Directive”). A patterned texture cannot
be used as a layer in a layered texture however you may use layered textures as any of
the textures contained within a patterned texture.

4.5.1 Texture Maps

In addition to specifying blended color with a color map or a pigment map you may
create a blend of textures usingtexture map. The syntax for a texture map is identical
to the pigment map except you specify a texture in each map entry.

The syntax fortexture map is as follows:

TEXTURE_MAP:

texture_map { TEXTURE_MAP_BODY }

TEXTURE_MAP_BODY:

TEXTURE_MAP_IDENTIFIER | TEXTURE_MAP_ENTRY...

TEXTURE_MAP_ENTRY:

[Value TEXTURE_BODY]

WhereValue is a float value between 0.0 and 1.0 inclusive and eachTEXTUREBODY
is anything which can be inside atexture{...} statement. Thetexture keyword and
{} braces need not be specified.

Note: the [] brackets are part of the actualTEXTUREMAP ENTRY. They are not
notational symbols denoting optional parts. The brackets surround each entry in the
texture map.

There may be from 2 to 256 entries in the map.

For example:

texture {

gradient x //this is the PATTERN_TYPE

texture_map {

[0.3 pigment{Red} finish{phong 1}]

[0.3 T_Wood11] //this is a texture identifier

[0.6 T_Wood11]

[0.9 pigment{DMFWood4} finish{Shiny}]

4.5 Patterned Textures 231

}

}

When thegradient x function returns values from 0.0 to 0.3 the red highlighted texture
is used. From 0.3 to 0.6 the texture identifierT Wood11 is used. From 0.6 up to 0.9 a
blend of T Wood11 and a shinyDMFWood4 is used. From 0.9 on up only the shiny wood
is used.

Texture maps may be nested to any level of complexity you desire. The textures in a
map may have color maps or texture maps or any type of texture you want.

The blended area of a texture map works by fully calculating both contributing textures
in their entirety and then linearly interpolating the apparent colors. This means that
reflection, refraction and lighting calculations are done twice for every point. This
is in contrast to using a pigment map and a normal map in a plain texture, where
the pigment is computed, then the normal, then reflection, refraction and lighting are
calculated once for that point.

Entire textures may also be used with the block patterns such aschecker, hexagon
andbrick. For example...

texture {

checker

texture { T_Wood12 scale .8 }

texture {

pigment { White_Marble }

finish { Shiny }

scale .5

}

}

}

Note: that in the case of block patterns thetexture wrapping is required around the
texture information. Also note that this syntax prohibits the use of a layered texture
however you can work around this by declaring a texture identifier for the layered
texture and referencing the identifier.

A texture map is also used with theaverage texture type. See ”Average” for details.

You may declare and use texture map identifiers but the only way to declare a texture
block pattern list is to declare a texture identifier for the entire texture.

4.5.2 Tiles

Earlier versions of POV-Ray had a patterned texture called atiles texture. It used the
tiles andtile2 keywords to create a checkered pattern of textures.

TILES_TEXTURE:

texture

{

tiles TEXTURE tile2 TEXTURE

[TRANSFORMATIONS...]

}

232 Textures

Although it is still supported for backwards compatibility you should use achecker
block texture pattern described in section ”Texture Maps” rather than tiles textures.

4.5.3 Material Maps

The material map patterned texture extends the concept of image maps to apply to
entire textures rather than solid colors. A material map allows you to wrap a 2-D bit-
mapped texture pattern around your 3-D objects.

Instead of placing a solid color of the image on the shape like an image map, an entire
texture is specified based on the index or color of the image at that point. You must
specify a list of textures to be used like atexture paletterather than the usual color
palette.

When used with mapped file types such as GIF, and some PNG and TGA images, the
index of the pixel is used as an index into the list of textures you supply. For unmapped
file types such as some PNG and TGA images the 8 bit value of the red component in
the range 0-255 is used as an index.

If the index of a pixel is greater than the number of textures in your list then the index
is taken modulo N where N is the length of your list of textures.

Note: The material map statement has nothing to do with thematerial statement.
A material map is not a way to create patternedmaterial. See ”Material” for expla-
nation of this unrelated, yet similarly named, older feature.

Specifying a Material Map

The syntax for amaterial map is:

MATERIAL_MAP:

texture

{

material_map

{

BITMAP_TYPE "bitmap.ext"

[BITMAP_MODS...] TEXTURE... [TRANSFORMATIONS...]

}

}

BITMAP_TYPE:

gif | tga | iff | ppm | pgm | png | jpeg | tiff | sys

BITMAP_MOD:

map_type Type | once | interpolate Type

After the requiredBITMAP TYPEkeyword is a string expression containing the name
of a bitmapped material file of the specified type. Several optional modifiers may
follow the file specification. The modifiers are described below.

Note: earlier versions of POV-Ray allowed some modifiers before theBITMAP TYPE
but that syntax is being phased out in favor of the syntax described here.

Note: sys format is a system-specific format such as BMP for Windows or Pict for
Macintosh.

4.5 Patterned Textures 233

Filenames specified in thematerial map statements will be searched for in the home
(current) directory first and, if not found, will then be searched for in directories speci-
fied by any +L or Library Path options active. This would facilitate keeping all your
material maps files in a separate subdirectory and giving aLibrary Path option to
specify where your library of material maps are. See ”Library Paths” for details.

By default, the material is mapped onto the x-y-plane. The material isprojectedonto
the object as though there were a slide projector somewhere in the -z-direction. The
material exactly fills the square area from (x,y) coordinates (0,0) to (1,1) regardless of
the material’s original size in pixels. If you would like to change this default you may
translate, rotate or scale the texture to map it onto the object’s surface as desired.

The file name is optionally followed by one or moreBITMAP MODIFIERS. There
are no modifiers which are unique to amaterial map. It only uses the generic bitmap
modifiers map type, once and interpolate described in ”Bitmap Modifiers”.

Although interpolate is legal in material maps, the color index is interpolated before
the texture is chosen. It does not interpolate the final color as you might hope it would.
In general, interpolation of material maps serves no useful purpose but this may be
fixed in future versions.

Next is one or moretexture statements. Each texture in the list corresponds to an
index in the bitmap file. For example:

texture {

material_map {

png "povmap.png"

texture { //used with index 0

pigment {color red 0.3 green 0.1 blue 1}

normal {ripples 0.85 frequency 10 }

finish {specular 0.75}

scale 5

}

texture { //used with index 1

pigment {White}

finish {

ambient 0 diffuse 0

reflection 0.9 specular 0.75

}

}

// used with index 2

texture {pigment{NeonPink} finish{Luminous}}

texture { //used with index 3

pigment {

gradient y

color_map {

[0.00 rgb < 1 , 0 , 0>]

[0.33 rgb < 0 , 0 , 1>]

[0.66 rgb < 0 , 1 , 0>]

[1.00 rgb < 1 , 0 , 0>]

}

}

finish{specular 0.75}

scale 8

}

234 Textures

}

scale 30

translate <-15, -15, 0>

}

After amaterial map statement but still inside the texture statement you may apply any
legal texture modifiers.

Note: no other pigment, normal, or finish statements may be added to the texture
outside the material map.

The following is illegal:

texture {

material_map {

gif "matmap.gif"

texture {T1}

texture {T2}

texture {T3}

}

finish {phong 1.0}

}

The finish must be individually added to each texture. Earlier versions of POV-Ray
allowed such specifications but they were ignored. The above restrictions on syntax
were necessary for various bug fixes. This means some POV-Ray 1.0 scenes using
material maps many need minor modifications that cannot be done automatically with
the version compatibility mode.

If particular index values are not used in an image then it may be necessary to supply
dummy textures. It may be necessary to use a paint program or other utility to examine
the map file’s palette to determine how to arrange the texture list.

The textures within a material map texture may be layered but material map textures
do not work as part of a layered texture. To use a layered texture inside a material map
you must declare it as a texture identifier and invoke it in the texture list.

4.6 Layered Textures

It is possible to create a variety of special effects using layered textures. A layered
texture consists of several textures that are partially transparent and are laid one on top
of the other to create a more complex texture. The different texture layers show through
the transparent portions to create the appearance of one texture that is a combination of
several textures.

You create layered textures by listing two or more textures one right after the other. The
last texture listed will be the top layer, the first one listed will be the bottom layer. All
textures in a layered texture other than the bottom layer should have some transparency.
For example:

object {

My_Object

texture {T1} // the bottom layer

texture {T2} // a semi-transparent layer

4.6 Layered Textures 235

texture {T3} // the top semi-transparent layer

}

In this example T2 shows only where T3 is transparent and T1 shows only where T2
and T3 are transparent.

The color of underlying layers is filtered by upper layers but the results do not look
exactly like a series of transparent surfaces. If you had a stack of surfaces with the
textures applied to each, the light would be filtered twice: once on the way in as the
lower layers are illuminated by filtered light and once on the way out. Layered textures
do not filter the illumination on the way in. Other parts of the lighting calculations
work differently as well. The results look great and allow for fantastic looking textures
but they are simply different from multiple surfaces. Seestones.inc in the standard
include files directory for some magnificent layered textures.

Note: in versions predating POV-Ray 3.5,filter used to work the same astransmit
in layered textures. It has been changed to work as filter should. This can change the
appearance of ”pre 3.5” textures a lot. The#version directive can be used to get the
”pre 3.5” behaviour.

Note: layered textures must use thetexture wrapped around any pigment, normal or
finish statements. Do not use multiple pigment, normal or finish statements without
putting them inside the texture statement.

Layered textures may be declared. For example

#declare Layered_Examp =

texture {T1}

texture {T2}

texture {T3}

may be invoked as follows:

object {

My_Object

texture {

Layer_Examp

// Any pigment, normal or finish here

// modifies the bottom layer only.

}

}

Note: No macros are allowed in layered textures. The problem is that if a macro would
contain a declare the parser could no longer guess that two or more texture identifiers
are supposed to belong to the layered texture and not some other declare.

If you wish to use a layered texture in a block pattern, such aschecker, hexagon, or
brick, or in a material map, you must declare it first and then reference it inside a
single texture statement. A patterned texture cannot be used as a layer in a layered
texture however you may use layered textures as any of the textures contained within a
patterned texture.

236 Textures

4.7 UV Mapping

All textures in POV-Ray are defined in 3 dimensions. Even planar image mapping is
done this way. However, it is sometimes more desirable to have the texture defined for
the surface of the object. This is especially true for bicubicpatch objects and mesh
objects, that can be stretched and compressed. When the object is stretched or com-
pressed, it would be nice for the texture to begluedto the object’s surface and follow
the object’s deformations.

When uvmapping is used, then that object’s texture will be mapped to it using surface
coordinates (u and v) instead of spatial coordinates (x, y, and z). This is done by taking
a slice of the object’s regular 3D texture from the XY plane (Z=0) and wrapping it
around the surface of the object, following the object’s surface coordinates.

Note: some textures should be rotated to fit the slice in the XY plane.

Syntax:

texture {

uv_mapping pigment{PIGMENT_BODY} | pigment{uv_mapping PIGMENT_BODY}

uv_mapping normal {NORMAL_BODY } | normal {uv_mapping NORMAL_BODY }

uv_mapping texture{TEXTURE_BODY} | texture{uv_mapping TEXTURE_BODY)

}

4.7.1 Supported Objects

Surface mapping is currently defined for the following objects:

• bicubic patch : UV coordinates are based on the patch’s parametric coordi-
nates. They stretch with the control points. The default range is (0..1) and can
be changed.

• mesh, mesh2: UV coordinates are defined for each vertex and interpolated be-
tween.

• lathe, sor : modified spherical mapping... the u coordinate (0..1) wraps around
the y axis, while the v coordinate is linked to the object’s control points (also
ranging 0..1).
Surface of Revolution also has special disc mapping on the end caps if the object
is not ’open’.

• sphere: boring spherical mapping.

• box : the image iswrappedaround the box, as shown below.

• parametric : In this case the map is not taken from a ”fixed” set of coordinates
but the map is taken from the area defined by the boundaries of the uv-space, in

4.7 UV Mapping 237

Figure 4.1: UV Boxmap

which the parametric surface has to be calculated.

• torus : The map is taken from the area<0,0><1,1> where the u-coordinate is
wrapped around the major radius and the the v-coordinate is wrapped around the
minor radius.

4.7.2 UV Vectors

With the keyworduv vectors, the UV coordinates of the corners can be controlled for
bicubic patches and standard triangle mesh.

For bicubic patches the UV coordinates can be specified for each of the four corners of
the patch. This goes right before the control points.
The syntax is:

uv vectors <corner1>,<corner2>,<corner3>, <corner4>

with default
uv vectors <0,0>,<1,0>,<1,1>,<0,1>

For standard triangle meshes (not mesh2) you can specify the UV coordinates for each
of the three verticesuv vectors <uv1>,<uv2>,<uv3> inside each mesh triangle. This
goes right after the coordinates (or coordinates & normals with smooth triangles) and
right before the texture.
Example:

mesh {

triangle {

<0,0,0>, <0.5,0,0>, <0.5,0.5,0>

uv_vectors <0,0>, <1,0>, <1,1>

}

triangle {

<0,0,0>, <0.5,0.5,0>, <0,0.5,0>

uv_vectors <0,0>, <1,1>, <0,1>

}

texture {

uv_mapping pigment {

image_map {

sys "SomeImage"

238 Textures

map_type 0

interpolate 0

}

}

}

}

4.8 Triangle Texture Interpolation

This feature is utilized in a number of visualization approaches: triangles with individ-
ual textures for each vertex, which are interpolated during rendering.

Syntax:

MESH_TRIANGLE:

triangle {

<Corner_1>,

<Corner_2>,

<Corner_3>

[MESH_TEXTURE]

} |

smooth_triangle {

<Corner_1>, <Normal_1>,

<Corner_2>, <Normal_2>,

<Corner_3>, <Normal_3>

[MESH_TEXTURE]

}

MESH_TEXTURE:

texture { TEXTURE_IDENTIFIER } |

texture_list {

TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER

}

To specify three vertex textures for the triangle, simply usetexture list instead of
texture.

4.9 Interior Texture

Syntax:

object {

texture { TEXTURE_ITEMS... }

interior_texture { TEXTURE_ITEMS...}

}

All surfaces have an exterior and interior surface. Theinterior texture simply allows
to specify a separate texture for the interior surface of the object. For objects with
no well defined inside/outside (bicubicpatch, triangle, ...) theinterior texture is
applied to the backside of the surface. Interior surface textures use exactly the same

4.10 Cutaway Textures 239

syntax and should work in exactly the same way as regular surface textures, except that
they use the keywordinterior texture instead oftexture.

Note: Do not confuseinterior texture {} with interior {}: the first one specifies
surface properties, the second one specifies volume properties.

4.10 Cutaway Textures

Syntax:

difference | intersection {

OBJECT_1_WITH_TEXTURES

OBJECT_2_WITH_NO_TEXTURE

cutaway_textures

}

When using a CSG difference or intersection tocut away parts of an object, it is some-
times desirable to allow the object to retain its original texture. Generally, however, the
texture of the surface that was used to do the cutting will be displayed.
Also, if the cutting object was not given a texture by the user, the default texture is
assigned to it.

By using thecutaway textures keyword in a CSG difference or intersection, you spec-
ify that you do not want the default texture on the intersected surface, but instead, the
textures of the parent objects in the CSG should be used.
POV-Ray will determine which texture(s) to use by doing insidedness tests on the ob-
jects in the difference or intersection. If the intersection point is inside an object, that
object’s texture will be used (and evaluated at the interior point).
If the parent object is a CSG of objects with different textures, then the textures on
overlapping parts will be averaged together.

4.11 Patterns

POV-Ray uses a method calledthree-dimensional solid texturingto define the color,
bumpiness and other properties of an object. You specify the way that the texture
varies over a surface by specifying apattern. Patterns are used in pigments, normals
and texture maps as well as media density.

All patterns in POV-Ray are three dimensional. For every point in space, each pattern
has a unique value. Patterns do not wrap around a surface like putting wallpaper on an
object. The patterns exist in 3d and the objects are carved from them like carving an
object from a solid block of wood or stone.

Consider a block of wood. It contains light and dark bands that are concentric cylinders
being the growth rings of the wood. On the end of the block you see these concentric
circles. Along its length you see lines that are the veins. However the pattern exists
throughout the entire block. If you cut or carve the wood it reveals the pattern inside.
Similarly an onion consists of concentric spheres that are visible only when you slice
it. Marble stone consists of wavy layers of colored sediments that harden into rock.

240 Textures

These solid patterns can be simulated using mathematical functions. Other random
patterns such as granite or bumps and dents can be generated using a random number
system and a noise function.

In each case, the x, y, z coordinate of a point on a surface is used to compute some
mathematical function that returns a float value. When used with color maps or pigment
maps, that value looks up the color of the pigment to be used. In normal statements
the pattern function result modifies or perturbs the surface normal vector to give a
bumpy appearance. Used with a texture map, the function result determines which
combinations of entire textures to be used. When used with media density it specifies
the density of the particles or gasses.

The following sections describe each pattern. See the sections ”Pigment”, ”Normal”
”Patterned Textures” and ”Density” for more details on how to use patterns. Unless
mentioned otherwise, all patterns use theramp wave wave type by default but may use
any wave type and may be used withcolor map, pigment map, normal map, slope map,
texture map, density, anddensity map.

Note: Some patterns have a built in default colormap that does not result in a grey-
scale pattern. This may lead to unexpected results when one of these patterns is used
without a user specified colormap, for example in functions or media.

These patterns are:

• agate

• bozo

• brick

• checker

• mandel

• hexagon

• marble

• radial

• wood

4.11.1 Agate

Theagate pattern is a banded pattern similar to marble but it uses a specialized built-
in turbulence function that is different from the traditional turbulence. The traditional
turbulence can be used as well but it is generally not necessary because agate is already
very turbulent. You may control the amount of the built-in turbulence by adding the
optional agate turb keyword followed by a float value. For example:

pigment {

agate

agate_turb 0.5

color_map {MyMap}

}

4.11 Patterns 241

The agate pattern has a default colormap built in that results in a brown and white
pattern with smooth transitions.

Agate as used in a normal:

normal {

agate [Bump_Size]

[MODIFIERS...]

}

4.11.2 Average

Technicallyaverage is not a pattern type but it is listed here because the syntax is
similar to other patterns. Typically a pattern type specifies how colors or normals
are chosen from apigment map, texture map, density map, or normal map , however
average tells POV-Ray to average together all of the patterns you specify. Average was
originally designed to be used in a normal statement with anormal map as a method of
specifying more than one normal pattern on the same surface. However average may
be used in a pigment statement with apigment map or in a texture statement with a
texture map or media density withdensity map to average colors too.

When used with pigments, the syntax is:

AVERAGED_PIGMENT:

pigment

{

pigment_map

{

PIGMENT_MAP_ENTRY...

}

}

PIGMENT_MAP_ENTRY:

[[Weight] PIGMENT_BODY]

WhereWeight is an optional float value that defaults to 1.0 if not specified. This weight
value is the relative weight applied to that pigment. EachPIGMENTBODYis anything
which can be inside apigment{...} statement. Thepigment keyword and{} braces need
not be specified.

Note: that the[] brackets are part of the actualPIGMENTMAP ENTRY. They are
not notational symbols denoting optional parts. The brackets surround each entry in
thepigment map.

There may be from 2 to 256 entries in the map.

For example

pigment {

average

pigment_map {

[1.0 Pigment_1]

[2.0 Pigment_2]

[0.5 Pigment_3]

}

}

242 Textures

All three pigments are evaluated. The weight values are multiplied by the resulting
color. It is then divided by the total of the weights which, in this example is 3.5. When
used withtexture map or density map it works the same way.

When used with anormal map in a normal statement, multiple copies of the original
surface normal are created and are perturbed by each pattern. The perturbed normals
are then weighted, added and normalized.

See the sections ”Pigment Maps and Pigment Lists”, ”Normal Maps and Normal Lists”,
”Texture Maps”, and ”Density Maps and Density Lists” for more information.

4.11.3 Boxed

The boxed pattern creates a 2x2x2 unit cube centered at the origin. It is computed
by: value=1.0- min(1, max(abs(X), abs(Y), abs(Z)))It starts at 1.0 at the origin and
decreases to a minimum value of 0.0 as it approaches any plane which is one unit
from the origin. It remains at 0.0 for all areas beyond that distance. This pattern was
originally created for use withhalo or media but it may be used anywhere any pattern
may be used.

4.11.4 Bozo

Thebozo pattern is a very smooth, random noise function that is traditionally used with
some turbulence to create clouds. Thespotted pattern is identical tobozo but in early
versions of POV-Ray spotted did not allow turbulence to be added. Turbulence can
now be added to any pattern so these are redundant but both are retained for backwards
compatibility. Thebumps pattern is also identical tobozo when used anywhere except
in a normal statement. When used as a normal pattern,bumps uses a slightly different
method to perturb the normal with a similar noise function.

Thebozo noise function has the following properties:

1. It’s defined over 3D space i.e., it takes x, y, and z and returns the noise value there.

2. If two points are far apart, the noise values at those points are relatively random.

3. If two points are close together, the noise values at those points are close to each
other.

You can visualize this as having a large room and a thermometer that ranges from
0.0 to 1.0. Each point in the room has a temperature. Points that are far apart have
relatively random temperatures. Points that are close together have close temperatures.
The temperature changes smoothly but randomly as we move through the room.

Now let’s place an object into this room along with an artist. The artist measures the
temperature at each point on the object and paints that point a different color depending
on the temperature. What do we get? A POV-Ray bozo texture!

Thebozo pattern has a default colormap built in that results in a green, blue, red and
white pattern with sharp transitions.

4.11 Patterns 243

Note: The appearance of the bozo pattern depends on the noisegenerator used. The
default type is 2. This may be changed using thenoise generator keyword (See sec-
tion ”Pattern Modifiers/ Noisegenerator”).

4.11.5 Brick

Thebrick pattern generates a pattern of bricks. The bricks are offset by half a brick
length on every other row in the x- and z-directions. A layer of mortar surrounds each
brick. The syntax is given by

pigment {

brick COLOR_1, COLOR_2

[brick_size <Size>] [mortar Size]

}

whereCOLOR1 is the color of the mortar andCOLOR2 is the color of the brick itself.
If no colors are specified a default deep red and dark gray are used. The default size of
the brick and mortar together is<8, 3, 4.5> units. The default thickness of the mortar
is 0.5 units. These values may be changed using the optionalbrick size andmortar
pattern modifiers. You may also use pigment statements in place of the colors. For
example:

pigment {

brick pigment{Jade}, pigment{Black_Marble}

}

This example uses normals:

normal { brick 0.5 }

The float value is an optional bump size. You may also use full normal statements. For
example:

normal {

brick normal{bumps 0.2}, normal{granite 0.3}

}

When used with textures, the syntax is

texture {

brick texture{T_Gold_1A}, texture{Stone12}

}

This is a block pattern which cannot use wave types,color map, or slope map modi-
fiers.

The brick pattern has a default colormap built in that results in red bricks and grey
mortar.

4.11.6 Bumps

Thebumps pattern was originally designed only to be used as a normal pattern. It uses
a very smooth, random noise function that creates the look of rolling hills when scaled

244 Textures

large or a bumpy orange peel when scaled small. Usually the bumps are about 1 unit
apart.

When used as a normal pattern, this pattern uses a specialized normal perturbation
function. This means that the pattern cannot be used withnormal map, slope map or
wave type modifiers in anormal statement.

When used as a pigment pattern or texture pattern, thebumps pattern is identical tobozo
or spotted and is similar to normal bumps but is not identical as are most normals when
compared to pigments.

Note: The appearance of the bumps pattern depends on the noisegenerator used. The
default type is 2. This may be changed using thenoise generator keyword (See sec-
tion ”Pattern Modifiers/ Noisegenerator”).

4.11.7 Cells

Thecells pattern fills 3d space with unit cubes. Each cube gets a random value from
0 to 1.

cells is not very suitable as a normal as it has no smooth transitions of one grey value
to another.

4.11.8 Checker

Thechecker pattern produces a checkered pattern consisting of alternating squares of
two colors. The syntax is:

pigment { checker [COLOR_1 [, COLOR_2]] [PATTERN_MODIFIERS...] }

If no colors are specified then default blue and green colors are used.

The checker pattern is actually a series of cubes that are one unit in size. Imagine a
bunch of 1 inch cubes made from two different colors of modeling clay. Now imagine
arranging the cubes in an alternating check pattern and stacking them in layer after
layer so that the colors still alternate in every direction. Eventually you would have a
larger cube. The pattern of checks on each side is what the POV-Ray checker pattern
produces when applied to a box object. Finally imagine cutting away at the cube until
it is carved into a smooth sphere or any other shape. This is what the checker pattern
would look like on an object of any kind.

You may also use pigment statements in place of the colors. For example:

pigment { checker pigment{Jade}, pigment{Black_Marble} }

This example uses normals:

normal { checker 0.5 }

The float value is an optional bump size. You may also use full normal statements. For
example:

normal {

checker normal{gradient x scale .2},

normal{gradient y scale .2}

4.11 Patterns 245

}

When used with textures, the syntax is

texture { checker texture{T_Wood_3A},texture{Stone12} }

Thechecker pattern has a default colormap built in that results in blue and green tiles.

This use of checker as a texture pattern replaces the special tiles texture in previous
versions of POV-Ray. You may still usetiles but it may be phased out in future
versions so checker textures are best.

This is a block pattern which cannot use wave types,color map, or slope map modi-
fiers.

4.11.9 Crackle Patterns

Thecrackle pattern is a set of random tiled multifaceted cells.

There is a choice between different types:

Standard Crackle
Mathematically, the set crackle(p)=0 is a 3D Voronoi diagram of a field of semi random
points and crackle(p)< 0 is the distance from the set along the shortest path (a Voronoi
diagram is the locus of points equidistant from their two nearest neighbors from a set
of disjoint points, like the membranes in suds are to the centers of the bubbles).

With a large scale and no turbulence it makes a pretty good stone wall or floor.
With a small scale and no turbulence it makes a pretty good crackle ceramic glaze.
Using high turbulence it makes a good marble that avoids the problem of apparent
parallel layers in traditional marble.

Form

pigment {

crackle form <FORM_VECTOR>

[PIGMENT_ITEMS ...]

}

normal {

crackle [Bump_Size]

form <FORM_VECTOR>

[NORMAL_ITEMS ...]

}

Form determines the linear combination of distances used to create the pattern. Form
is a vector.
The first component determines the multiple of the distance to the closest point to be
used in determining the value of the pattern at a particular point.
The second component determines the coefficient applied to the second-closest dis-
tance.
The third component corresponds to the third-closest distance.

The standard form is<-1,1,0> (also the default), corresponding to the difference in the
distances to the closest and second-closest points in the cell array. Another commonly-
used form is<1,0,0>, corresponding to the distance to the closest point, which pro-

246 Textures

duces a pattern that looks roughly like a random collection of intersecting spheres or
cells.
Other forms can create very interesting effects, but it’s best to keep the sum of the co-
efficients low.
If the final computed value is too low or too high, the resultant pigment will be satu-
rated with the color at the low or high end of thecolor map. In this case, try multiplying
the form vector by a constant.

Metric

pigment {

crackle metric METRIC_VALUE

[PIGMENT_ITEMS ...]

}

normal {

crackle [Bump_Size]

metric METRIC_VALUE

[NORMAL_ITEMS ...]

}

Changing the metric changes the function used to determine which cell center is closer,
for purposes of determining which cell a particular point falls in. The standard Eu-
clidean distance function has a metric of 2. Changing the metric value changes the
boundaries of the cells. A metric value of 3, for example, causes the boundaries to
curve, while a very large metric constrains the boundaries to a very small set of possi-
ble orientations.
The default for metric is 2, as used by the standard crackle texture.
Metrics other than 1 or 2 can lead to substantially longer render times, as the method
used to calculate such metrics is not as efficient.

Offset

pigment {

crackle offset OFFSET_VALUE

[PIGMENT_ITEMS ...]

}

normal {

crackle [Bump_Size]

offset OFFSET_VALUE

[NORMAL_ITEMS ...]

}

The offset is used to displace the pattern from the standard xyz space along a fourth
dimension.
It can be used to round off the ”pointy” parts of a cellular normal texture or procedural
heightfield by keeping the distances from becoming zero.
It can also be used to move the calculated values into a specific range if the result is
saturated at one end of the colormap.
The default offset is zero.

Solid

pigment {

crackle solid

[PIGMENT_ITEMS ...]

4.11 Patterns 247

}

normal {

crackle [Bump_Size]

solid

[NORMAL_ITEMS ...]

}

Causes the same value to be generated for every point within a specific cell. This has
practical applications in making easy stained-glass windows or flagstones. There is
no provision for mortar, but mortar may be created by layering or texture-mapping a
standard crackle texture with a solid one.
The default for this parameter is off.

4.11.10 Cylindrical

The cylindrical pattern creates a one unit radius cylinder along the Y axis. It is
computed by: value= 1.0-min(1, sqrt(Xˆ2+ Zˆ2)) It starts at 1.0 at the origin and
decreases to a minimum value of 0.0 as it approaches a distance of 1 unit from the Y
axis. It remains at 0.0 for all areas beyond that distance. This pattern was originally
created for use withhalo or media but it may be used anywhere any pattern may be
used.

4.11.11 DensityFile

Thedensity file pattern is a 3-D bitmap pattern that occupies a unit cube from loca-
tion <0,0,0> to <1,1,1>. The data file is a raw binary file format created for POV-Ray
called df3 format. The syntax provides for the possibility of implementing other for-
mats in the future. This pattern was originally created for use withhalo or media but
it may be used anywhere any pattern may be used. The syntax is:

pigment

{

density_file df3 "filename.df3"

[interpolate Type] [PIGMENT_MODIFIERS...]

}

where"filename.df3" is a file name of the data file.

As a normal pattern, the syntax is

normal

{

density_file df3 "filename.df3" [, Bump_Size]

[interpolate Type]

[NORMAL_MODIFIERS...]

}

The optional floatBump Size should follow the file name and any other modifiers follow
that.

The density pattern occupies the unit cube regardless of the dimensions in voxels. It
remains at 0.0 for all areas beyond the unit cube. The data in the range of 0 to 255, in
case of 8 bit resolution, are scaled into a float value in the range 0.0 to 1.0.

248 Textures

Theinterpolate keyword may be specified to add interpolation of the data. The de-
fault value of zero specifies no interpolation. A value of one specifies tri-linear inter-
polation, a value of two specifies tri-cubic interpolation

See the sample scenes for data fileinclude\spiral.df3,and the scenes which use it:
scenes\textures\patterns\densfile.pov, scenes\interior\media\galaxy.pov for
examples.

df3 file format

Header:

The df3 format consists of a 6 byte header of three 16-bit integers with high
order byte first. These three values give the x,y,z size of the data in pixels
(or more appropriately calledvoxels).

Data:

The header is followed by x*y*z unsigned integer bytes of data with a reso-
lution of 8, 16 or 32 bit. The data are written with high order byte first
(big-endian). The resolution of the data is determined by the size of the
df3-file. That is, if the file is twice (minus header, of course) as long as an
8 bit file then it is assumed to contain 16 bit ints and if it is four times as
long 32 bit ints.

4.11.12 Dents

The dents pattern was originally designed only to be used as a normal pattern. It is
especially interesting when used with metallic textures. It gives impressions into the
metal surface that look like dents have been beaten into the surface with a hammer.
Usually the dents are about 1 unit apart.

When used as a normal pattern, this pattern uses a specialized normal perturbation
function. This means that the pattern cannot be used withnormal map, slope map or
wave type modifiers in anormal statement.

When used as a pigment pattern or texture pattern, thedents pattern is similar to normal
dents but is not identical as are most normals when compared to pigments.

4.11.13 Facets

normal {

facets [coords SCALE_VALUE | size FACTOR]

[NORMAL_ITEMS...]

}

The facets pattern is designed to be used as a normal, it is not suitable for use as a
pigment: it will cause an error.
There are two forms of the facets pattern. One is most suited for use with rounded
surfaces, and one is most suited for use with flat surfaces.

4.11 Patterns 249

If coords is specified, the facets pattern creates facets with a size on the same order
as the specified SCALEVALUE. This version of facets is most suited for use with flat
surfaces, but will also work with curved surfaces. The boundaries of the facets coincide
with the boundaries of the cells in the standard crackle pattern. The coords version of
this pattern may be quite similar to a crackle normal pattern with solid specified.

If size is specified, the facets texture uses a different function that creates facets only on
curved surfaces. The FACTOR determines how many facets are created, with smaller
values creating more facets, but it is not directly related to any real-world measurement.
The same factor will create the same pattern of facets on a sphere of any size.
This pattern creates facets by snapping normal vectors to the closest vectors in a per-
turbed grid of normal vectors. Because of this, if a surface has normal vectors that do
not vary along one or more axes, there will be no facet boundaries along those axes.

4.11.14 Fractal Patterns

Fractal patterns supported in POV-Ray:

• The Mandelbrot set with exponents up to 33.(The formula for these is:z(n+1) =

z(n)ˆp + c, wherep is the correspondent exponent.)

• The equivalent Julia sets.

• The magnet1 and magnet2 fractals (which are derived from some magnetic renor-
malization transformations; see the fractint help for more details).
Both ’Mandelbrot’ and ’Julia’ versions of them are supported.

For the Mandelbrot and Julia sets, higher exponents will be slower for two reasons:

1. For the exponents 2,3 and 4 an optimized algorithm is used. Higher exponents
use a generic algorithm for raising a complex number to an integer exponent, and
this is a bit slower than an optimized version for a certain exponent.

2. The higher the exponent, the slower it will be. This is because the amount of
operations needed to raise a complex number to an integer exponent is directly
proportional to the exponent. This means that exponent 10 will be (very) roughly
twice as slow as exponent 5.

Syntax:

MANDELBROT:

mandel ITERATIONS [, BUMP_SIZE]

[exponent EXPONENT]

[exterior EXTERIOR_TYPE, FACTOR]

[interior INTERIOR_TYPE, FACTOR]

JULIA:

julia COMPLEX, ITERATIONS [, BUMP_SIZE]

[exponent EXPONENT]

[exterior EXTERIOR_TYPE, FACTOR]

[interior INTERIOR_TYPE, FACTOR]

MAGNET MANDEL:

magnet MAGNET_TYPE mandel ITERATIONS [, BUMP_SIZE]

250 Textures

[exterior EXTERIOR_TYPE, FACTOR]

[interior INTERIOR_TYPE, FACTOR]

MAGNET JULIA:

magnet MAGNET_TYPE julia COMPLEX, ITERATIONS [, BUMP_SIZE]

[exterior EXTERIOR_TYPE, FACTOR]

[interior INTERIOR_TYPE, FACTOR]

Where:

ITERATIONS is the number of times to iterate the algorithm.

COMPLEX is a 2D vector denoting a complex number.

MAGNET TYPE is either 1 or 2.

exponent is an integer between 2 and 33. If not given, the default is 2.

interior andexterior specify special coloring algorithms. You can specify one of
them or both at the same time. They only work with the fractal patterns.
EXTERIOR TYPE and INTERIOR TYPE are integer values between 0 and 6 (inclusive).
When not specified, the default value of INTERIORTYPE is 0 and for EXTERIORTYPE
1.
FACTOR is a float. The return value of the pattern is multiplied byFACTOR before return-
ing it. This can be used to scale the value range of the pattern when using interior and
exterior coloring (this is often needed to get the desired effect). The default value of
FACTOR is 1.

The different values of EXTERIORTYPE and INTERIORTYPE have the following
meaning:

• 0 : Returns just 1

• 1 : For exterior: The number of iterations until bailout divided by ITERATIONS.
Note: this is not scaled by FACTOR (since it’s internally scaled by 1/ITERA-
TIONS instead).
For interior: The absolute value of the smallest point in the orbit of the calculated
point

• 2 : Real part of the last point in the orbit

• 3 : Imaginary part of the last point in the orbit

• 4 : Squared real part of the last point in the orbit

• 5 : Squared imaginary part of the last point in the orbit

• 6 : Absolute value of the last point in the orbit

Example:

box {

<-2, -2, 0>, <2, 2, 0.1>

pigment {

julia <0.353, 0.288>, 30

interior 1, 1

color_map {

[0 rgb 0]

[0.2 rgb x]

4.11 Patterns 251

[0.4 rgb x+y]

[1 rgb 1]

[1 rgb 0]

}

}

}

4.11.15 Function as pattern

Allows you to use a function{ } block as pattern.

pigment {

function { USER_DEFINED_FUNCTIONS }

[PIGMENT_MODIFIERS...]

}

Declaring a function:
By default a function takes three parameters (x,y,z) and you do not have to explicitly
specify the parameter names when declaring it. When using the identifier, the parame-
ters must be specified.

#declare Foo = function { x + y + z}

pigment {

function { Foo(x, y, z) }

[PIGMENT_MODIFIERS...]

}

On the other hand, if you need more or less than three parameters when declaring a
function, you also have to explicitly specify the parameter names.

#declare Foo = function(x,y,z,t) { x + y + z + t}

pigment {

function { Foo(x, y, z, 4) }

[PIGMENT_MODIFIERS...]

}

Using function in a normal:

#declare Foo = function { x + y + z}

normal {

function { Foo(x, y, z) } [Bump_Size]

[MODIFIERS...]

}

What can be used

All float expressions and operators (see section ”User-Defined Functions”) which are
legal in POV-Ray. Of special interest here is thepattern option, that makes it possible
to use patterns as functions

#declare FOO = function {

pattern {

checker

}

252 Textures

}

User defined functions (like equations).

Since pigments can be declared as functions, they can also be used in functions. They
must be declared first. When using the identifier, you have to specify which compo-
nent of the color vector should be used. To do this, the dot notation is used: Func-
tion(x,y,z).red

#declare FOO = function {pigment { checker } }

pigment {

function { FOO(x,y,z).green }

[PIGMENT_MODIFIERS...]

}

POV-Ray has a large amount of pre-defined functions. These are mainly algebraic
surfaces but there is also a mesh function and noise3d function. See section ”Internal
Functions” for a complete list and some explanation on the parameters to use. These
internal functions can be included through the functions.inc include file.

#include "functions.inc"

#declare FOO = function {pigment { checker } }

pigment {

function { FOO(x,y,z).green & f_noise3d(x*2, y*3,z)}

[PIGMENT_MODIFIERS...]

}

4.11.16 Function Image

Syntax :function Width, Height { FUNCTION BODY }

Not a real pattern, but listed here for convenience. This keyword defines a new ’inter-
nal’ bitmap image type. The pixels of the image are derived from the FunctionBody,
with FunctionBody either being a regular function, a pattern function or a pigment
function. In case of a pigment function the output image will be in color, in case of a
pattern or regular function the output image will be grayscale. All variants of grayscale
pigment functions are available using the regular function syntax, too. In either case
the image will use 16 bit per component

Note: functions are evaluated on the x-y plane. This is different from the pattern image
type for the reason that it makes using uv functions easier.

Width and Height specify the resolution of the resulting ’internal’ bitmap image. The
image is taken from the square region<0,0,0>, <1,1,0>

Thefunction statement can be used wherever an image specifier liketga or png may
be used. Some uses include creating heightfields from procedural textures or wrapping
a slice of a 3d texture or function around a cylinder or extrude it along an axis.

Examples:

plane {

y, -1

pigment {

image_map {

4.11 Patterns 253

function 10,10 {

pigment { checker 1,0 scale .5 }

}

}

rotate x*90

}

}

height_field {

function 200,200 {

pattern {

bozo

}

}

translate -0.5

scale 10

pigment {rgb 1}

}

Note: that for height fields and other situations where color is not needed it is easier
to usefunction n,n {pattern{...}} thanfunction n,n {pigment{...}}. The pattern
functions are returning a scalar, not a color vector, thus a pattern is grayscale.

4.11.17 Gradient

One of the simplest patterns is thegradient pattern. It is specified as

pigment {

gradient <Orientation>

[PIGMENT_MODIFIERS...]

}

where<Orientation> is a vector pointing in the direction that the colors blend. For
example

pigment { gradient x } // bands of color vary as you move

// along the "x" direction.

produces a series of smooth bands of color that look like layers of colors next to each
other. Points at x=0 are the first color in the color map. As the x location increases
it smoothly turns to the last color at x=1. Then it starts over with the first again and
gradually turns into the last color at x=2. In POV-Ray versions older than 3.5 the
pattern reverses for negative values of x. As per POV-Ray 3.5 this is not the case
anymore [1]. Usinggradient y or gradient z makes the colors blend along the y- or
z-axis. Any vector may be used but x, y and z are most common.

As a normal pattern, gradient generates a saw-tooth or ramped wave appearance. The
syntax is

normal {

gradient <Orientation> [, Bump_Size]

[NORMAL_MODIFIERS...]

}

254 Textures

where the vector<Orientation> is a required parameter but the floatBump Size which
follows is optional.

Note: the comma is required especially ifBumpSizeis negative.

[1] If only the range -1 to 1 was used of the old gradient, for example in asky sphere,
it can be replaced by theplanar or marble pattern and revert the colormap. Also
rotate the pattern for other orientations thany. A more general solution is to use
function{abs(x)} as a pattern instead ofgradient x and similar forgradient y and
gradient z.

4.11.18 Granite

The granite pattern uses a simple 1/f fractal noise function to give a good granite
pattern. This pattern is used with creative color maps instones.inc to create some
gorgeous layered stone textures.

As a normal pattern it creates an extremely bumpy surface that looks like a gravel
driveway or rough stone.

Note: The appearance of the granite pattern depends on the noisegenerator used. The
default type is 2. This may be changed using thenoise generator keyword (See sec-
tion ”Pattern Modifiers/ Noisegenerator”).

4.11.19 Hexagon

Thehexagon pattern is a block pattern that generates a repeating pattern of hexagons
in the x-z-plane. In this instance imagine tall rods that are hexagonal in shape and are
parallel to the y-axis and grouped in bundles like shown in the example image. Three
separate colors should be specified as follows:

pigment {

hexagon [COLOR_1 [, COLOR_2 [, COLOR_3]]]

[PATTERN_MODIFIERS...]

}

Figure 4.2: The hexagon pattern.

The three colors will repeat the hexagonal pattern with hexagonCOLOR1 centered
at the origin,COLOR2 in the+z-direction andCOLOR3 to either side. Each side of

4.11 Patterns 255

the hexagon is one unit long. The hexagonal rods of color extend infinitely in the+y-
and -y-directions. If no colors are specified then default blue, green and red colors are
used.

You may also use pigment statements in place of the colors. For example:

pigment {

hexagon

pigment { Jade },

pigment { White_Marble },

pigment { Black_Marble }

}

This example uses normals:

normal { hexagon 0.5 }

The float value is an optional bump size. You may also use full normal statements. For
example:

normal {

hexagon

normal { gradient x scale .2 },

normal { gradient y scale .2 },

normal { bumps scale .2 }

}

When used with textures, the syntax is...

texture {

hexagon

texture { T_Gold_3A },

texture { T_Wood_3A },

texture { Stone12 }

}

Thehexagon pattern has a default colormap built in that results in red, blue and green
tiles.

This is a block pattern which cannot use wave types,color map, or slope map modi-
fiers.

4.11.20 Image Pattern

Instead of placing the color of the image on the object like an imagemap an im-
agepattern specifies an entire texture item (color, pigment, normal or texture) based
on the gray value at that point.
This gray-value is checked against a list and the corresponding item is then used for
the texture at that particular point. For values between listed items, an averaged texture
is calculated.
It takes a standard image specification and has one option,use alpha which works
similar touse color or use index.

Syntax:

PIGMENT:

256 Textures

pigment {

IMAGE_PATTERN

color_map { COLOR_MAP_BODY } |

colour_map { COLOR_MAP_BODY } |

pigment_map { PIGMENT_MAP_BODY }

}

NORMAL:

normal {

IMAGE_PATTERN [Bump_Size]

normal_map { NORMAL_MAP_BODY }

}

TEXTURE:

texture {

IMAGE_PATTERN

texture_map { TEXTURE_MAP_BODY }

}

IMAGE_PATTERN

image_pattern {

BITMAP_TYPE "bitmap.ext"

[IMAGE_MAP_MODS...]

}

IMAGE_MAP_MOD:

map_type Type | once | interpolate Type | use_alpha

ITEM_MAP_BODY:

ITEM_MAP_IDENTIFIER | ITEM_MAP_ENTRY...

ITEM_MAP_ENTRY:

[GRAY_VALUE ITEM_MAP_ENTRY...]

It is also useful for creating texture ”masks”, like the following:

texture {

image_pattern { tga "image.tga" use_alpha }

texture_map {

[0 Mytex]

[1 pigment { transmit 1 }]

}

}

Note: This pattern uses an image to get the gray values from. If you want exactly
the same possibilities but need to get gray values from a pigment, you can use the
pigmentpattern.

4.11.21 Leopard

Leopard creates regular geometric pattern of circular spots. The formula used is:value
= Sqr((sin(x)+sin(y)+sin(z))/3)

4.11 Patterns 257

4.11.22 Marble

Themarble pattern is very similar to thegradient x pattern. The gradient pattern uses
a defaultramp wave wave type which means it uses colors from the color map from 0.0
up to 1.0 at location x=1 but then jumps back to the first color for x> 1 and repeats
the pattern again and again. However themarble pattern uses thetriangle wave wave
type in which it uses the color map from 0 to 1 but then it reverses the map and blends
from 1 back to zero. For example:

pigment {

gradient x

color_map {

[0.0 color Yellow]

[1.0 color Cyan]

}

}

This blends from yellow to cyan and then it abruptly changes back to yellow and re-
peats. However replacinggradient x with marble smoothly blends from yellow to
cyan as the x coordinate goes from 0.0 to 0.5 and then smoothly blends back from cyan
to yellow by x=1.0.

Earlier versions of POV-Ray did not allow you to change wave types. Now that
wave types can be changed for most any pattern, the distinction betweenmarble and
gradient x is only a matter of default wave types.

When used with turbulence and an appropriate color map, this pattern looks like veins
of color of real marble, jade or other types of stone. By default, marble has no turbu-
lence.

Themarble pattern has a default colormap built in that results in a red, black and white
pattern with smooth and sharp transitions.

4.11.23 Object Pattern

Theobject pattern takes an object as input. It generates a, two item, color list pattern.
Whether a point is assigned to one item or the other depends on whether it is inside the
specified object or not.

Object’s used in theobject pattern cannot have a texture and must be solid - these are
the same limitations as forbounded by andclipped by.

Syntax:

object {

OBJECT_IDENTIFIER | OBJECT {}

LIST_ITEM_A, LIST_ITEM_B

}

Where OBJIDENTIFIER is the target object (which must be declared), or use the full
object syntax. LISTITEM A and LIST ITEM B are the colors, pigments, or whatever
the pattern is controlling. LISTITEM A is used for all points outside the object, and
LIST ITEM B is used for all points inside the object.

258 Textures

Example:

pigment {

object {

myTextObject

color White

color Red

}

turbulence 0.15

}

Note: This is a block pattern which cannot use wave types, colormap, or slopemap
modifiers.

4.11.24 Onion

The onion is a pattern of concentric spheres like the layers of an onion.Value=
mod(sqrt(Sqr(X)+Sqr(Y)+Sqr(Z)), 1.0)Each layer is one unit thick.

4.11.25 Pigment Pattern

Use any pigment as a pattern. Instead of using the pattern directly on the object, a
pigmentpattern converts the pigment to gray-scale first. For each point, the gray-value
is checked against a list and the corresponding item is then used for the texture at that
particular point. For values between listed items, an averaged texture is calculated.
Texture items can be color, pigment, normal or texture and are specified in a colormap,
pigmentmap, normalmap or texturemap.
It takes a standard pigment specification.

Syntax:

PIGMENT:

pigment {

pigment_pattern { PIGMENT_BODY }

color_map { COLOR_MAP_BODY } |

colour_map { COLOR_MAP_BODY } |

pigment_map { PIGMENT_MAP_BODY }

}

NORMAL:

normal {

pigment_pattern { PIGMENT_BODY } [Bump_Size]

normal_map { NORMAL_MAP_BODY }

}

TEXTURE:

texture {

pigment_pattern { PIGMENT_BODY }

texture_map { TEXTURE_MAP_BODY }

}

ITEM_MAP_BODY:

4.11 Patterns 259

ITEM_MAP_IDENTIFIER | ITEM_MAP_ENTRY...

ITEM_MAP_ENTRY:

[GRAY_VALUE ITEM_MAP_ENTRY...]

This pattern is also useful when parent and children patterns need to be transformed
independently from each other. Transforming the pigmentpattern will not affect the
child textures. When any of the child textures should be transformed, apply it to the
specific MAPENTRY.

This can be used with any pigments, ranging from a simple checker to very complicated
nested pigments. For example:

pigment {

pigment_pattern {

checker White, Black

scale 2

turbulence .5

}

pigment_map {

[0, checker Red, Green scale .5]

[1, checker Blue, Yellow scale .2]

}

}

Note: This pattern uses a pigment to get the gray values from. If you want to get the
pattern from an image, you should use the imagepattern.

4.11.26 Planar

Theplanar pattern creates a horizontal stripe plus or minus one unit above and below
the X-Z plane. It is computed by:value=1.0- min(1, abs(Y))It starts at 1.0 at the
origin and decreases to a minimum value of 0.0 as the Y values approaches a distance
of 1 unit from the X-Z plane. It remains at 0.0 for all areas beyond that distance. This
pattern was originally created for use withhalo or media but it may be used anywhere
any pattern may be used.

4.11.27 Quilted

Thequilted pattern was originally designed only to be used as a normal pattern. The
quilted pattern is so named because it can create a pattern somewhat like a quilt or a
tiled surface. The squares are actually 3-D cubes that are 1 unit in size.

When used as a normal pattern, this pattern uses a specialized normal perturbation
function. This means that the pattern cannot be used withnormal map, slope map or
wave type modifiers in anormal statement.

When used as a pigment pattern or texture pattern, thequilted pattern is similar to
normal quilted but is not identical as are most normals when compared to pigments.

The two parameterscontrol0 and control1 are used to adjust the curvature of the
seamor gougearea between thequilts.

The syntax is:

260 Textures

pigment { quilted [QUILTED_MODIFIERS...] }

QUILTED_MODIFIERS:

control0 Value_0 | control1 Value_1 | PIGMENT_MODIFIERS

The values should generally be kept to around the 0.0 to 1.0 range. The default value
is 1.0 if none is specified. Think of this gouge between the tiles in cross-section as a
sloped line.

Figure 4.3: Quilted pattern with c0=0 and different values for c1.

Figure 4.4: Quilted pattern with c0=0.33 and different values for c1.

This straight slope can be made to curve by adjusting the two control values. The
control values adjust the slope at the top and bottom of the curve. A control values
of 0 at both ends will give a linear slope, as shown above, yielding a hard edge. A
control value of 1 at both ends will give an ”s” shaped curve, resulting in a softer, more
rounded edge.

The syntax for use as a normal is:

normal {

quilted [Bump_Size]

[QUILTED_MODIFIERS...]

}

QUILTED_MODIFIERS:

control0 Value_0 | control1 Value_1 | PIGMENT_MODIFIERS

4.11 Patterns 261

Figure 4.5: Quilted pattern with c0=0.67 and different values for c1.

Figure 4.6: Quilted pattern with c0=1 and different values for c1.

262 Textures

4.11.28 Radial

Theradial pattern is a radial blend that wraps around the+y-axis. The color for value
0.0 starts at the+x-direction and wraps the color map around from east to west with
0.25 in the -z-direction, 0.5 in -x, 0.75 at+z and back to 1.0 at+x. Typically the
pattern is used with afrequency modifier to create multiple bands that radiate from
the y-axis. For example:

pigment {

radial color_map{[0.5 Black][0.5 White]}

frequency 10

}

creates 10 white bands and 10 black bands radiating from the y axis.

The radial pattern has a default colormap built in that results in a yellow, magenta
and cyan pattern with smooth transitions.

4.11.29 Ripples

The ripples pattern was originally designed only to be used as a normal pattern. It
makes the surface look like ripples of water. The ripples radiate from 10 random lo-
cations inside the unit cube area<0,0,0> to <1,1,1>. Scale the pattern to make the
centers closer or farther apart.

Usually the ripples from any given center are about 1 unit apart. Thefrequency
keyword changes the spacing between ripples. Thephase keyword can be used to
move the ripples outwards for realistic animation.

The number of ripple centers can be changed with the global parameter globalsettings{numberof waves
Count}

somewhere in the scene. This affects the entire scene. You cannot change the number
of wave centers on individual patterns. See section ”NumberOf Waves” for details.

When used as a normal pattern, this pattern uses a specialized normal perturbation
function. This means that the pattern cannot be used withnormal map, slope map or
wave type modifiers in anormal statement.

When used as a pigment pattern or texture pattern, theripples pattern is similar to
normal ripples but is not identical as are most normals when compared to pigments.

4.11.30 Slope

Theslope pattern uses the normal of a surface to calculate the slope at a given point. It
then creates the pattern value dependent on the slope and optionally the altitude. It can
be used for pigments, normals and textures, but not for media densities. For pigments
the syntax is:

pigment {

slope {

<Direction> [, Lo_slope, Hi_slope]

[altitude <Altitude> [, Lo_alt, Hi_alt]]

4.11 Patterns 263

}

[PIGMENT_MODIFIERS...]

}

The slope value at a given point is dependent on the angle between the<Direction>

vector and the normal of the surface at that point. For example:
- When the surface normal points in the opposite direction of the<Direction> vector
(180 degrees), the slope is 0.0.
- When the surface normal is perpendicular to the<Direction> vector (90 degrees),
the slope is 0.5.
- When the surface normal is parallel to the<Direction> vector (0 degrees), the slope
is 1.0.

When using the simplest variant of the syntax:

slope { <Direction> }

the pattern value for a given point is the same as the slope value.<Direction> is a
3-dimensional vector and will usually be<0,-1,0> for landscapes, but any direction
can be used.

By specifyingLo slope andHi slope you get more control:

slope { <Direction>, Lo_slope, Hi_slope }

Lo slope andHi slope specifies which range of slopes are used, so you can control
which slope values return which pattern values.Lo slope is the slope value that returns
0.0 andHi slope is the slope value that returns 1.0.

For example, if you have a heightfield and<Direction> is set to<0,-1,0>, then
the slope values would only range from 0.0 to 0.5 because heightfields can’t have
overhangs. If you don’t specifyLo slope andHi slope, you should keep in mind that
the texture for the flat (horizontal) areas must be set at 0.0 and the texture for the steep
(vertical) areas at 0.5 when designing the texturemap. The part from 0.5 up to 1.0
is not used then. But, by settingLo slope andHi slope to 0.0 and 0.5 respectively,
the slope range will be stretched over the entire map, and the texturemap can then be
defined from 0.0 to 1.0.

By adding an optional<Altitude> vector:

slope {

<Direction>

altitude <Altitude>

}

the pattern will be influenced not only by the slope but also by a special gradient.
<Altitude> is a 3-dimensional vector that specifies the direction of the gradient. When
<Altitude> is specified, the pattern value is a weighted average of the slope value
and the gradient value. The weights are the lengths of the vectors<Direction> and
<Altitude>. So if <Direction> is much longer than<Altitude> it means that the
slope has greater effect on the results than the gradient. If on the other hand<Altitude>

is longer, it means that the gradient has more effect on the results than the slope.

When adding the<Altitude> vector, the default gradient is defined from 0 to 1 units
along the specified axis. This is fine when your object is defined within this range,

264 Textures

otherwise a correction is needed. This can be done with the optionalLo alt andHi alt
parameters:

slope {

<Direction>

altitude <Altitude>, Lo_alt, Hi_alt

}

They define the range of the gradient along the axis defined by the<Altitude> vector.

For example, with an<Altitude> vector set to y and an object going from -3 to 2 on
the y axis, theLo alt andHi alt parameters should be set to -3 and 2 respectively.

Note:

• You may use the turbulence keyword inside slope pattern definitions but it may
cause unexpected results. Turbulence is a 3-dimensional distortion of a pattern.
Since slope is only defined on surfaces of objects, a 3-dimensional turbulence is
not applicable to the slope component. However, if you are using altitude, the
altitude component of the pattern will be affected by turbulence.

• If your object is larger than the range of altitude you have specified, you may
experience unexpected discontinuities. In that case it’s best to adjust theLo alt

andHi alt values so they fit to your object.

• The slope pattern doesn’t work for the skysphere, because the skysphere is a
background feature and does not have a surface. similarly, it does not work for
media densities.

4.11.31 Spherical

Thespherical pattern creates a one unit radius sphere, with its center at the origin. It
is computed by:value= 1.0-min(1, sqrt(Xˆ2+ Yˆ2+ Zˆ2)) It starts at 1.0 at the origin
and decreases to a minimum value of 0.0 as it approaches a distance of 1 unit from
the origin in any direction. It remains at 0.0 for all areas beyond that distance. This
pattern was originally created for use withhalo or media but it may be used anywhere
any pattern may be used.

4.11.32 Spiral1

The spiral1 pattern creates a spiral that winds around the z-axis similar to a screw.
When viewed sliced in the x-y plane, it looks like the spiral arms of a galaxy. Its syntax
is:

pigment

{

spiral1 Number_of_Arms

[PIGMENT_MODIFIERS...]

}

TheNumber of Arms value determines how may arms are winding around the z-axis.

As a normal pattern, the syntax is

4.11 Patterns 265

normal

{

spiral1 Number_of_Arms [, Bump_Size]

[NORMAL_MODIFIERS...]

}

where theNumber of Arms value is a required parameter but the floatBump Size which
follows is optional.

Note: the comma is required especially ifBumpSizeis negative.

The pattern uses thetriangle wave wave type by default but may use any wave type.

4.11.33 Spiral2

The spiral2 pattern creates a double spiral that winds around the z-axis similar to
spiral1 except that it has two overlapping spirals which twist in opposite directions.
The result sometimes looks like a basket weave or perhaps the skin of pineapple. The
center of a sunflower also has a similar double spiral pattern. Its syntax is:

pigment

{

spiral2 Number_of_Arms

[PIGMENT_MODIFIERS...]

}

The Number of Arms value determines how may arms are winding around the z-axis.
As a normal pattern, the syntax is

normal

{

spiral2 Number_of_Arms [, Bump_Size]

[NORMAL_MODIFIERS...]

}

where theNumber of Arms value is a required parameter but the floatBump Size which
follows is optional.

Note: the comma is required especially ifBumpSizeis negative. The pattern uses the
triangle wave wave type by default but may use any wave type.

4.11.34 Spotted

The spotted pattern is identical to thebozo pattern. Early versions of POV-Ray did
not allow turbulence to be used with spotted. Now that any pattern can use turbulence
there is no difference betweenbozo andspotted. See section ”Bozo” for details.

4.11.35 Waves

Thewaves pattern was originally designed only to be used as a normal pattern. It makes
the surface look like waves on water. Thewaves pattern looks similar to theripples
pattern except the features are rounder and broader. The effect is to make waves that

266 Textures

look more like deep ocean waves. The waves radiate from 10 random locations inside
the unit cube area<0,0,0> to <1,1,1>. Scale the pattern to make the centers closer or
farther apart.

Usually the waves from any given center are about 1 unit apart. Thefrequency key-
word changes the spacing between waves. Thephase keyword can be used to move
the waves outwards for realistic animation.

The number of wave centers can be changed with the global parameter

global_settings { number_of_waves Count }

somewhere in the scene. This affects the entire scene. You cannot change the number
of wave centers on individual patterns. See section ”NumberOf Waves” for details.

When used as a normal pattern, this pattern uses a specialized normal perturbation
function. This means that the pattern cannot be used withnormal map, slope map or
wave type modifiers in anormal statement.

When used as a pigment pattern or texture pattern, thewaves pattern is similar to normal
waves but is not identical as are most normals when compared to pigments.

4.11.36 Wood

Thewood pattern consists of concentric cylinders centered on the z-axis. When appro-
priately colored, the bands look like the growth rings and veins in real wood. Small
amounts of turbulence should be added to make it look more realistic. By default, wood
has no turbulence.

Unlike most patterns, thewood pattern uses thetriangle wave wave type by default.
This means that like marble, wood uses color map values 0.0 to 1.0 then repeats the
colors in reverse order from 1.0 to 0.0. However you may use any wave type.

Thewood pattern has a default colormap built in that results in a light and dark brown
pattern with sharp transitions.

4.11.37 Wrinkles

Thewrinkles pattern was originally designed only to be used as a normal pattern. It
uses a 1/f noise pattern similar to granite but the features in wrinkles are sharper. The
pattern can be used to simulate wrinkled cellophane or foil. It also makes an excellent
stucco texture.

When used as a normal pattern, this pattern uses a specialized normal perturbation
function. This means that the pattern cannot be used withnormal map, slope map or
wave type modifiers in anormal statement.

When used as a pigment pattern or texture pattern, thewrinkles pattern is similar to
normal wrinkles but is not identical as are most normals when compared to pigments.

Note: The appearance of the wrinkles pattern depends on the noisegenerator used.
The default type is 2. This may be changed using thenoise generator keyword (See
section ”Pattern Modifiers/ Noisegenerator”).

4.12 Pattern Modifiers 267

4.12 Pattern Modifiers

Pattern modifiers are statements or parameters which modify how a pattern is evaluated
or tells what to do with the pattern. The complete syntax is:

PATTERN_MODIFIER:

BLEND_MAP_MODIFIER | AGATE_MODIFIER | DENSITY_FILE_MODIFIER |

QUILTED_MODIFIER | BRICK_MODIFIER | SLOPE_MODIFIER |

noise_generator Number| turbulence <Amount> |

octaves Count | omega Amount | lambda Amount |

warp { [WARP_ITEMS...] } | TRANSFORMATION

BLEND_MAP_MODIFIER:

frequency Amount | phase Amount | ramp_wave | triangle_wave |

sine_wave | scallop_wave | cubic_wave | poly_wave [Exponent]

AGATE_MODIFIER:

agate_turb Value

BRICK_MODIFIER:

brick_size Size | mortar Size

DENSITY_FILE_MODIFIER:

interpolate Type

SLOPE_MODIFIERS:

<Altitude>

<Lo_slope,Hi_slope>

<Lo_alt,Hi_alt>

QUILTED_MODIFIER:

control0 Value | control1 Value

PIGMENT_MODIFIER:

PATTERN_MODIFIER | COLOR_LIST | PIGMENT_LIST |

color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY } |

pigment_map{ PIGMENT_MAP_BODY } | quick_color COLOR |

quick_colour COLOR

COLOR NORMAL_MODIFIER:

PATTERN_MODIFIER | NORMAL_LIST |

normal_map { NORMAL_MAP_BODY } | slope_map{ SLOPE_MAP_BODY } |

bump_size Amount

TEXTURE_PATTERN_MODIFIER:

PATTERN_MODIFIER | TEXTURE_LIST |

texture_map{ TEXTURE_MAP_BODY }

DENSITY_MODIFIER:

PATTERN_MODIFIER | DENSITY_LIST | COLOR_LIST |

color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY } |

density_map { DENSITY_MAP_BODY }

Default values for pattern modifiers:

dist_exp : 0

falloff : 2.0

frequency : 1.0

lambda : 2.0

major_radius : 1

map_type : 0

noise_generator : 2

octaves : 6

omega : 0.5

orientation : <0,0,1>

268 Textures

phase : 0.0

poly_wave : 1.0

strength : 1.0

turbulence : <0,0,0>

The modifiersPIGMENTLIST, quick color, and pigment map apply only to pig-
ments. See section ”Pigment” for details on these pigment-specific pattern modifiers.

The modifiers COLORLIST and color map apply only to pigments and densities.
See sections ”Pigment” and ”Density” for details on these pigment-specific pattern
modifiers.

The modifiersNORMALLIST, bump size, slope map and normal map apply only to
normals. See section ”Normal” for details on these normal-specific pattern modifiers.

TheTEXTURELIST andtexture map modifiers can only be used with patterned tex-
tures. See section ”Texture Maps” for details.

The DENSITYLIST and density map modifiers only work withmedia{density{..}}
statements. See ”Density” for details.

The agate turb modifier can only be used with theagate pattern. See ”Agate” for
details.

The brick size andmortar modifiers can only be used with thebrick pattern. See
”Brick” for details.

The control0 andcontrol1modifiers can only be used with thequilted pattern. See
”Quilted” for details.

The interpolate modifier can only be used with thedensity file pattern. See
”Density File” for details.

The general purpose pattern modifiers in the following sections can be used with
pigment, normal, texture, or density patterns.

4.12.1 Transforming Patterns

The most common pattern modifiers are the transformation modifierstranslate,
rotate, scale, transform, andmatrix. For details on these commands see section
”Transformations”.

These modifiers may be placed inside pigment, normal, texture, and density statements
to change the position, size and orientation of the patterns.

Transformations are performed in the order in which you specify them. However in
general the order of transformations relative to other pattern modifiers such asturbulence,
color map and other maps is not important. For example scaling before or after turbu-
lence makes no difference. The turbulence is done first, then the scaling regardless of
which is specified first. However the order in which transformations are performed
relative towarp statements is important. See ”Warps” for details.

4.12 Pattern Modifiers 269

4.12.2 Frequency and Phase

Thefrequency andphase modifiers act as a type of scale and translate modifiers for
various blend maps. They only have effect when blend maps are used. Blend maps
are color map, pigment map, normal map, slope map, density map, andtexture map.
This discussion uses a color map as an example but the same principles apply to the
other blend map types.

Thefrequency keyword adjusts the number of times that a color map repeats over one
cycle of a pattern. For examplegradient covers color map values 0 to 1 over the
range from x=0 to x=1. By addingfrequency 2.0 the color map repeats twice over
that same range. The same effect can be achieved usingscale 0.5*x so the frequency
keyword isn’t that useful for patterns like gradient.

However the radial pattern wraps the color map around the+y-axis once. If you wanted
two copies of the map (or 3 or 10 or 100) you’d have to build a bigger map. Adding
frequency 2.0 causes the color map to be used twice per revolution. Try this:

pigment {

radial

color_map{[0.5 color Red][0.5 color White]}

frequency 6

}

The result is six sets of red and white radial stripes evenly spaced around the object.

The float afterfrequency can be any value. Values greater than 1.0 causes more than
one copy of the map to be used. Values from 0.0 to 1.0 cause a fraction of the map to
be used. Negative values reverses the map.

The phase value causes the map entries to be shifted so that the map starts and ends
at a different place. In the example above if you render successive frames atphase 0

thenphase 0.1, phase 0.2, etc. you could create an animation that rotates the stripes.
The same effect can be easily achieved by rotating theradial pigment using rotate
y*Angle but there are other uses where phase can be handy.

Sometimes you create a great looking gradient or wood color map but you want the
grain slightly adjusted in or out. You could re-order the color map entries but that’s a
pain. A phase adjustment will shift everything but keep the same scale. Try animating
amandel pigment for a color palette rotation effect.

These values work by applying the following formula

NewValue= fmod (OldValue * Frequency+ Phase, 1.0).

Thefrequency andphase modifiers have no effect on block patternschecker, brick,
and hexagon nor do they effect image map, bump map or material map. They also
have no effect in normal statements when used withbumps, dents, quilted or wrinkles
because these normal patterns cannot usenormal map or slope map.

They can be used with normal patternsripples and waves even though these two
patterns cannot usenormal map or slope map either. When used withripples or
waves, frequency adjusts the space between features andphase can be adjusted from
0.0 to 1.0 to cause the ripples or waves to move relative to their center for animating
the features.

270 Textures

4.12.3 Waveforms

POV-Ray allows you to apply various wave forms to the pattern function before apply-
ing it to a blend map. Blend maps arecolor map, pigment map, normal map, slope map,
density map, andtexture map.

Most of the patterns which use a blend map, use the entries in the map in order from
0.0 to 1.0. The effect can most easily be seen when these patterns are used as normal
patterns with no maps. Patterns such asgradient or onion generate a groove or
slot that looks like a ramp that drops off sharply. This is called aramp wave wave
type and it is the default wave type for most patterns. However thewood and marble
patterns use the map from 0.0 to 1.0 and then reverses it and runs it from 1.0 to 0.0.
The result is a wave form which slopes upwards to a peak, then slopes down again
in a triangle wave. In earlier versions of POV-Ray there was no way to change the
wave types. You could simulate a triangle wave on a ramp wave pattern by duplicating
the map entries in reverse, however there was no way to use a ramp wave on wood or
marble.

Now any pattern that takes a map can have the default wave type overridden. For
example:

pigment { wood color_map { MyMap } ramp_wave }

Also available aresine wave, scallop wave, cubic wave andpoly wave types. These
types are of most use in normal patterns as a type of built-in slope map. Thesine wave

takes the zig-zag of a ramp wave and turns it into a gentle rolling wave with smooth
transitions. Thescallop wave uses the absolute value of the sine wave which looks
like corduroy when scaled small or like a stack of cylinders when scaled larger. The
cubic wave is a gentle cubic curve from 0.0 to 1.0 with zero slope at the start and end.
The poly wave is an exponential function. It is followed by an optional float value
which specifies exponent. For examplepoly wave 2 starts low and climbs rapidly at
the end whilepoly wave 0.5 climbs rapidly at first and levels off at the end. If no
float value is specified, the default is 1.0 which produces a linear function identical to
ramp wave.

Although any of these wave types can be used for pigments, normals, textures, or
density the effect of many of the wave types are not as noticeable on pigments, textures,
or density as they are for normals.

Wave type modifiers have no effect on block patternschecker, brick, object and
hexagon nor do they effect image map, bump map or material map. They also have no
effect in normal statements when used withbumps, dents, quilted, ripples, waves,
or wrinkles because these normal patterns cannot usenormal map or slope map.

4.12.4 Noise Generators

There are three noise generators implemented. Changing thenoise generator will
change the appearance of noise based patterns, like bozo and granite.

• noise generator 1 the noise that was used in POVRay 3.1

• noise generator 2 ’range corrected’ version of the old noise, it does not show
the plateaus seen withnoise generator 1

4.12 Pattern Modifiers 271

• noise generator 3 generates Perlin noise

The default isnoise generator 2

Note: The noisegenerator can also be set inglobal settings

4.12.5 Turbulence

Theturbulence pattern modifier is still supported for compatibility issues, but it’s bet-
ter nowadays to use thewarp {turbulence} feature, which doesn’t have turbulence’s
limitation in transformation order (turbulence is always applied first, before any scale,
translate or rotate, whatever the order you specify). For a detailed discussion see ’Tur-
bulence versus Turbulence Warp’

The old-style turbulence is handled slightly differently when used with the agate, mar-
ble, spiral1, spiral2, and wood textures.

4.12.6 Warps

Thewarp statement is a pattern modifier that is similar to turbulence. Turbulence works
by taking the pattern evaluation point and pushing it about in a series of random steps.
However warps push the point in very well-defined, non-random, geometric ways. The
warp statement also overcomes some limitations of traditional turbulence and transfor-
mations by giving the user more control over the order in which turbulence, transfor-
mation and warp modifiers are applied to the pattern.

Currently there are seven types of warps but the syntax was designed to allow future
expansion. The turbulence warp provides an alternative way to specify turbulence. The
others modify the pattern in geometric ways.

The syntax for using awarp statement is:

WARP:

warp { WARP_ITEM }

WARP_ITEM:

repeat <Direction> [REPEAT_ITEMS...] |

black_hole <Location>, Radius [BLACK_HOLE_ITEMS...] |

turbulence <Amount> [TURB_ITEMS...]

cylindrical [orientation VECTOR | dist_exp FLOAT]

spherical [orientation VECTOR | dist_exp FLOAT]

toroidal [orientation VECTOR | dist_exp FLOAT |

major_radius FLOAT]

planar [VECTOR , FLOAT]

REPEAT_ITEMS:

offset <Amount> |

flip <Axis>

BLACK_HOLE_ITEMS:

strength Strength | falloff Amount | inverse |

repeat <Repeat> | turbulence <Amount>

TURB_ITEMS:

octaves Count | omega Amount | lambda Amount

272 Textures

You may have as many separate warp statements as you like in each pattern. The place-
ment of warp statements relative to other modifiers such ascolor map or turbulence
is not important. However placement of warp statements relative to each other and to
transformations is significant. Multiple warps and transformations are evaluated in the
order in which you specify them. For example if you translate, then warp or warp, then
translate, the results can be different.

Black Hole Warp

A black hole warp is so named because of its similarity to real black holes. Just like
the real thing, you cannot actually see a black hole. The only way to detect its presence
is by the effect it has on things that surround it.

Take, for example, a wood grain. Using POV-Ray’s normal turbulence and other texture
modifier functions, you can get a nice, random appearance to the grain. But in its
randomness it is regular - it is regularly random! Adding a black hole allows you to
create a localized disturbance in a wood grain in either one or multiple locations. The
black hole can have the effect of eithersuckingthe surrounding texture into itself (like
the real thing) orpushingit away. In the latter case, applied to a wood grain, it would
look to the viewer as if there were a knothole in the wood. In this text we use a wood
grain regularly as an example, because it is ideally suitable to explaining black holes.
However, black holes may in fact be used with any texture or pattern. The effect that
the black hole has on the texture can be specified. By default, itsuckswith the strength
calculated exponentially (inverse-square). You can change this if you like.

Black holes may be used anywhere a warp is permitted. The syntax is:

BLACK_HOLE_WARP:

warp

{

black_hole <Location>, Radius

[BLACK_HOLE_ITEMS...]

}

BLACK_HOLE_ITEMS:

strength Strength | falloff Amount | inverse | type Type |

repeat <Repeat> | turbulence <Amount>

The minimal requirement is theblack hole keyword followed by a vector<Location>
followed by a comma and a floatRadius. Black holes effect all points within the
spherical region around the location and within the radius. This is optionally followed
by any number of other keywords which control how the texture is warped.

The falloff keyword may be used with a float value to specify the power by which
the effect of the black hole falls off. The default is two. The force of the black hole at
any given point, before applying thestrength modifier, is as follows.

First, convert the distance from the point to the center to a proportion (0 to 1) that the
point is from the edge of the black hole. A point on the perimeter of the black hole
will be 0.0; a point at the center will be 1.0; a point exactly halfway will be 0.5, and so
forth. Mentally you can consider this to be a closeness factor. A closeness of 1.0 is as
close as you can get to the center (i.e. at the center), a closeness of 0.0 is as far away
as you can get from the center and still be inside the black hole and a closeness of 0.5
means the point is exactly halfway between the two.

4.12 Pattern Modifiers 273

Call this value c. Raise c to the power specified infalloff. By default Falloff is 2, so
this is cˆ2 or c squared. The resulting value is the force of the black hole at that exact
location and is used, after applying thestrength scaling factor as described below, to
determine how much the point is perturbed in space. For example, if c is 0.5 the force
is 0.5ˆ2 or 0.25. If c is 0.25 the force is 0.125. But if c is exactly 1.0 the force is 1.0.
Recall that as c gets smaller the point is farther from the center of the black hole. Using
the default power of 2, you can see that as c reduces, the force reduces exponentially
in an inverse-square relationship. Put in plain English, it means that the force is much
stronger (by a power of two) towards the center than it is at the outside.

By increasingfalloff, you can increase the magnitude of the falloff. A large value
will mean points towards the perimeter will hardly be affected at all and points towards
the center will be affected strongly. A value of 1.0 forfalloff will mean that the effect
is linear. A point that is exactly halfway to the center of the black hole will be affected
by a force of exactly 0.5. A value offalloff of less than one but greater than zero
means that as you get closer to the outside, the force increases rather than decreases.
This can have some uses but there is a side effect. Recall that the effect of a black hole
ceases outside its perimeter. This means that points just within the perimeter will be
affected strongly and those just outside not at all. This would lead to a visible border,
shaped as a sphere. A value forfalloff of 0 would mean that the force would be 1.0
for all points within the black hole, since any number larger 0 raised to the power of 0
is 1.0.

The strength keyword may be specified with a float value to give you a bit more
control over how much a point is perturbed by the black hole. Basically, the force of
the black hole (as determined above) is multiplied by the value ofstrength, which
defaults to 1.0. If you set strength to 0.5, for example, all points within the black hole
will be moved by only half as much as they would have been. If you set it to 2.0 they
will be moved twice as much.

There is a rider to the latter example, though - the movement is clipped to a maximum
of the original distance from the center. That is to say, a point that is 0.75 units from
the center may only be moved by a maximum of 0.75 units either towards the center
or away from it, regardless of the value ofstrength. The result of this clipping is
that you will have an exclusion area near the center of the black hole where all points
whose final force value exceeded or equaled 1.0 were moved by a fixed amount.

If the inverse keyword is specified then the pointspushedaway from the center in-
stead of being pulled in.

Therepeat keyword followed by a vector, allows you to simulate the effect of many
black holes without having to explicitly declare them. Repeat is a vector that tells
POV-Ray to use this black hole at multiple locations. Usingrepeat logically divides
your scene up into cubes, the first being located at<0,0,0> and going to <Repeat>.
Suppose your repeat vector was<1,5,2>. The first cube would be from<0,0,0> to <
1,5,2>. This cube repeats, so there would be one at< -1,-5,-2>, <1,5,2>, <2,10,4>
and so forth in all directions, ad infinitum.

When you userepeat, the center of the black hole does not specify an absolute location
in your scene but an offset into each block. It is only possible to use positive offsets.
Negative values will produce undefined results.

Suppose your center was<0.5,1,0.25> and the repeat vector is<2,2,2>. This gives

274 Textures

us a block at< 0,0,0> and<2,2,2>, etc. The centers of the black hole’s for these
blocks would be<0,0,0> + < 0.5,1.0,0.25>, i. e. <0.5,1.0,0.25>, and< 2,2,2> +
<0.5,1.0,0.25>, i. e.< 2,5,3.0,2.25>.

Due to the way repeats are calculated internally, there is a restriction on the values you
specify for the repeat vector. Basically, each black hole must be totally enclosed within
each block (or cube), with no part crossing into a neighboring one. This means that,
for each of the x, y and z dimensions, the offset of the center may not be less than the
radius, and the repeat value for that dimension must be>=the center plus the radius
since any other values would allow the black hole to cross a boundary. Put another
way, for each of x, y and z

Radius<= Offset or Center<= Repeat - Radius.

If the repeat vector in any dimension is too small to fit this criteria, it will be increased
and a warning message issued. If the center is less than the radius it will also be moved
but no message will be issued.

Note that none of the above should be read to mean that you can’t overlap black holes.
You most certainly can and in fact this can produce some most useful effects. The
restriction only applies to elements of thesame black hole which is repeating. You
can declare a second black hole that also repeats and its elements can quite happily
overlap the first and causing the appropriate interactions. It is legal for the repeat value
for any dimension to be 0, meaning that POV-Ray will not repeat the black hole in that
direction.

Theturbulence can only be used in a black hole withrepeat. It allows an element of
randomness to be inserted into the way the black holes repeat, to cause a more natural
look. A good example would be an array of knotholes in wood - it would look rather
artificial if each knothole were an exact distance from the previous.

The turbulence vector is a measurement that is added to each individual black hole
in an array, after each axis of the vector is multiplied by a different random amount
ranging from 0 to 1. The resulting actual position of the black hole’s center for that
particular repeat element is random (but consistent, so renders will be repeatable) and
somewhere within the above coordinates. There is a rider on the use of turbulence,
which basically is the same as that of the repeat vector. You can’t specify a value
which would cause a black hole to potentially cross outside of its particular block.

In summary: For each of x, y and z the offset of the center must be>=radius and the
value of the repeat must be>= center+ radius+ turbulence. The exception being that
repeat may be 0 for any dimension, which means do not repeat in that direction.

Some examples are given by

warp {

black_hole <0, 0, 0>, 0.5

}

warp {

black_hole <0.15, 0.125, 0>, 0.5

falloff 7

strength 1.0

repeat <1.25, 1.25, 0>

turbulence <0.25, 0.25, 0>

inverse

4.12 Pattern Modifiers 275

}

warp {

black_hole <0, 0, 0>, 1.0

falloff 2

strength 2

inverse

}

Repeat Warp

Therepeat warp causes a section of the pattern to be repeated over and over. It takes
a slice out of the pattern and makes multiple copies of it side-by-side. The warp has
many uses but was originally designed to make it easy to model wood veneer textures.
Veneer is made by taking very thin slices from a log and placing them side-by-side on
some other backing material. You see side-by-side nearly identical ring patterns but
each will be a slice perhaps 1/32th of an inch deeper.

The syntax for a repeat warp is

REPEAT_WARP:

warp { repeat <Direction> [REPEAT_ITEMS...] }

REPEAT_ITEMS:

offset <Amount> | flip <Axis>

Therepeat vector specifies the direction in which the pattern repeats and the width of
the repeated area. This vector must lie entirely along an axis. In other words, two of its
three components must be 0. For example

pigment {

wood

warp { repeat 2*x }

}

which means that from x=0 to x=2 you get whatever the pattern usually is. But from
x=2 to x=4 you get the same thing exactly shifted two units over in the x-direction.
To evaluate it you simply take the x-coordinate modulo 2. Unfortunately you get exact
duplicates which isn’t very realistic. The optionaloffset vector tells how much to
translate the pattern each time it repeats. For example

pigment {

wood

warp {repeat x*2 offset z*0.05}

}

means that we slice the first copy from x=0 to x=2 at z=0 but at x=2 to x=4 we offset
to z=0.05. In the 4 to 6 interval we slice at z=0.10. At the n-th copy we slice at 0.05 n
z. Thus each copy is slightly different. There are no restrictions on the offset vector.

Finally theflip vector causes the pattern to be flipped or mirrored every other copy of
the pattern. The first copy of the pattern in the positive direction from the axis is not
flipped. The next farther is, the next is not, etc. The flip vector is a three component x,
y, z vector but each component is treated as a boolean value that tells if you should or
should not flip along a given axis. For example

pigment {

276 Textures

wood

warp {repeat 2*x flip <1,1,0>}

}

means that every other copy of the pattern will be mirrored about the x- and y- axis but
not the z-axis. A non-zero value means flip and zero means do not flip about that axis.
The magnitude of the values in the flip vector doesn’t matter.

Turbulence versus Turbulence Warp

The POV-Ray language contains an ambiguity and limitation on the way you specify
turbulence and transformations such astranslate, rotate, scale, matrix, and
transform transforms. Usually the turbulence is done first. Then all translate, rotate,
scale, matrix, and transform operations are always done after turbulence regardless of
the order in which you specify them. For example this

pigment {

wood

scale .5

turbulence .2

}

works exactly the same as

pigment {

wood

turbulence .2

scale .5

}

The turbulence is always first. A better example of this limitation is with uneven tur-
bulence and rotations.

pigment {

wood

turbulence 0.5*y

rotate z*60

}

// as compared to

pigment {

wood

rotate z*60

turbulence 0.5*y

}

The results will be the same either way even though you’d think it should look different.

We cannot change this basic behavior in POV-Ray now because lots of scenes would
potentially render differently if suddenly the order transformation vs. turbulence mat-
tered when in the past, it didn’t.

However, by specifying our turbulence inside warp statement you tell POV-Ray that the
order in which turbulence, transformations and other warps are applied is significant.
Here’s an example of a turbulence warp.

warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }

4.12 Pattern Modifiers 277

The significance is that this

pigment {

wood

translate <1,2,3> rotate x*45 scale 2

warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }

}

producesdifferent resultsthan this...

pigment {

wood

warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }

translate <1,2,3> rotate x*45 scale 2

}

You may specify turbulence without using a warp statement. However you cannot
control the order in which they are evaluated unless you put them in a warp.

The evaluation rules are as follows:

1. First any turbulence not inside a warp statement is applied regardless of the order
in which it appears relative to warps or transformations.

2. Next each warp statement, translate, rotate, scale or matrix one-by-one, is applied
in the order the user specifies. If you want turbulence done in a specific order,
you simply specify it inside a warp in the proper place.

Turbulence Warp

Inside thewarp statement, the keywordturbulence followed by a float or vector may
be used to stir up anypigment, normal or density. A number of optional parameters
may be used with turbulence to control how it is computed. The syntax is:

TURBULENCE_ITEM:

turbulence <Amount> | octaves Count |

omega Amount | lambda Amount

Typical turbulence values range from the default 0.0, which is no turbulence, to 1.0 or
more, which is very turbulent. If a vector is specified different amounts of turbulence
are applied in the x-, y- and z-direction. For example

turbulence <1.0, 0.6, 0.1>

has much turbulence in the x-direction, a moderate amount in the y-direction and a
small amount in the z-direction.

Turbulence uses a random noise function calledDNoise. This is similar to the noise
used in thebozo pattern except that instead of giving a single value it gives a direction.
You can think of it as the direction that the wind is blowing at that spot. Points close
together generate almost the same value but points far apart are randomly different.

Turbulence usesDNoiseto push a point around in several steps calledoctaves. We
locate the point we want to evaluate, then push it around a bit using turbulence to get
to a different point then look up the color or pattern of the new point.

278 Textures

It says in effect ”Don’t give me the color at this spot... take a few random steps in
different directions and give me that color”. Each step is typically half as long as the
one before. For example:

Figure 4.7: Turbulence random walk.

The magnitude of these steps is controlled by the turbulence value. There are three
additional parameters which control how turbulence is computed. They areoctaves,
lambda and omega. Each is optional. Each is followed by a single float value. Each
has no effect when there is no turbulence.

Octaves

The octaves keyword may be followed by an integer value to control the number of
steps of turbulence that are computed. Legal values range from 1 to<10. The de-
fault value of 6 is a fairly high value; you won’t see much change by setting it to a
higher value because the extra steps are too small. Float values are truncated to inte-
ger. Smaller numbers of octaves give a gentler, wavy turbulence and computes faster.
Higher octaves create more jagged or fuzzy turbulence and takes longer to compute.

Lambda

Thelambda parameter controls how statistically different the random move of an octave
is compared to its previous octave. The default value is 2.0 which is quite random.
Values close to lambda 1.0 will straighten out the randomness of the path in the diagram
above. The zig-zag steps in the calculation are in nearly the same direction. Higher
values can look moreswirly under some circumstances.

Omega

The omega value controls how large each successive octave step is compared to the
previous value. Each successive octave of turbulence is multiplied by the omega value.
The defaultomega 0.5 means that each octave is 1/2 the size of the previous one.
Higher omega values mean that 2nd, 3rd, 4th and up octaves contribute more turbulence

4.12 Pattern Modifiers 279

giving a sharper,crinkly look while smaller omegas give a fuzzy kind of turbulence that
gets blurry in places.

Mapping using warps

Syntax:

CYLINDRICAL_WARP:

warp { cylindrical [CYLINDRICAL_ITEMS...]}

CYLINDRICAL_ITEMS:

orientation VECTOR | dist_exp FLOAT

SPHERICAL_WARP:

warp { spherical [SPHERICAL_ITEMS...]}

SPHERICAL_ITEMS:

orientation VECTOR | dist_exp FLOAT

TOROIDAL_WARP:

warp { toroidal [TOROIDAL_ITEMS...]}

TOROIDAL_ITEMS:

orientation VECTOR | dist_exp FLOAT | major_radius FLOAT

PLANAR_WARP:

warp { planar [VECTOR , FLOAT]}

With thecylindrical, spherical andtoroidal warps you can wrap checkers, bricks
and other patterns around cylinders, spheres, toruses and other objects. In essence,
these warps use the same mapping as the image maps use.

However it does 3D mapping and some concession had to be made on depth. This is
controllable bydist exp (distance exponent). In the default of 0, imagine a box<0,0>
to<1,1> (actually it is<0,0>, <distˆdist exp,distˆdist exp>) stretching to infinity
along the orientation vector. The warp takes its points from that box.

For a spheredistance is distance from origin, cylinder is distance from y-axis, torus is
distance from major radius. (or distance is minor radius if you prefer to look at it that
way)

Defaults: orientation <0,0,1>

dist exp 0

major radius 1

Examples:

torus {

1, 0.5

pigment {

hexagon

scale 0.1

warp {

toroidal

orientation y

dist_exp 1

major_radius 1

}

}

280 Textures

}

sphere {

0,1

pigment {

hexagon

scale <0.5/pi,0.25/pi,1>*0.1

warp {

spherical

orientation y

dist_exp 1

}

}

}

cylinder {

-y, y, 1

pigment {

hexagon

scale <0.5/pi, 1, 1>*0.1

warp {

cylindrical

orientation y

dist_exp 1

}

}

}

Theplanar warp was made to make a pattern act like an imagemap, of infinite size
and can be useful in combination with other mapping-warps. By default the pigment
in the XY-plane is extruded along the Z-axis. The pigment can be taken from an other
plane, by specifying the optional vector (normal of the plane) and float (distance along
the normal). The result, again, is extruded along the Z-axis.

4.12.7 Bitmap Modifiers

A bitmap modifier is a modifier used inside animage map, bump map or material map
to specify how the 2-D bitmap is to be applied to the 3-D surface. Several bitmap mod-
ifiers apply to specific kinds of maps and they are covered in the appropriate sections.
The bitmap modifiers discussed in the following sections are applicable to all three
types of bitmaps.

The once Option

Normally there are an infinite number of repeating image maps, bump maps or material
maps created over every unit square of the x-y-plane like tiles. By adding theonce

keyword after a file name you can eliminate all other copies of the map except the
one at (0,0) to (1,1). In image maps, areas outside this unit square are treated as fully
transparent. In bump maps, areas outside this unit square are left flat with no normal
modification. In material maps, areas outside this unit square are textured with the first
texture of the texture list.

For example:

4.12 Pattern Modifiers 281

image_map {

gif "mypic.gif"

once

}

The map type Option

The default projection of the image onto the x-y-plane is called aplanar map type.
This option may be changed by adding themap type keyword followed by an integer
number specifying the way to wrap the image around the object.

A map type 0 gives the default planar mapping already described.

A map type 1 gives a spherical mapping. It assumes that the object is a sphere of any
size sitting at the origin. The y-axis is the north/south pole of the spherical mapping.
The top and bottom edges of the image just touch the pole regardless of any scaling.
The left edge of the image begins at the positive x-axis and wraps the image around the
sphere from west to east in a -y-rotation. The image covers the sphere exactly once.
The once keyword has no meaning for this mapping type.

With map type 2 you get a cylindrical mapping. It assumes that a cylinder of any
diameter lies along the y-axis. The image wraps around the cylinder just like the spher-
ical map but the image remains one unit tall from y=0 to y=1. This band of color is
repeated at all heights unless theonce keyword is applied.

Finally map type 5 is a torus or donut shaped mapping. It assumes that a torus of major
radius one sits at the origin in the x-z-plane. The image is wrapped around similar to
spherical or cylindrical maps. However the top and bottom edges of the map wrap over
and under the torus where they meet each other on the inner rim.

Types 3 and 4 are still under development.

Note: that the map type option may also be applied tobump map andmaterial map
statements.

For example:

sphere{<0,0,0>,1

pigment{

image_map {

gif "world.gif"

map_type 1

}

}

}

The interpolate Option

Adding theinterpolate keyword can smooth the jagged look of a bitmap. When POV-
Ray checks a color for an image map or a bump amount for a bump map, it often checks
a point that is not directly on top of one pixel but sort of between several differently
colored pixels. Interpolations return an in-between value so that the steps between the
pixels in the map will look smoother.

282 Textures

Althoughinterpolate is legal in material maps, the color index is interpolated before
the texture is chosen. It does not interpolate the final color as you might hope it would.
In general, interpolation of material maps serves no useful purpose but this may be
fixed in future versions.

There are currently two types of interpolation:interpolate 2 gives bilinear inter-
polation whileinterpolate 4 gives normalized distance. For example:

image_map {

gif "mypic.gif"

interpolate 2

}

Default is no interpolation. Normalized distance is the slightly faster of the two, bilin-
ear does a better job of picking the between color. Normally bilinear is used.

If your map looks jaggy, try using interpolation instead of going to a higher resolution
image. The results can be very good.

Chapter 5

Interior & Media & Photons

5.1 Interior

Introduced in POV-Ray 3.1 is an object modifier statement calledinterior. The
syntax is:

INTERIOR:

interior { [INTERIOR_IDENTIFIER] [INTERIOR_ITEMS...] }

INTERIOR_ITEM:

ior Value | caustics Value | dispersion Value |

dispersion_samples Samples | fade_distance Distance |

fade_power Power | fade_color <Color>

MEDIA...

Interior default values:

ior : 1.0

caustics : 0.0

dispersion : 1.0

dispersion_samples : 7

fade_distance : 0.0

fade_power : 0.0

fade_color : <0,0,0>

Theinterior contains items which describe the properties of the interior of the object.
This is in contrast to thetexture andinterior texture which describe the surface
properties only. The interior of an object is only of interest if it has a transparent texture
which allows you to see inside the object. It also applies only to solid objects which
have a well-defined inside/outside distinction.

Note: the open keyword, orclipped by modifier also allows you to see inside but
interior features may not render properly. They should be avoided if accurate interiors
are required.

Interior identifiers may be declared to make scene files more readable and to parame-
terize scenes so that changing a single declaration changes many values. An identifier
is declared as follows.

284 Interior & Media & Photons

INTERIOR_DECLARATION:

#declare IDENTIFIER = INTERIOR |

#local IDENTIFIER = INTERIOR

WhereIDENTIFIER is the name of the identifier up to 40 characters long andINTE-
RIOR is any validinterior statement. See ”#declare vs. #local” for information on
identifier scope.

5.1.1 Why are Interior and Media Necessary?

In previous versions of POV-Ray, most of the items in theinterior statement were
previously part of thefinish statement. Also thehalo statement which was once part
of the texture statement has been discontinued and has been replaced by themedia

statement which is part ofinterior.

You are probably askingWHY? As explained earlier, theinterior contains items
which describe the properties of the interior of the object. This is in contrast to the
texture which describes the surface properties only. However this is not just a philo-
sophical change. There were serious inconsistencies in the old model.

The main problem arises when atexture map or other patterned texture is used. These
features allow you to create textures that are a blend of two textures and which vary
the entire texture from one point to another. It does its blending by fully evaluating
the apparent color as though only one texture was applied and then fully reevaluating
it with the other texture. The two final results are blended.

It is totally illogical to have a ray enter an object with one index or refraction and
then recalculate with another index. The result is not an average of the two ior values.
Similarly it makes no sense to have a ray enter at one ior and exit at a different ior
without transitioning between them along the way. POV-Ray only calculates refraction
as the ray enters or leaves. It cannot incrementally compute a changing ior through
the interior of an object. Real world objects such as optical fibers or no-line bifocal
eyeglasses can have variable iors but POV-Ray cannot simulate them.

Similarly the halo calculations were not performed as the syntax implied. Using a
halo in such multi-textured objects did not vary thehalo through the interior of the
object. Rather, it computed two separate halos through the whole object and averaged
the results. The new design formedia which replaceshalo makes it possible to have
media that varies throughout the interior of the object according to a pattern but it
does so independently of the surface texture. Because there are other changes in the
design of this feature which make it significantly different, it was not only moved to
theinterior but the name was changed.

During our development, someone asked if we will create patterned interiors or a hy-
potheticalinterior map feature. We will not. That would defeat the whole purpose of
moving these features in the first place. They cannot be patterned and have logical or
self-consistent results.

5.1 Interior 285

5.1.2 Empty and Solid Objects

It is very important that you know the basic concept behind empty and solid objects
in POV-Ray to fully understand how features like interior and translucency are used.
Objects in POV-Ray can either be solid, empty or filled with (small) particles.

A solid object is made from the material specified by its pigment and finish statements
(and to some degree its normal statement). By default all objects are assumed to be
solid. If you assign a stone texture to a sphere you’ll get a ball made completely of
stone. It’s like you had cut this ball from a block of stone. A glass ball is a massive
sphere made of glass. You should be aware that solid objects are conceptual things. If
you clip away parts of the sphere you’ll clearly see that the interior is empty and it just
has a very thin surface.

This is not contrary to the concept of a solid object used in POV-Ray. It is assumed
that all space inside the sphere is covered by the sphere’sinterior. Light passing
through the object is affected by attenuation and refraction properties. However there
is no room for any other particles like those used by fog or interior media.

Empty objects are created by adding thehollow keyword (see ”Hollow”) to the object
statement. An empty (or hollow) object is assumed to be made of a very thin surface
which is of the material specified by the pigment, finish and normal statements. The
object’s interior is empty, it normally contains air molecules.

An empty object can be filled with particles by adding fog or atmospheric media to the
scene or by adding an interior media to the object. It is very important to understand
that in order to fill an object with any kind of particles it first has to be made hollow.

There is a pitfall in the empty/solid object implementation that you have to be aware
of.

In order to be able to put solid objects inside a media or fog, a test has to be made for
every ray that passes through the media. If this ray travels through a solid object the
media will not be calculated. This is what anyone will expect. A solid glass sphere in
a fog bank does not contain fog.

The problem arises when the camera ray is inside any non-hollow object. In this case
the ray is already traveling through a solid object and even if the media’s container
object is hit and it is hollow, the media will not be calculated. There is no way of
telling between these two cases.

POV-Ray has to determine whether the camera is inside any object prior to tracing a
camera ray in order to be able to correctly render medias when the camera is inside the
container object. There’s no way around doing this.

The solution to this problem (that will often happen with infinite objects like planes) is
to make those objects hollow too. Thus the ray will travel through a hollow object, will
hit the container object and the media will be calculated.

5.1.3 Scaling objects with an interior

All the statements that can be put in an interior represent aspects of the matter that
an object is made of. Scaling an object, changing its size, doesn’t change its matter.

286 Interior & Media & Photons

Two pieces of the same quality steel, one twice as big as the other, both have the same
density. The bigger piece is quite a bit heavier though.

So, in POV-Ray, if you design a lens from a glass with an ior of 1.5 and you scale it
bigger, the focal distance of the lens will get longer as the ior stays the same. For light
attenuation it means that an object will be ”darker” after being scaled up. The light
intensity decreases a certain amount per pov-unit. The object has become bigger, more
pov-units, so more light is faded. Thefade distance, fade power themselves have
not been changed.

The same applies to media. Imagine media as a density of particles, you specify 100
particles per cubic pov-unit. If we scale a 1 cubic pov-unit object to be twice as big in
every direction, we will have a total of 800 particles in the object. The object will look
different, as we have more particles to look through. Yet the objects density is still 100
particles per cubic pov-unit. In media this ”particle density” is set by the color after
emission, absorption, or in thescattering statement

#version 3.5;

global_settings {assumed_gamma 1.0}

camera {location <0, 0,-12.0> look_at 0 angle 30 }

#declare Container_T= texture {

pigment {rgbt <1,1,1,1>}

finish {ambient 0 diffuse 0}

}

#declare Scale=2;

box { //The reference

<-1,-1,0>,<1,1,.3>

hollow

texture {Container_T}

interior {

media {

intervals 1

samples 1,1

emission 1

}

}

translate <-2.1,0,0>

}

box { //Object scaled twice as big

<-1,-1,0>,<1,1,.3> //looks different but same

hollow //particle density

texture {Container_T}

interior {

media {

intervals 1

samples 1,1

emission 1

}

}

scale Scale

translate<0,0,12>

5.1 Interior 287

}

box { //Object scaled twice as big

<-1,-1,0>,<1,1,.3> //looks the same but particle

hollow //density scaled down

texture {Container_T}

interior {

media {

intervals 1

samples 1,1

emission 1/Scale

}

}

scale Scale

translate<0,0,12>

translate<4.2,0,0>

}

The third object in the scene above, shows what to do, if you want to scale the object
andwant it to keep the same look as before. The interior feature has to be divided by
the same amount, that the object was scaled by. This is only possible when the object
is scaled uniform.

In general, the correct approach is to scale the media density proportionally to the
change in container volume. For non-uniform scaling to get an unambiguous result,
that can be explained in physical terms, we need to do:

Density*sqrt(3)/vlength(Scale)

where Density is your original media density and Scale is the scaling vector applied to
the container.

Note: the density modifiers inside thedensity{} statement are scaled along with the
object.

5.1.4 Refraction

When light passes through a surface either into or out of a dense medium the path of
the ray of light is bent. Such bending is calledrefraction. The amount of bending
or refracting of light depends upon the density of the material. Air, water, crystal and
diamonds all have different densities and thus refract differently. Theindex of refraction
or ior value is used by scientists to describe the relative density of substances. Theior

keyword is used in POV-Ray in theinterior to turn on refraction and to specify the
ior value. For example:

object { MyObject pigment {Clear } interior { ior 1.5 } }

The default ior value of 1.0 will give no refraction. The index of refraction for air is
1.0, water is 1.33, glass is 1.5 and diamond is 2.4.

Normally transparent or semi-transparent surfaces in POV-Ray do not refract light. Ear-
lier versions of POV-Ray required you to use therefraction keyword in thefinish
statement to turn on refraction. This is no longer necessary. Any non-zeroior value
now turns refraction on.

288 Interior & Media & Photons

In addition to turning refraction on or off, the oldrefraction keyword was followed by
a float value from 0.0 to 1.0. Values in between 0.0 and 1.0 would darken the refracted
light in ways that do not correspond to any physical property. Many POV-Ray scenes
were created with intermediate refraction values before this bug was discovered so
the feature has been maintained. A more appropriate way to reduce the brightness
of refracted light is to change thefilter or transmit value in the colors specified
in the pigment statement or to use thefade power andfade distance keywords. See
”Attenuation”.

Note: neither theior nor refraction keywords cause the object to be transparent.
Transparency only occurs if there is a non-zerofilter or transmit value in the color.

The refraction andior keywords were originally specified infinish but are now
properly specified in interior. They are accepted infinish for backward compati-
bility and generate a warning message.

5.1.5 Dispersion

For all materials with a ior different from 1.0 the refractive index isn’t constant through-
out the spectrum. It changes as a function of wavelength. Generally the refractive index
decreases as the wavelength increases. Therefore light passing through a material will
be separated according to wavelength. This is known as chromatic dispersion.

By default POV-Ray does not calculate dispersion as light travels through a transparent
object. In order to get a more realistic effect thedispersion anddispersion samples
keywords can be added to theinterior{} block. They will simulate dispersion by
creating a prismatic color effect in the object.

The dispersion value is the ratio of refractive indices for violet to red. It controls
the strength of dispersion (how much the colors are spread out) used. A DISPER-
SION VALUE of 1 will give no dispersion, good values are 1.01 to 1.1.

Note: there will be no dispersion, unless theior keyword has been specified ininterior{
}. An ior of 1 is legal. The ior has no influence on the dispersion strength, only on the
angle of refraction.

As POV-Ray does not use wavelengths for raytracing, a spectrum is simulated. The
dispersion samples value controls the amount of color-steps and smoothness in the
spectrum. The default value is 7, the minimum is 2. Values up to 100 or higher may be
needed to get a very smooth result.

Dispersion & Caustics

Dispersion only affects the interior of an object and has no effect on faked caustics (See
”Faked Caustics”).
To see the effects of dispersion in caustics, photon mapping is needed (See the sections
”Photons” and ”Dispersion & Photons”).

5.1 Interior 289

5.1.6 Attenuation

Light attenuation is used to model the decrease in light intensity as the light travels
through a transparent object. The keywordsfade power, fade distance andfade color
are specified in theinterior statement.

Thefade distance value determines the distance the light has to travel to reach half in-
tensity while thefade power value determines how fast the light will fall off. fade color
colorizes the attenuation. For realistic effects a fade power of 1 to 2 should be used.
Default values forfade power andfade distance is 0.0 which turns this feature off.
Default forfade color is <0,0,0>, if fade color is <1,1,1> there is no attenuation.
The actual colors give colored attenuation.<1,0,0> looks red, not cyan as in media.

The attenuation is calculated by a formula similar to that used for light source attenua-
tion.

attenuation=
1

1+
(

d
fade distance

)fade power

Equation 5.1:

If you set fadepower in the interior of an object at 1000 or above, a realistic exponential
attenuation function will be used:

Attenuation = exp(-depth/fade_dist)

Thefade power andfade distance keywords were originally specified infinish but
are now properly specified ininterior. They are accepted infinish for backward
compatibility and generate a warning message.

5.1.7 Simulated Caustics

Caustics are light effects that occur if light is reflected or refracted by specular reflective
or refractive surfaces. Imagine a glass of water standing on a table. If sunlight falls
onto the glass you will see spots of light on the table. Some of the spots are caused by
light being reflected by the glass while some of them are caused by light being refracted
by the water in the glass.

Since it is a very difficult and time-consuming process to actually calculate those effects
(though it is not impossible, see the sections ”Photons”) POV-Ray uses a quite simple
method to simulate caustics caused by refraction. The method calculates the angle
between the incoming light ray and the surface normal. Where they are nearly parallel
it makes the shadow brighter. Where the angle is greater, the effect is diminished.
Unlike real-world caustics, the effect does not vary based on distance. This caustic
effect is limited to areas that are shaded by the transparent object. You’ll get no caustic
effects from reflective surfaces nor in parts that are not shaded by the object.

The caustics Power keyword controls the effect. Values typically range from 0.0 to
1.0 or higher. Zero is the default which is no caustics. Low, non-zero values give broad
hot-spots while higher values give tighter, smaller simulated focal points.

290 Interior & Media & Photons

The caustics keyword was originally specified infinish but is now properly spec-
ified in interior. It is accepted in finish for backward compatibility and generates
a warning message.

5.1.8 Object-Media

Theinterior statement may contain one or moremedia statements. Media is used to
simulate suspended particles such as smoke, haze, or dust. Or visible gasses such as
steam or fire and explosions. When used with an object interior, the effect is constrained
by the object’s shape. The calculations begin when the ray enters an object and ends
when it leaves the object. This section only discusses media when used with object
interior. The complete syntax and an explanation of all of the parameters and options
for media is given in the section ”Media”.

Typically the object itself is given a fully transparent texture however media also works
in partially transparent objects. The texture pattern itself does not effect the interior
media except perhaps to create shadows on it. The texture pattern of an object applies
only to the surface shell. Any interior media patterns are totally independent of the
texture.

In previous versions of POV-Ray, this feature was calledhalo and was part of the
texture specification along withpigment, normal, andfinish. See ”Why are Inte-
rior and Media Necessary?” for an explanation of the reasons for the change.

Media may also be specified outside an object to simulate atmospheric media. There is
no constraining object in this case. If you only want media effects in a particular area,
you should use object media rather than only relying upon the media pattern. In general
it will be faster and more accurate because it only calculates inside the constraining
object. See ”Atmospheric Media” for details on unconstrained uses of media.

You may specify more than onemedia statement perinterior statement. In that case,
all of the media participate and where they overlap, they add together.

Any object which is supposed to have media effects inside it, whether those effects
are object media or atmospheric media, must have thehollow on keyword applied.
Otherwise the media is blocked. See ”Empty and Solid Objects” for details.

5.2 Media

Themedia statement is used to specify particulate matter suspended in a medium such
air or water. It can be used to specify smoke, haze, fog, gas, fire, dust etc. Previous ver-
sions of POV-Ray had two incompatible systems for generating such effects. One was
halo for effects enclosed in a transparent or semi-transparent object. The other was
atmosphere for effects that permeated the entire scene. This duplication of systems
was complex and unnecessary. Bothhalo andatmosphere have been eliminated. See
”Why are Interior and Media Necessary?” for further details on this change. See ”Ob-
ject Media” for details on how to usemedia with objects. See ”Atmospheric Media”
for details on usingmedia for atmospheric effects outside of objects. This section and

5.2 Media 291

the sub-sections which follow explains the details of the variousmedia options which
are useful for either object media or atmospheric media.

Media works by sampling the density of particles at some specified number of points
along the ray’s path. Sub-samples are also taken until the results reach a specified
confidence level. POV-Ray provides three methods of sampling. When used in an
object’s interior statement, sampling only occurs inside the object. When used for
atmospheric media, the samples run from the camera location until the ray strikes an
object. Therefore for localized effects, it is best to use an enclosing object even though
the density pattern might only produce results in a small area whether the media was
enclosed or not.

The complete syntax for amedia statement is as follows:

MEDIA:

media { [MEDIA_IDENTIFIER] [MEDIA_ITEMS...] }

MEDIA_ITEMS:

method Number | intervals Number | samples Min, Max |

confidence Value | variance Value | ratio Value |

absorption COLOR | emission COLOR | aa_threshold Value |

aa_level Value |

scattering {

Type, COLOR [eccentricity Value] [extinction Value]

} |

density {

[DENSITY_IDENTIFIER] [PATTERN_TYPE] [DENSITY_MODIFIER...]

} |

TRANSFORMATIONS

DENSITY_MODIFIER:

PATTERN_MODIFIER | DENSITY_LIST | COLOR_LIST |

color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY } |

density_map { DENSITY_MAP_BODY }

Media default values:

aa_level : 4

aa_threshold : 0.1

absorption : <0,0,0>

confidence : 0.9

emission : <0,0,0>

intervals : 10

method : 3

ratio : 0.9

samples : Min 1, Max 1

variance : 1/128

SCATTERING

COLOR : <0,0,0>

eccentricity : 0.0

extinction : 1.0

If a media identifier is specified, it must be the first item. All other media items may
be specified in any order. All are optional. You may have multipledensity statements
in a singlemedia statement. See ”Multiple Density vs. Multiple Media” for details.
Transformations apply only thedensity statements which have been already specified.
Any density after a transformation is not affected. If themedia has nodensity state-

292 Interior & Media & Photons

ments and none was specified in any media identifier, then the transformation has no
effect. All other media items except fordensity and transformations override default
values or any previously set values for thismedia statement.

Note: some media effects depend upon light sources. However the participation of a
light source depends upon themedia interaction andmedia attenuation keywords.
See ”Atmospheric Media Interaction” and ”Atmospheric Attenuation” for details.

Note: In the POV-Ray 3.1 documentation it said: ”Note a strange design side-effect
was discovered during testing and it was too difficult to fix. If the enclosing object uses
transmit rather thanfilter for transparency, then themedia casts no shadows.”This
is not the case anymore in POV-Ray 3.5. Whether you specifytransmit or filter to
create a transparent container object, themedia will always cast a shadow. If a shadow
is not desired, use theno shadow keyword for the container object.

5.2.1 Media Types

There are three types of particle interaction inmedia: absorbing, emitting, and scatter-
ing. All three activities may occur in a single media. Each of these three specifications
requires a color. Only the red, green, and blue components of the color are used. The
filter and transmit values are ignored. For this reason it is permissible to use one float
value to specify an intensity of white color. For example the following two lines are
legal and produce the same results:

emission 0.75

emission rgb<0.75,0.75,0.75>

Absorption

The absorption keyword specifies a color of light which is absorbed when looking
through the media. For exampleabsorption rgb<0,1,0> blocks the green light but
permits red and blue to get through. Therefore a white object behind the media will
appear magenta.

The default value isrgb<0,0,0> which means no light is absorbed – all light passes
through normally.

Emission

The emission keyword specifies a color of the light emitted from the particles. Al-
though we say they ”emit” light, this only means that they are visible without any
illumination shining on them. They do not really emit light that is cast on to nearby
objects. This is similar to an object with highambient values. The default value is
rgb<0,0,0> which means no light is emitted.

Scattering

The syntax of ascattering statement is:

5.2 Media 293

SCATTERING:

scattering {

Type, COLOR [eccentricity Value] [extinction Value]

}

The first float value specifies the type of scattering. This is followed by the color of the
scattered light. The default value if noscattering statement is given isrgb<0,0,0>
which means no scattering occurs.

The scattering effect is only visible when light is shining on the media from a light
source. This is similar todiffuse reflection off of an object. In addition to reflecting
light, a scattering media also absorbs light like anabsorption media. The balance
between how much absorption occurs for a given amount of scattering is controlled by
the optional extinction keyword and a single float value. The default value of 1.0
gives an extinction effect that matches the scattering. Values such asextinction 0.25

give 25% the normal amount. Usingextinction 0.0 turns it off completely. Any
value other than the 1.0 default is contrary to the real physical model but decreasing
extinction can give you more artistic flexibility.

The integer valueType specifies one of five different scattering phase functions rep-
resenting the different models: isotropic, Mie (haze and murky atmosphere), Rayleigh,
and Henyey-Greenstein.

Type 1,isotropic scatteringis the simplest form of scattering because it is independent
of direction. The amount of light scattered by particles in the atmosphere does not
depend on the angle between the viewing direction and the incoming light.

Types 2 and 3 areMie hazeandMie murkyscattering which are used for relatively
small particles such as minuscule water droplets of fog, cloud particles, and particles
responsible for the polluted sky. In this model the scattering is extremely directional
in the forward direction i.e. the amount of scattered light is largest when the incident
light is anti-parallel to the viewing direction (the light goes directly to the viewer). It
is smallest when the incident light is parallel to the viewing direction. The haze and
murky atmosphere models differ in their scattering characteristics. The murky model
is much more directional than the haze model.

Figure 5.1: The Mie

Type 4Rayleigh scatteringmodels the scattering for extremely small particles such as
molecules of the air. The amount of scattered light depends on the incident light angle.

294 Interior & Media & Photons

Figure 5.2: The Mie

It is largest when the incident light is parallel or anti-parallel to the viewing direction
and smallest when the incident light is perpendicular to the viewing direction. You
should note that the Rayleigh model used in POV-Ray does not take the dependency of
scattering on the wavelength into account.

Figure 5.3: The Rayleigh scattering function.

Type 5 is theHenyey-Greenstein scatteringmodel. It is based on an analytical function
and can be used to model a large variety of different scattering types. The function
models an ellipse with a given eccentricity e. This eccentricity is specified by the op-
tional keyword eccentricity which is only used for scattering type five. The default
eccentricity value of zero defines isotropic scattering while positive values lead to scat-
tering in the direction of the light and negative values lead to scattering in the opposite
direction of the light. Larger values of e (or smaller values in the negative case) increase
the directional property of the scattering.

5.2.2 Sampling Parameters & Methods

Media effects are calculated by sampling the media along the path of the ray. It uses
a method calledMonte Carlo integration.The intervals keyword may be used to
specify the integer number of intervals used to sample the ray. The default number

5.2 Media 295

Figure 5.4: The Henyey-Greenstein scattering function for different eccentricity values.

of intervals is 10. For object media the intervals are spread between the entry and
exit points as the ray passes through the container object. For atmospheric media,
the intervals spans the entire length of the ray from its start until it hits an object. For
media types which interact with spotlights or cylinder lights, the intervals which are not
illuminated by these light types are weighted differently than the illuminated intervals
when distributing samples.

Theratio keyword distributes intervals differently between lit and unlit areas. The de-
fault value ofratio 0.9 means that lit intervals get more samples than unlit intervals.
Note that the total number of intervals must exceed the number of illuminated intervals.
If a ray passes in and out of 8 spotlights but you’ve only specified 5 intervals then an
error occurs.

Thesamples Min, Max keyword specifies the minimum and maximum number of sam-
ples taken per interval. The default values aresamples 1,1.

As each interval is sampled, the variance is computed. If the variance is below a thresh-
old value, then no more samples are needed. Thevariance andconfidence keywords
specify the permitted variance allowed and the confidence that you are within that
variance. The exact calculations are quite complex and involve chi-squared tests and
other statistical principles too messy to describe here. The default values arevariance

1.0/128 andconfidence 0.9. For slower more accurate results, decrease the variance
and increase the confidence.

Note: the maximum number of samples limits the calculations even if the proper vari-
ance and confidence are never reached.

The method keyword lets you specify what sampling method is used, POV-Ray pro-
vides three.Method 1 is the method described above.

Samplemethod 2 distributes samples evenly along the viewing ray or light ray. The
latter can make things look smoother sometimes. If you specify a max samples higher
than the minimum samples, POV will take additional samples, but they will be random,
just like in method 1. Therefore, it is suggested you set the max samples equal to the
minimum samples.jitter will cause method 2 to look similar to method 1. It should
be followed by a float, and a value of 1 will stagger the samples in the full range
between samples.

296 Interior & Media & Photons

Samplemethod 3 uses adaptive sampling (similar to adaptive anti-aliasing) which is
very much like the sampling method used in POV-Ray 3.0’s atmosphere. This code was
written from the ground-up to work with media, however. Adaptive sampling works
by taking another sample between two existing samples if there is too much variance
in the original two samples. This leads to fewer samples being taken in areas where
the effect from the media remains constant. The adaptive sampling is only performed
if the minimum samples are set to 3 or more.

You can specify the anti-aliasing recursion depth using theaa level keyword followed
by an integer. You can specify the anti-aliasing threshold by using theaa threshold

followed by a float. The default foraa level is 4 and the defaultaa threshold is 0.1.
jitter also works with method 3. Sample method 3 ignores the maximum samples
value. It’s usually best to only use one interval with method 3. Too many intervals can
lead to artefacts, and POV will create more intervals if it needs them.

5.2.3 Density

Particles of media are normally distributed in constant density throughout the media.
However thedensity statement allows you to vary the density across space using any
of POV-Ray’s pattern functions such as those used in textures. If nodensity statement
is given then the density remains a constant value of 1.0 throughout the media. More
than onedensity may be specified permedia statement. See ”Multiple Density vs.
Multiple Media”. The syntax fordensity is:

DENSITY:

density

{

[DENSITY_IDENTIFIER]

[DENSITY_TYPE]

[DENSITY_MODIFIER...]

}

DENSITY_TYPE:

PATTERN_TYPE | COLOR

DENSITY_MODIFIER:

PATTERN_MODIFIER | DENSITY_LIST | color_map { COLOR_MAP_BODY } |

colour_map { COLOR_MAP_BODY } | density_map { DENSITY_MAP_BODY }

Thedensity statement may begin with an optional density identifier. All subsequent
values modify the defaults or the values in the identifier. The next item is a pattern
type. This is any one of POV-Ray’s pattern functions such asbozo, wood, gradient,
waves, etc. Of particular usefulness are thespherical, planar, cylindrical, and
boxed patterns which were previously available only for use with our discontinued
halo feature. All patterns return a value from 0.0 to 1.0. This value is interpreted as
the density of the media at that particular point. See ”Patterns” for details on particular
pattern types. Although a solidCOLORpattern is legal, in general it is used only when
thedensity statement is inside adensity map.

5.2 Media 297

General Density Modifiers

A density statement may be modified by any of the general pattern modifiers such
as transformations,turbulence and warp. See ”Pattern Modifiers” for details. In
addition there are several density-specific modifiers which can be used.

Density with color map

Typically amedia uses just one constant color throughout. Even if you vary the den-
sity, it is usually just one color which is specified by theabsorption, emission, or
scattering keywords. However when usingemission to simulate fire or explosions,
the center of the flame (high density area) is typically brighter and white or yellow. The
outer edge of the flame (less density) fades to orange, red, or in some cases deep blue.
To model the density-dependent change in color which is visible, you may specify a
color map. The pattern function returns a value from 0.0 to 1.0 and the value is passed
to the color map to compute what color or blend of colors is used. See ”Color Maps”
for details on how pattern values work withcolor map. This resulting color is multi-
plied by the absorption, emission and scattering color. Currently there is no way
to specify different color maps for each media type within the samemedia statement.

Consider this example:

media{

emission 0.75

scattering {1, 0.5}

density { spherical

color_map {

[0.0 rgb <0,0,0.5>]

[0.5 rgb <0.8, 0.8, 0.4>]

[1.0 rgb <1,1,1>]

}

}

}

The color map ranges from white at density 1.0 to bright yellow at density 0.5 to
deep blue at density 0. Assume we sample a point at density 0.5. The emission is
0.75*<0.8,0.8,0.4> or<0.6,0.6,0.3>. Similarly the scattering color is 0.5*<0.8,0.8,0.4>
or <0.4,0.4,0.2>.

For block pattern typeschecker, hexagon, and brick you may specify a color list
such as this:

density{

checker

density {rgb<1,0,0>}

density {rgb<0,0,0>}

}

See ”Color List Pigments” which describes howpigment uses a color list. The same
principles apply when using them withdensity.

298 Interior & Media & Photons

Density Maps and Density Lists

In addition to specifying blended colors with a color map you may create a blend of
densities using adensity map. The syntax for a density map is identical to a color map
except you specify a density in each map entry (and not a color).

The syntax fordensity map is as follows:

DENSITY_MAP:

density_map { DENSITY_MAP_BODY }

DENSITY_MAP_BODY:

DENSITY_MAP_IDENTIFIER | DENSITY_MAP_ENTRY...

DENSITY_MAP_ENTRY:

[Value DENSITY_BODY]

WhereValue is a float value between 0.0 and 1.0 inclusive and eachDENSITYBODY
is anything which can be inside adensity{...} statement. Thedensity keyword and
{} braces need not be specified.

Note: the [] brackets are part of the actualDENSITYMAP ENTRY. They are not
notational symbols denoting optional parts. The brackets surround each entry in the
density map.

There may be from 2 to 256 entries in the map.

Density maps may be nested to any level of complexity you desire. The densities in a
map may have color maps or density maps or any type of density you want.

Entire densities may also be used with the block patterns such aschecker, hexagon
andbrick. For example...

density {

checker

density { Flame scale .8 }

density { Fire scale .5 }

}

Note: in the case of block patterns thedensitywrapping is required around the density
information.

A density map is also used with theaverage density type. See ”Average” for details.

You may declare and use density map identifiers but the only way to declare a density
block pattern list is to declare a density identifier for the entire density.

Multiple Density vs. Multiple Media

It is possible to have more than onemedia specified per object and it is legal to have
more than onedensity per media. The effects are quite different. Consider this ex-
ample:

object {

MyObject

pigment { rgbf 1 }

interior {

media {

5.3 Photons 299

density { Some_Density }

density { Another_Density }

}

}

}

As the media is sampled, calculations are performed for each density pattern at each
sample point. The resulting samples are multiplied together. Suppose one density
returnedrgb<.8,.8,.4> and the other returnedrgb<.25,.25,0>. The resulting color
is rgb<.2,.2,0>.

Note: in areas where one density returns zero, it will wipe out the other density. The
end result is that only density areas which overlap will be visible. This is similar to a
CSG intersection operation. Now consider

object {

MyObject

pigment { rgbf 1 }

interior {

media {

density { Some_Density }

}

media {

density { Another_Density }

}

}

}

In this case each media is computed independently. The resulting colors are added
together. Suppose one density and media returnedrgb<.8,.8,.4> and the other re-
turned rgb<.25,.25,0>. The resulting color isrgb<1.05,1.05,.4>. The end result
is that density areas which overlap will be especially bright and all areas will be visible.
This is similar to a CSG union operation. See the sample scenescenes\interior\media\media4.pov

for an example which illustrates this.

5.3 Photons

5.3.1 Overview

The basic goal of this implementation of the photon map is to render true reflective and
refractive caustics. The photon map was first introduced by Henrik Wann Jensen (see
Suggested Reading).

Photon mapping is a technique which uses a forward ray-tracing pre-processing step
to render refractive and reflective caustics realistically. This means that mirrors can
reflect light rays and lenses can focus light.

Photon mapping works by shooting packets of light (photons) from light sources into
the scene. The photons are directed towards specific objects. When a photon hits an
object after passing through (or bouncing off of) the target object, the ray intersection
is stored in memory. This data is later used to estimate the amount of light contributed
by reflective and refractive caustics.

300 Interior & Media & Photons

Examples

Figure 5.5: Reflective caustics

This image shows refractive caustics from a sphere and a cylinder. Both use an index
of refraction of1.2. Also visible is a small amount of reflective caustics from the metal
sphere, and also from the clear cylinder and sphere.

Figure 5.6: Photons used for lenses and caustics

Here we have three lenses and three light sources. The middle lens has photon mapping
turned off. You can also see some reflective caustics from the brass box (some light
reflects and hits the blue box, other light bounces through the nearest lens and is focused
in the lower left corner of the image).

5.3.2 Using Photon Mapping in Your Scene

When designing a scene with photons, it helps to think of the scene objects in two
categories. Objects in the first category will show photon caustics when hit by pho-
tons. Objects in the second category cause photon caustics by reflecting or refracting
photons. Some objects may be in both categories, and some objects may be in neither
category.

Category 1 - Objects that show photon caustics

5.3 Photons 301

By default, all objects are in the first category. Whenever a photon hits an object, the
photon is stored and will later be used to render caustics on that object. This means that,
by default, caustics from photons can appear on any surface. To speed up rendering,
you can take objects out of this category. You do this with the line:photons{collect

off}. If you use this syntax, caustics from photons will not appear on the object. This
will save both memory and computational time during rendering.

Category 2 - Objects that cause photon caustics

By default, there are no objects in the second category. If you want your object to
cause caustics, you need to do two things. First, make your object into a ”target.” You
do this with thetarget keyword. This enables light sources to shoot photons at your
object. Second, you need to specify if your object reflects photons, refracts photons, or
both. This is done with thereflection on andrefraction on keywords. To allow an
object to reflect and refract photons, you would use the following lines of code inside
the object:

photons{

target

reflection on

refraction on

}

Generally speaking, you don’t want an object to be in both categories. Most objects
that cause photon caustics do not themselves have much color or brightness. Usually
they simply refract or reflect their surroundings. For this reason, it is usually a waste
of time to display photon caustics on such surfaces. Even if computed, the effects from
the caustics would be so dim that they would go unnoticed.

Sometimes, you may also wish to addphotons{collect off} to other clear or reflective
objects, even if they are not photon targets. Again, this is done to prevent unnecessary
computation of caustic lighting.

Finally, you may wish to enable photon reflection and refraction for a surface, even if
it is not a target. This allows indirect photons (photons that have already hit a target
and been reflected or refracted) to continue their journey after hitting this object.

Photon Global Settings

global_photon_block:

photons {

spacing <photon_spacing> | count <photons_to_shoot>

[gather <min_gather>, <max_gather>]

[media <max_steps> [,<factor>]]

[jitter <jitter_amount>]

[max_trace_level <photon_trace_level>]

[adc_bailout <photon_adc_bailout>]

[save_file "filename" | load_file "filename"]

[autostop <autostop_fraction>]

[expand_thresholds <percent_increase>, <expand_min>]

[radius <gather_radius>,<multiplier>,

<gather_radius_media>,<multiplier>]

302 Interior & Media & Photons

}

All photons default values:

Global :

expand_min : 40

gather : 20, 100

jitter : 0.4

media : 0

Object :

collect : on

refraction : off

reflection : off

split_union : on

target : 1.0

Light_source:

area_light : off

refraction : off

reflection : off

To specify photon gathering and storage options you need to add a photons block to the
global settings section of your scene.

For example:

global_settings {

photons {

count 20000

autostop 0

jitter .4

}

}

The number of photons generated can be set using either the spacing or count key-
words:

• If spacing is used, it specifies approximately the average distance between pho-
tons on surfaces. If you cut the spacing in half, you will get four times as many
surface photons, and eight times as many media photons.

• If count is used, POV-Ray will shoot the approximately number of photons spec-
ified. The actual number of photons that result from this will almost always be
at least slightly different from the number specified. Still, if you double the pho-
tons to shoot value, then twice as many photons will be shot. If you cut the value
in half, then half the number of photons will be shot.

– It may be less, because POV shoots photons at a target object’s bounding
box, which means that some photons will miss the target object.

– On the other hand, may be more, because each time one object hits an
object that has both reflection and refraction, two photons are created (one
for reflection and one for refraction).

5.3 Photons 303

– POV will attempt to compensate for these two factors, but it can only es-
timate how many photons will actually be generated. Sometimes this esti-
mation is rather poor, but the feature is still usable.

The keywordgather allows you to specify how many photons are gathered at each
point during the regular rendering step. The first number (default 20) is the minimum
number to gather, while the second number (default 100) is the maximum number to
gather. These are good values and you should only use different ones if you know what
you’re doing.

The keywordmedia turns on media photons. The parametermax steps specifies the
maximum number of photons to deposit over an interval. The optional parameter factor
specifies the difference in media spacing compared to surface spacing. You can increase
factor and decrease maxsteps if too many photons are being deposited in media.

The keywordjitter specifies the amount of jitter used in the sampling of light rays
in the pre-processing step. The default value is good and usually does not need to be
changed.

The keywordsmax trace level andadc bailout allow you to specify these attributes
for the photon-tracing step. If you do not specify these, the values for the primary
ray-tracing step will be used.

The keywordssave file andload file allow you to save and load photon maps. If
you load a photon map, no photons will be shot. The photon map file contains all
surface (caustic) and media photons.

radius is used for gathering photons. The larger the radius, the longer it takes to gather
photons. But if you use too small of a radius, you might not get enough photons to get
a good estimate. Therefore, choosing a good radius is important. Normally POV-Ray
looks through the photon map and uses some ad-hoc statistical analysis to determine
a reasonable radius. Sometimes it does a good job, sometimes it does not. The radius
keyword lets you override or adjust POV-Ray’s guess.

radius parameters (all are optional):

1. Manually set the gather radius for surface photons. If this is either zero or if you
leave it out, POV-Ray will analyze and guess.

2. Adjust the radius for surface photons by setting a multiplier. If POV-Ray, for
example, is picking a radius that you think is too big (render is too slow), you
can use ”radius ,0.5” to lower the radius (multiply by 0.5) and speed up the
render at the cost of quality.

3. Manually set the gather radius for media photons.

4. Adjust the radius for media photons by setting a multiplier.

The keywordsautostop andexpand thresholds will be explained later.

Shooting Photons at an Object

object_photon_block:

photons {

[target [<spacing_multiplier>]]

304 Interior & Media & Photons

[refraction on|off]

[reflection on|off]

[collect on|off]

[pass_through]

}

To shoot photons at an object, you need to tell POV that the object receives photons.
To do this, create aphotons { } block within the object. For example:

object {

MyObject

photons {

target

refraction on

reflection on

collect off

}

}

In this example, the object both reflects and refracts photons. Either of these options
could be turned off (by specifying reflection off, for example). By using this, you can
have an object with a reflective finish which does not reflect photons for speed and
memory reasons.

The keywordtarget makes this object a target.

The density of the photons can be adjusted by specifying thespacing multiplier. If,
for example, you specify aspacing multiplier of 0.5, then the spacing for photons
hitting this object will be 1/2 of the distance of the spacing for other objects.

Note: This means four times as many surface photons, and eight times as many media
photons.

The keywordcollect off causes the object to ignore photons. Photons are neither
deposited nor gathered on that object.

The keywordpass through causes photons to pass through the objectunaffectedon
their way to a target object. Once a photon hits the target object, it will ignore the
pass through flag. This is basically a photon version of theno shadow keyword, with
the exception that media within the object will still be affected by the photons (unless
that media specifies collect off). If you use theno shadow keyword, the object will be
tagged aspass through automatically. You can then turn off pass through if necessary
by simply usingphotons { pass through off }.

Note: Photons will not be shot at an object unless you specify thetarget keyword.
Simply turning refraction on will not suffice.

When shooting photons at a CSG-union, it may sometimes be of advantage to use
split union off inside the union. POV-Ray will be forced to shoot at the whole ob-
ject, instead of splitting it up and shooting photons at its compound parts.

Photons and Light Sources

light_photon_block:

photons {

5.3 Photons 305

[refraction on | off]

[reflection on | off]

[area_light]

}

Example:

light_source {

MyLight

photons {

refraction on

reflection on

}

}

Sometimes, you want photons to be shot from one light source and not another. In that
case, you can turn photons on for an object, but specifyphotons { reflection off

refraction off } in the light source’s definition. You can also turn off only
reflection or only refraction for any light source.

Photons and Media

global_settings {

photons {

count 10000

media 100

}

}

Photons also interact fully with media. This means that volumetric photons are stored
in scattering media. This is enabled by using the keyword media within the photons
block.

To store photons in media, POV deposits photons as it steps through the media during
the photon-tracing phase of the render. It will deposit these photons as it traces caus-
tic photons, so the number of media photons is dependent on the number of caustic
photons. As a light ray passes through a section of media, the photons are deposited,
separated by approximately the same distance that separates surface photons.

You can specify a factor as a second optional parameter to the media keyword. If, for
example, factor is set to 2.0, then photons will be spaced twice as far apart as they
would otherwise have been spaced.

Sometimes, however, if a section of media is very large, using these settings could cre-
ate a large number of photons very fast and overload memory. Therefore, following
the media keyword, you must specify the maximum number of photons that are de-
posited for each ray that travels through each section of media. A setting of 100 should
probably work in most cases.

You can putcollect off into media to make that media ignore photons. Photons will
neither be deposited nor gathered in a media that is ignoring them. Photons will also
not be gathered nor deposited in non-scattering media. However, if multiple medias
exist in the same space, and at least one does not ignore photons and is scattering, then

306 Interior & Media & Photons

photons will be deposited in that interval and will be gathered for use with all media in
that interval.

5.3.3 Photons FAQ

I made an object with IOR 1.0 and the shadows look weird.

If the borders of your shadows look odd when using photon mapping, do not be
alarmed. This is an unfortunate side-effect of the method. If you increase the den-
sity of photons (by decreasing spacing and gather radius) you will notice the problem
diminish. We suggest not using photons if your object does not cause much refraction
(such as with a window pane or other flat piece of glass or any objects with an IOR
very close to 1.0).

My scene takes forever to render.

When POV-Ray builds the photon maps, it continually displays in the status bar the
number of photons that have been shot. Is POV-Ray stuck in this step and does it keep
shooting lots and lots of photons?

yes

If you are shooting photons at an infinite object (like a plane), then you should expect
this. Either be patient or do not shoot photons at infinite objects.

Are you shooting photons at a CSG difference? Sometimes POV-Ray does a bad job
creating bounding boxes for these objects. And since photons are shot at the bounding
box, you could get bad results. Try manually bounding the object. You can also try the
autostop feature (tryautostop 0). See the docs for more info on autostop.

no

Does your scene have lots of glass (or other clear objects)? Glass is slow and you need
to be patient.

My scene has polka dots but renders really quickly. Why?

You should increase the number of photons (or decrease the spacing).

The photons in my scene show up only as small, bright dots. How can I fix this?

The automatic calculation of the gather radius is probably not working correctly, most
likely because there are many photons not visible in your scene which are affecting the
statistical analysis.

You can fix this by either reducing the number of photons that are in your scene but not
visible to the camera (which confuse the auto-computation), or by specifying the initial
gather radius manually by using the keyword radius. If you must manually specify a
gather radius, it is usually best to also use spacing instead of count, and then set radius
and spacing to a 5:1 (radius:spacing) ratio.

Adding photons slowed down my scene a lot, and I see polka dots.

This is usually caused by having both high- and low-density photons in the same scene.
The low density ones cause polka dots, while the high density ones slow down the
scene. It is usually best if the all photons are on the same order of magnitude for

5.3 Photons 307

spacing and brightness. Be careful if you are shooting photons objects close to and far
from a light source. There is an optional parameter to the target keyword which allows
you to adjust the spacing of photons at the target object. You may need to adjust this
factor for objects very close to or surrounding the light source.

I added photons, but I don’t see any caustics.

When POV-Ray builds the photon maps, it continually displays in the status bar the
number of photons that have been shot. Did it show any photons being shot?

no

Try avoidingautostop, or you might want to bound your object manually.

Try increasing the number of photons (or decreasing the spacing).

yes

Were any photons stored (the number aftertotal in the rendering message as POV-Ray
shoots photons)?

no

It is possible that the photons are not hitting the target object (because another object
is between the light source and the other object).

yes

The photons may be diverging more than you expect. They are probably there, but you
cannot see them since they are spread out too much

The base of my glass object is really bright.

Usecollect off with that object.

Will area lights work with photon mapping?

Photons do work with area lights. However, normally photon mapping ignores all
area light options and treats all light sources as point lights. If you would like photon
mapping to use your area light options, you must specify the ”arealight” keyword
within thephotons { } block in your light source’s code. Doing this will not increase
the number of photons shot by the light source, but it might cause regular patterns to
show up in the rendered caustics (possibly splotchiness).

What do the stats mean?

In the stats,photons shotmeans how many light rays were shot from the light sources.
photons stored means how many photons are deposited on surfaces in the scene. If
you turn on reflection and refraction, you could get more photons stored than photons
shot, since the each ray can get split into two.

5.3.4 Photon Tips

– Usecollect off in objects that photons do not hit. Just putphotons {
collect off } in the object’s definition.

– Usecollect off in glass objects.

308 Interior & Media & Photons

– Useautostop unless it causes problems.

– A big tip is to make sure that all of the final densities of photons are of the
same general magnitude. You do not want spots with really high density
photons and another area with really low density photons. You will always
have some variation (which is a good thing), but having really big differ-
ences in photon density is what causes some scenes to take many hours to
render.

5.3.5 Advanced Techniques

Autostop

Figure 5.7: Example of the photon autostop option

To understand theautostop option, you need to understand the way photons are shot
from light sources. Photons are shot in a spiral pattern with uniform angular density.
Imagine a sphere with a spiral starting at one of the poles and spiraling out in ever-
increasing circles to the equator. Two angles are involved here. The first, phi, is the
how far progress has been made in the current circle of the spiral. The second, theta,
is how far we are from the pole to the equator. Now, imagine this sphere centered at
the light source with the pole where the spiral starts pointed towards the center of the
object receiving photons. Now, photons are shot out of the light in this spiral pattern.

Normally, POV does not stop shooting photons until the target object’s entire
bounding box has been thoroughly covered. Sometimes, however, an object is much
smaller than its bounding box. At these times, we want to stop shooting if we do a
complete circle in the spiral without hitting the object. Unfortunately, some objects
(such as copper rings), have holes in the middle. Since we start shooting at the middle
of the object, the photons just go through the hole in the middle, thus fooling the system
into thinking that it is done. To avoid this, theautostop keyword lets you specify how
far the system must go before this auto-stopping feature kicks in. The value specified is
a fraction of the object’s bounding box. Valid values are 0.0 through 1.0 (0% through
100%). POV will continue to shoot photons until the spiral has exceeded this value
or the bounding box is completely covered. If a complete circle of photons fails to hit
the target object after the spiral has passed the autostop threshold, POV will then stop
shooting photons.

5.3 Photons 309

Theautostop feature will also not kick in until at least one photon has hit the object.
This allows you to useautostop 0 even with objects that have holes in the middle.

Note:If the light source is within the object’s bounding box, the photons are shot
in all directions from the light source.

Adaptive Search Radius

Unless photons are interacting with media, POV-Ray uses an adaptive search radius
while gathering photons. If the minimum number of photons is not found in the original
search radius, the radius is expanded and searched again. Using this adaptive search
radius can both decrease the amount of time it takes to render the image, and sharpen
the borders in the caustic patterns.

Sometimes this adaptive search technique can create unwanted artefacts at borders. To
remove these artefacts, a few thresholds are used, which can be specified byexpand thresholds.
For example, if expanding the radius increases the estimated density of photons by too
much (threshold is percentincrease, default is 20%, or 0.2), the expanded search is
discarded and the old search is used instead. However, if too few photons are gathered
in the expanded search (expand min, default is 40), the new search will be used always,
even if it means more than a 20% increase in photon density.

Photons and Dispersion

When dispersion is specified for interior of a transparent object, photons will make use
of that and show ”colored” caustics.

Saving and Loading Photon Maps

It is possible to save and load photon maps to speed up rendering. The photon map
itself is view-independent, so if you want to animate a scene that contains photons and
you know the photon map will not change during the animation, you can save it on the
first frame and then load it for all subsequent frames.

To save the photon map, put the line

save_file "myfile.ph"

into thephotons { } block inside theglobal settings section.

Loading the photon map is the same, but withload file instead ofsave file. You
cannot both load and save a photon map in the POV file. If you load the photon map,
it will load all of the photons. No photons will be shot if the map is loaded from a file.
All other options (such as gather radius) must still be specified in the POV scene file
and are not loaded with the photon map.

When can you safely re-use a saved photon map?

• Moving the camera isalwayssafe.

• Moving lights that do not cast photons isalwayssafe.

310 Interior & Media & Photons

• Moving objects that do not have photons shot at them, that do not receive pho-
tons, and would not receive photons in the new location isalwayssafe.

• Moving an object that recieves photons to a new location where it does not re-
ceive photons issometimessafe.

• Moving an object to a location where it recieves photons isnot safe

• Moving an object that has photons shot at it isnot safe

• Moving a light that casts photons isnot safe.

• Changing the texture of an object that recieves photons is safe.

• Changing the texture of an object that has photons shot at it produces results that
are not realistic, but can be useful sometimes.

Chapter 6

Include Files

The ”Standard Include File” section describes the include files that can be found in
every standard distribution of POV-Ray. It is supposed to be used as a reference for
looking up things. It does not contain detailed explanations on how scenes are written
or how POV-Ray is used. It just explains all features, their syntax, applications, limits,
drawbacks, etc.

6.1 arrays.inc

This file contains macros for manipulating arrays.

Rand Array Item(Array, Stream). Randomly Picks an item from a 1D array.
Parameters:

• Array = The array from which to choose the item.

• Stream = A random number stream.

Resize Array(Array, NewSize). Resize a 1D array, retaining its contents.
Parameters:

• Array = The array to be resized.

• NewSize = The desired new size of the array.

Reverse Array(Array). Reverses the order of items in a 1D array.
Parameters:

• Array = The array to be reversed.

Sort Compare(Array, IdxA, IdxB). This macro is used by theSort Array() andSort Partial Array()
macros. The given macro works for 1D arrays of floats, but you can redefine it in your
scene file for more complex situations, arrays of vectors or multidimensional arrays for
example. Just make sure your macro returns true if the item at IdxA< the item at IdxB,
and otherwise returns false.
Parameters:

• Array = The array containing the data being sorted.

312 Include Files

• IdxA, IdxB = The array offsets of the data elements being compared.

Sort Swap Data(Array, IdxA, IdxB). This macro is used by theSort Array() and
Sort Partial Array() macros. The given macro works for 1D arrays and floats only,
but you can redefine it in your scene file for more complex situations, arrays of vec-
tors or multidimensional arrays for example. The only requirement is that your macro
swaps the data at IdxA with that at IdxB.
Parameters:

• Array = The array containing the data being sorted.

• IdxA, IdxB = The array offsets of the data elements being swapped.

Sort Array(Array). This macro sorts a 1D array of floats, though you can redefine the
Sort Compare() andSort Swap Data() macros to handle multidimensional arrays and
other data types.
Parameters:

• Array = The array to be sorted.

Sort Partial Array(Array, FirstInd, LastInd). This macro is likeSort Array(),
but sorts a specific range of an array instead of the whole array.
Parameters:

• Array = The array to be sorted.

• FirstInd, LastInd = The start and end indices of the range being sorted.

6.2 chars.inc

This file includes 26 upper-case letter and other characters defined as objects. The size
of all characters is 4 * 5 * 1. The center of the bottom side of a character face is set
to the origin, so you may need to translate a character appropriately before rotating it
about the x or z axes.

Letters:
char A, char B, char C,

char D, char E, char F,

char G, char H, char I,

char J, char K, char L,

char M, char N, char O,

char P, char Q, char R,

char S, char T, char U,

char V, char W, char X,

char Y, char Z

Numerals:
char 0, char 1,

char 2, char 3,

char 4, char 5,

char 6, char 7,

6.3 colors.inc 313

char 8, char 9

Symbols:
char Dash, char Plus, char ExclPt,

char Amps, char Num, char Dol,

char Perc, char Astr, char Hat,

char LPar, char RPar, char AtSign,

char LSqu, char RSqu

Usage:

#include "chars.inc"

.

.

object {char_A ...}

6.3 colors.inc

This file is mainly a list of predefined colors, but also has a few color manipulation
macros.

6.3.1 Predefined colors

Primary colors

Figure 6.1: Primary Colors

Shades of gray...from 5% to 95%, in 5% increments

Figure 6.2: Shades of Gray

314 Include Files

Misc. other shades of gray, with both spelling variants

Figure 6.3: Shades of Gray

Misc. colors

Figure 6.4: Misc. Colors Part 1

6.3.2 Color macros

In POV-Ray all colors are handled in RGB color space with a component for the amount
of red, green and blue light. However, not everybody thinks this is the most intuitive
way to specify colors. For your convenience there are macros included in colors.inc
that converts between a few different types of color spaces.
The three supported color spaces:

• RGB = < Red, Green, Blue, Filter, Transmit>

• HSL = < Hue, Saturation, Lightness, Filter, Transmit>

• HSV = < Hue, Saturation, Value, Filter, Transmit>

CHSL2RGB(Color). Converts a color given inHSL space to one inRGB space.
Parameters:

6.3 colors.inc 315

Figure 6.5: Misc. Colors Part 2

• Color = HSL color to be converted.

CRGB2HSL(Color). Converts a color given inRGB space to one inHSL space.
Parameters:

• Color = RGB color to be converted.

CHSV2RGB(Color). Converts a color given inHSV space to one inRGB space.
Parameters:

• Color = HSV color to be converted.

CRGB2HSV(Color). Converts a color given inRGB space to one inHSV space.
Parameters:

• Color = RGB color to be converted.

Convert Color(SourceType, DestType, Color). Converts a color from one color
space to another. Color spaces available are:RGB, HSL, andHSV.
Parameters:

• SourceType = Color space of input color.

• DestType = Desired output color space.

• Color = Color to be converted, in SourceType color space.

316 Include Files

6.4 consts.inc

This file defines a number of constants, including things such as mapping types and ior
definitions.

6.4.1 Vector constants

o = < 0, 0, 0> (origin)

xy = < 1, 1, 0>

yz = < 0, 1, 1>

xz = < 1, 0, 1>

6.4.2 Map type constants

Plane Map = 0

Sphere Map = 1

Cylinder Map = 2

Torus Map = 5

6.4.3 Interpolation type constants

Bi = 2

Norm = 4

6.4.4 Fog type constants

Uniform Fog = 1

Ground Fog = 2

6.4.5 Focal blur hexgrid constants

Hex Blur1 = 7

Hex Blur2 = 19

Hex Blur3 = 37

6.4 consts.inc 317

6.4.6 IORs

Air Ior = 1.000292

Amethyst Ior = 1.550

Apatite Ior = 1.635

Aquamarine Ior = 1.575

Beryl Ior = 1.575

Citrine Ior = 1.550

Crown Glass Ior = 1.51

Corundum Ior = 1.765

Diamond Ior = 2.47

Emerald Ior = 1.575

Flint Glass Ior = 1.71

Flint Glass Heavy Ior = 1.8

Flint Glass Medium Ior = 1.63

Flint Glass Light Ior = 1.6

Fluorite Ior = 1.434

Gypsum Ior = 1.525

Ice Ior = 1.31

Plexiglas Ior = 1.5

Quartz Ior = 1.550

Quartz Glass Ior = 1.458

Ruby Ior = 1.765

Salt Ior = 1.544

Sapphire Ior = 1.765

Topaz Ior = 1.620

Tourmaline Ior = 1.650

Water Ior = 1.33

6.4.7 Dispersion amounts

Quartz Glass Dispersion = 1.012

Water Dispersion = 1.007

Diamond Dispersion = 1.035

Sapphire Dispersion = 1.015

318 Include Files

6.4.8 Scattering media type constants

ISOTROPIC SCATTERING = 1;

MIE HAZY SCATTERING = 2;

MIE MURKY SCATTERING = 3;

RAYLEIGH SCATTERING = 4;

HENYEY GREENSTEIN SCATTERING = 5;

6.5 debug.inc

This file contains a set of macros designed to make debugging easier. It also functions
like the old debug.inc, with the exception that you have to call the DebugInc Stack()
macro to get the include stack output.

Debug Inc Stack(). Activates include file tracking, each included file will send a debug
message when it is included.
Parameters: None.

Set Debug(Bool). Activate or deactivate the debugging macros.
Parameters:

• Bool = A boolean (true/false) value.

Debug Message(Str). If debugging, sends the message to the debug stream.
Parameters:

• Str = The desired message.

Debug(Condition, Message)

Warning(Condition, Message)

Error(Condition, Message)

These macros send a message to the #debug, #warning, and #error streams depending
on a given condition. They are just a shortcut for an#if()...#end block, intended to
make scenes easier to read.
Parameters:

• Condition = Any boolean expression.

• Message = The message to be sent if Condition evaluates as ”true”.

6.6 finish.inc

This file contains some predefined finishes.

Dull

Dull, with a large, soft specular highlight.

Shiny

6.7 functions.inc 319

Shiny, with a small, tight specular highlight.

Glossy

Very shiny with very tight specular highlights and a fair amount of reflection.

Phong Dull

Dull, with a large, soft phong highlight.

Phong Shiny

Shiny, with a small, tight phong highlight.

Phong Glossy

Very shiny with very tight phong highlights and a fair amount of reflection.

Luminous

A glowing surface, unaffected by lightsources.

Mirror

A perfectly reflective surface, no highlights or shading.

6.7 functions.inc

This include file contains interfaces to internal functions as well as several prede-
fined functions. The ID’s used to access the internal functions through calls to ”in-
ternal(XX)”, are not guaranteed to stay the same between POV-Ray versions, so users
are encouraged to use the functions declared here.

The number of required parameters and what they control are also given in the include
file, this chapter gives more information.
For starter values of the parameters, check the ”iinternal.pov” demo file.

Syntax to be used:

#include "functions.inc"

isosurface {

function { f_torus_gumdrop(x,y,z, P0) }

...

}

pigment {

function { f_cross_ellipsoids(x,y,z, P0, P1, P2, P3) }

COLOR_MAP ...

)

Some special parameters are found in several of these functions. These are described in
the next section and later referred to as ”Cross section type”, ”Field Strength”, ”Field
Limit”, ”SOR” parameters.

320 Include Files

6.7.1 Common Parameters

Cross Section Type:
In the helixes and spiral functions, the 9th parameter is the cross section type.
Some shapes are:

0 :

square

0.0 to 1.0 :

rounded squares

1 :

circle

1.0 to 2.0 :

rounded diamonds

2 :

diamond

2.0 to 3.0 :

partially concave diamonds

3 :

concave diamond

Field Strength

The numerical value at a point in space generated by the function is multiplied by the
Field Strength. The set of points where the function evaluates to zero are unaffected by
any positive value of this parameter, so if you’re just using the function on its own with
threshold= 0, the generated surface is still the same.
In some cases, the field strength has a considerable effect on the speed and accuracy of
rendering the surface. In general, increasing the field strength speeds up the rendering,
but if you set the value too high the surface starts to break up and may disappear
completely.
Setting the field strength to a negative value produces the inverse of the surface, like
making the function negative.

Field Limit

This won’t make any difference to the generated surface if you’re using threshold that’s
within the field limit (and will kill the surface completely if the threshold is greater than
the field limit). However, it may make a huge difference to the rendering times.
If you use the function to generate a pigment, then all points that are a long way from
the surface will have the same color, the color that corresponds to the numerical value
of the field limit.

6.7 functions.inc 321

SOR Switch

If greater than zero, the curve is swept out as a surface of revolution (SOR).
If the value is zero or negative, the curve is extruded linearly in the Z direction.

SOR Offset

If the SOR switch is on, then the curve is shifted this distance in the X direction before
being swept out.

SOR Angle

If the SOR switch is on, then the curve is rotated this number of degrees about the Z
axis before being swept out.

Invert Isosurface

Sometimes, when you render a surface, you may find that you get only the shape of
the container. This could be caused by the fact that some of the build in functions are
defined inside out.
We can invert the isosurface by negating the whole function:
-(function) - threshold

6.7.2 Internal Functions

Here is a list of the internal functions in the order they appear in the ”functions.inc”
include file

f algbr cyl1(x,y,z, P0, P1, P2, P3, P4). An algebraic cylinder is what you get if
you take any 2d curve and plot it in 3d. The 2d curve is simply extruded along the third
axis, in this case the z axis.
With the SOR Switch switched on, the figure-of-eight curve will be rotated around the
Y axis instead of being extruded along the Z axis.

• P0 : Field Strength

• P1 : Field Limit

• P2 : SOR Switch

• P3 : SOR Offset

• P4 : SOR Angle

f algbr cyl2(x,y,z, P0, P1, P2, P3, P4). An algebraic cylinder is what you get if
you take any 2d curve and plot it in 3d. The 2d curve is simply extruded along the third
axis, in this case the z axis.
With the SOR Switch switched on, the cross section curve will be rotated around the Y
axis instead of being extruded along the Z axis.

322 Include Files

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Field Limit

• P2 : SOR Switch

• P3 : SOR Offset

• P4 : SOR Angle

f algbr cyl3(x,y,z, P0, P1, P2, P3, P4). An algebraic cylinder is what you get if
you take any 2d curve and plot it in 3d. The 2d curve is simply extruded along the third
axis, in this case the Z axis.
With the SOR Switch switched on, the cross section curve will be rotated around the Y
axis instead of being extruded along the Z axis.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Field Limit

• P2 : SOR Switch

• P3 : SOR Offset

• P4 : SOR Angle

f algbr cyl4(x,y,z, P0, P1, P2, P3, P4). An algebraic cylinder is what you get if
you take any 2d curve and plot it in 3d. The 2d curve is simply extruded along the third
axis, in this case the z axis.
With the SOR Switch switched on, the cross section curve will be rotated around the Y
axis instead of being extruded along the Z axis.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Field Limit

• P2 : SOR Switch

• P3 : SOR Offset

• P4 : SOR Angle

f bicorn(x,y,z, P0, P1). The surface is a surface of revolution.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Scale. The mathematics of this surface suggest that the shape should be
different for different values of this parameter. In practice the difference in shape
is hard to spot. Setting the scale to 3 gives a surface with a radius of about 1 unit

f bifolia(x,y,z, P0, P1). The bifolia surface looks something like the top part of a
a paraboloid bounded below by another paraboloid.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Scale. The surface is always the same shape. Changing this parameter has
the same effect as adding a scale modifier. Setting the scale to 1 gives a surface
with a radius of about 1 unit

6.7 functions.inc 323

f blob(x,y,z, P0, P1, P2, P3, P4). This function generates blobs that are similar
to a CSG blob with two spherical components. This function only seems to work with
negative threshold settings.

• P0 : X distance between the two components

• P1 : Blob strength of component 1

• P2 : Inverse blob radius of component 1

• P3 : Blob strength of component 2

• P4 : Inverse blob radius of component 2

f blob2(x,y,z, P0, P1, P2, P3). The surface is similar to a CSG blob with two
spherical components.

• P0 : Separation. One blob component is at the origin, and the other is this dis-
tance away on the X axis

• P1 : Inverse size. Increase this to decrease the size of the surface

• P2 : Blob strength

• P3 : Threshold. Setting this parameter to 1 and the threshold to zero has exactly
the same effect as setting this parameter to zero and the threshold to -1

f boy surface(x,y,z, P0, P1). For this surface, it helps if the field strength is set
low, otherwise the surface has a tendency to break up or disappear entirely. This has
the side effect of making the rendering times extremely long.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Scale. The surface is always the same shape. Changing this parameter has
the same effect as adding a scale modifier

f comma(x,y,z, P0). The ’comma’ surface is very much like a comma-shape.

• P0 : Scale

f cross ellipsoids(x,y,z, P0, P1, P2, P3). The ’cross ellipsoids’ surface is like
the union of three crossed ellipsoids, one oriented along each axis.

• P0 : Eccentricity. When less than 1, the ellipsoids are oblate, when greater than
1 the ellipsoids are prolate, when zero the ellipsoids are spherical (and hence the
whole surface is a sphere)

• P1 : Inverse size. Increase this to decrease the size of the surface

• P2 : Diameter. Increase this to increase the size of the ellipsoids

• P3 : Threshold. Setting this parameter to 1 and the threshold to zero has exactly
the same effect as setting this parameter to zero and the threshold to -1

f crossed trough(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

f cubic saddle(x,y,z, P0). For this surface, it helps if the field strength is set quite
low, otherwise the surface has a tendency to break up or disappear entirely.

• P0 : Field Strength (Needs a negative field strength or a negated function)

324 Include Files

f cushion(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

f devils curve(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

f devils curve 2d(x,y,z, P0, P1, P2, P3, P4, P5). Thef devils curve 2d curve
can be extruded along the z axis, or using the SOR parameters it can be made into a
surface of revolution. The X and Y factors control the size of the central feature.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : X factor

• P2 : Y factor

• P3 : SOR Switch

• P4 : SOR Offset

• P5 : SOR Angle

f dupin cyclid(x,y,z, P0, P1, P2, P3, P4, P5)

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Major radius of torus

• P2 : Minor radius of torus

• P3 : X displacement of torus

• P4 : Y displacement of torus

• P5 : Radius of inversion

f ellipsoid(x,y,z, P0, P1, P2). f ellipsoid generates spheres and ellipsoids. Needs
”threshold 1”.
Setting these scaling parameters to 1/n gives exactly the same effect as performing a
scale operation to increase the scaling by n in the corresponding direction.

• P0 : X scale (inverse)

• P1 : Y scale (inverse)

• P2 : Z scale (inverse)

f enneper(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

f flange cover(x,y,z, P0, P1, P2, P3)

• P0 : Spikiness. Set this to very low values to increase the spikes. Set it to 1 and
you get a sphere

• P1 : Inverse size. Increase this to decrease the size of the surface. (The other
parameters also drastically affect the size, but this parameter has no other effects)

• P2 : Flange. Increase this to increase the flanges that appear between the spikes.
Set it to 1 for no flanges

6.7 functions.inc 325

• P3 : Threshold. Setting this parameter to 1 and the threshold to zero has exactly
the same effect as setting this parameter to zero and the threshold to -1

f folium surface(x,y,z, P0, P1, P2). A ’folium surface’ looks something like a
paraboloid glued to a plane.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Neck width factor - the larger you set this, the narrower the neck where the
paraboloid meets the plane

• P2 : Divergence - the higher you set this value, the wider the paraboloid gets

f folium surface 2d(x,y,z, P0, P1, P2, P3, P4, P5). The f folium surface 2d
curve can be rotated around the X axis to generate the same 3d surface as thef folium surface,
or it can be extruded in the Z direction (by switching the SOR switch off)

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Neck width factor - same as the 3d surface if you’re revolving it around the
Y axis

• P2 : Divergence - same as the 3d surface if you’re revolving it around the Y axis

• P3 : SOR Switch

• P4 : SOR Offset

• P5 : SOR Angle

f glob(x,y,z, P0). One part of this surface would actually go off to infinity if it were
not restricted by the containedby shape.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f heart(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

f helical torus(x,y,z, P0, P1, P2, P3, P4, P5, P6, P7, P8, P9). With some
sets of parameters, it looks like a torus with a helical winding around it. The wind-
ing optionally has grooves around the outside.

• P0 : Major radius

• P1 : Number of winding loops

• P2 : Twistiness of winding. When zero, each winding loop is separate. When set
to one, each loop twists into the next one. When set to two, each loop twists into
the one after next

• P3 : Fatness of winding?

• P4 : Threshold. Setting this parameter to 1 and the threshold to zero has s similar
effect as setting this parameter to zero and the threshold to 1

• P5 : Negative minor radius? Reducing this parameter increases the minor radius
of the central torus. Increasing it can make the torus disappear and be replaced
by a vertical column. The value at which the surface switches from one form to
the other depends on several other parameters

326 Include Files

• P6 : Another fatness of winding control?

• P7 : Groove period. Increase this for more grooves

• P8 : Groove amplitude. Increase this for deeper grooves

• P9 : Groove phase. Set this to zero for symmetrical grooves

f helix1(x,y,z, P0, P1, P2, P3, P4, P5, P6)

• P0 : Number of helixes - e.g. 2 for a double helix

• P1 : Period - is related to the number of turns per unit length

• P2 : Minor radius (major radius> minor radius)

• P3 : Major radius

• P4 : Shape parameter. If this is greater than 1 then the tube becomes fatter in the
y direction

• P5 : Cross section type

• P6 : Cross section rotation angle (degrees)

f helix2(x,y,z, P0, P1, P2, P3, P4, P5, P6). Needs a negated function

• P0 : Not used

• P1 : Period - is related to the number of turns per unit length

• P2 : Minor radius (minor radius> major radius)

• P3 : Major radius

• P4 : Not used

• P5 : Cross section type

• P6 : Cross section rotation angle (degrees)

f hex x(x,y,z, P0). This creates a grid of hexagonal cylinders stretching along the
z-axis. The fatness is controlled by the threshold value. When this value equals
0.8660254 or cos(30) the sides will touch, because this is the distance between cen-
ters. Negating the function will inverse the surface and create a honey-comb structure.
This function is also useful as pigment function.

• P0 : No effect (but the syntax requires at least one parameter)

f hex y(x,y,z, P0). This is function forms a lattice of infinite boxes stretching along
the z-axis. The fatness is controlled by the threshold value. These boxes are rotated 60
degrees around centers, which are 0.8660254 or cos(30) away from each other. This
function is also useful as pigment function.

• P0 : No effect (but the syntax requires at least one parameter)

f hetero mf(x,y,z, P0, P1, P2, P3, P4, P5). f hetero mf (x,0,z) makes multi-
fractal height fields and patterns of ’1/f’ noise
’Multifractal’ refers to their characteristic of having a fractal dimension which varies
with altitude. Built from summing noise of a number of frequencies, the heteromf
parameters determine how many, and which frequencies are to be summed.
An advantage to using these instead of a heightfield {} from an image (a number of

6.7 functions.inc 327

height field programs output multifractal types of images) is that the heteromf function
domain extends arbitrarily far in the x and z directions so huge landscapes can be made
without losing resolution or having to tile a height field. Other functions of interest are
f ridged mf andf ridge.

• P0 : H is the negative of the exponent of the basis noise frequencies used in
building these functions (each frequency f’s amplitude is weighted by the factor
f - H). In landscapes, and many natural forms, the amplitude of high frequency
contributions are usually less than the lower frequencies.
When H is 1, the fractalization is relatively smooth (”1/f noise”).
As H nears 0, the high frequencies contribute equally with low frequencies as in
”white noise”.

• P1 : Lacunarity’ is the multiplier used to get from one ’octave’ to the next. This
parameter affects the size of the frequency gaps in the pattern. Make this greater
than 1.0

• P2 : Octaves is the number of different frequencies added to the fractal. Each
’Octave’ frequency is the previous one multiplied by ’Lacunarity’, so that using
a large number of octaves can get into very high frequencies very quickly.

• P3 : Offset is the ’base altitude’ (sea level) used for the heterogeneous scaling

• P4 : T scales the ’heterogeneity’ of the fractal. T=0 gives ’straight 1/f’ (no
heterogeneous scaling). T=1 suppresses higher frequencies at lower altitudes

• P5 : Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values.

f hunt surface(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

f hyperbolic torus(x,y,z, P0, P1, P2)

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Major radius: separation between the centers of the tubes at the closest point

• P2 : Minor radius: thickness of the tubes at the closest point

f isect ellipsoids(x,y,z, P0, P1, P2, P3). The ’isect ellipsoids’ surface is like
the intersection of three crossed ellipsoids, one oriented along each axis.

• P0 : Eccentricity. When less than 1, the ellipsoids are oblate, when greater than
1 the ellipsoids are prolate, when zero the ellipsoids are spherical (and hence the
whole surface is a sphere)

• P1 : Inverse size. Increase this to decrease the size of the surface

• P2 : Diameter. Increase this to increase the size of the ellipsoids

• P3 : Threshold. Setting this parameter to 1 and the threshold to zero has exactly
the same effect as setting this parameter to zero and the threshold to -1

f kampyle of eudoxus(x,y,z, P0, P1, P2). The ’kampyle of eudoxus’ is like two
infinite planes with a dimple at the center.

• P0 : Field Strength (Needs a negative field strength or a negated function)

328 Include Files

• P1 : Dimple: When zero, the two dimples punch right through and meet at the
center. Non-zero values give less dimpling

• P2 : Closeness: Higher values make the two planes become closer

f kampyle of eudoxus 2d(x,y,z, P0, P1, P2, P3, P4, P5)The 2d curve that gener-
ates the above surface can be extruded in the Z direction or rotated about various axes
by using the SOR parameters.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Dimple: When zero, the two dimples punch right through and meet at the
center. Non-zero values give less dimpling

• P2 : Closeness: Higher values make the two planes become closer

• P3 : SOR Switch

• P4 : SOR Offset

• P5 : SOR Angle

f klein bottle(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

f kummer surface v1(x,y,z, P0). The Kummer surface consists of a collection of
radiating rods.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f kummer surface v2(x,y,z, P0, P1, P2, P3). Version 2 of the kummer surface
only looks like radiating rods when the parameters are set to particular negative values.
For positive values it tends to look rather like a superellipsoid.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Rod width (negative): Setting this parameter to larger negative values in-
creases the diameter of the rods

• P2 : Divergence (negative): Setting this number to -1 causes the rods to become
approximately cylindrical. Larger negative values cause the rods to become fatter
further from the origin. Smaller negative numbers cause the rods to become
narrower away from the origin, and have a finite length

• P3 : Influences the length of half of the rods. Changing the sign affects the other
half of the rods. 0 has no effect

f lemniscate of gerono(x,y,z, P0). The ”Lemniscate of Gerono” surface is an hour-
glass shape. Two teardrops with their ends connected.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f lemniscate of gerono 2d(x,y,z, P0, P1, P2, P3, P4, P5). The 2d version of
the Lemniscate can be extruded in the Z direction, or used as a surface of revolution to
generate the equivalent of the 3d version, or revolved in different ways.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Size: increasing this makes the 2d curve larger and less rounded

6.7 functions.inc 329

• P2 : Width: increasing this makes the 2d curve fatter

• P3 : SOR Switch

• P4 : SOR Offset

• P5 : SOR Angle

f mesh1(x,y,z, P0, P1, P2, P3, P4) The overall thickness of the threads is con-
trolled by the isosurface threshold, not by a parameter. If you render a mesh1 with zero
threshold, the threads have zero thickness and are therefore invisible. Parameters P2
and P4 control the shape of the thread relative to this threshold parameter.

• P0 : Distance between neighboring threads in the x direction

• P1 : Distance between neighboring threads in the z direction

• P2 : Relative thickness in the x and z directions

• P3 : Amplitude of the weaving effect. Set to zero for a flat grid

• P4 : Relative thickness in the y direction

f mitre(x,y,z, P0). The ’Mitre’ surface looks a bit like an ellipsoid which has been
nipped at each end with a pair of sharp nosed pliers.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f nodal cubic(x,y,z, P0). The ’Nodal Cubic’ is something like what you’d get if
you were to extrude the Stophid2D curve along the X axis and then lean it over.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f noise3d(x,y,z)

f noise generator(x,y,z, P0)

• P0 : Noise generator number

f odd(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

f ovals of cassini(x,y,z, P0, P1, P2, P3). The Ovals of Cassini are a generaliza-
tion of the torus shape.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Major radius - like the major radius of a torus

• P2 : Filling. Set this to zero, and you get a torus. Set this to a higher value and
the hole in the middle starts to heal up. Set it even higher and you get an ellipsoid
with a dimple

• P3 : Thickness. The higher you set this value, the plumper is the result

f paraboloid(x,y,z, P0). This paraboloid is the surface of revolution that you get if
you rotate a parabola about the Y axis.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f parabolic torus(x,y,z, P0, P1, P2)

330 Include Files

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Major radius

• P2 : Minor radius

f ph(x,y,z) = atan2(sqrt(x*x+ z*z), y)
When used alone, the ”PH” function gives a surface that consists of all points that are
at a particular latitude, i.e. a cone. If you use a threshold of zero (the default) this gives
a cone of width zero, which is invisible. Also look atf th andf r

f pillow(x,y,z, P0)

• P0 : Field Strength

f piriform(x,y,z, P0). The piriform surface looks rather like half a lemniscate.

• P0 : Field Strength

f piriform 2d(x,y,z, P0, P1, P2, P3, P4, P5, P6). The 2d version of the ”Piri-
form” can be extruded in the Z direction, or used as a surface of revolution to generate
the equivalent of the 3d version.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Size factor 1: increasing this makes the curve larger

• P2 : Size factor 2: making this less negative makes the curve larger but also
thinner

• P3 : Fatness: increasing this makes the curve fatter

• P4 : SOR Switch

• P5 : SOR Offset

• P6 : SOR Angle

f poly4(x,y,z, P0, P1, P2, P3, P4). Thisf poly4 can be used to generate the sur-
face of revolution of any polynomial up to degree 4.
To put it another way: If we call the parameters A, B, C, D, E; then this function gener-
ates the surface of revolution formed by revolving ”x= A + By + Cy2+ Dy3 + Ey4”
around the Y axis.

• P0 : Constant

• P1 : Y coefficient

• P2 : Y2 coefficient

• P3 : Y3 coefficient

• P4 : Y4 coefficient

f polytubes(x,y,z, P0, P1, P2, P3, P4, P5). The ’Polytubes’ surface consists of
a number of tubes. Each tube follows a 2d curve which is specified by a polynomial of
degree 4 or less. If we look at the parameters, then this function generates ”P0” tubes
which all follow the equation ” x= P1+ P2y+ P3y2+ P4y3+ P5y4 ” arranged around
the Y axis.
This function needs a positive threshold (fatness of the tubes).

6.7 functions.inc 331

• P0 : Number of tubes

• P1 : Constant

• P2 : Y coefficient

• P3 : Y2 coefficient

• P4 : Y3 coefficient

• P5 : Y4 coefficient

f quantum(x,y,z, P0). It resembles the shape of the electron density cloud for one of
the d orbitals.

• P0 : Not used, but required

f quartic paraboloid(x,y,z, P0). The ’Quartic Paraboloid’ is similar to a paraboloid,
but has a squarer shape.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f quartic saddle(x,y,z, P0). The ’Quartic saddle’ is similar to a saddle, but has a
squarer shape.

• P0 : Field Strength

f quartic cylinder(x,y,z, P0, P1, P2). The ’Quartic cylinder’ looks a bit like a
cylinder that’s swallowed an egg.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Diameter of the ”egg”

• P2 : Controls the width of the tube and the vertical scale of the ”egg”

f r(x,y,z) = sqrt(x*x + y*y + z*z)
When used alone, the ”R” function gives a surface that consists of all the points that
are a specific distance (threshold value) from the origin, i.e. a sphere. Also look atf ph

andf th

f ridge(x,y,z, P0, P1, P2, P3, P4, P5). This function is mainly intended for mod-
ifying other surfaces as you might use a height field or to use as pigment function. Other
functions of interest aref hetero mf andf ridged mf.

• P0 : Lambda

• P1 : Octaves

• P2 : Omega

• P3 : Offset

• P4 : Ridge

• P5 : Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values.

f ridged mf(x,y,z, P0, P1, P2, P3, P4, P5). The ”Ridged Multifractal” surface
can be used to create multifractal height fields and patterns. ’Multifractal’ refers to
their characteristic of having a fractal dimension which varies with altitude. They are
built from summing noise of a number of frequencies. The fridgedmf parameters
determine how many, and which frequencies are to be summed, and how the different

332 Include Files

frequencies are weighted in the sum.
An advantage to using these instead of aheight field{} from an image is that the
ridgedmf function domain extends arbitrarily far in the x and z directions so huge
landscapes can be made without losing resolution or having to tile a height field. Other
functions of interest aref hetero mf andf ridge.

• P0 : H is the negative of the exponent of the basis noise frequencies used in
building these functions (each frequency f’s amplitude is weighted by the factor
fE- H). When H is 1, the fractalization is relatively smooth. As H nears 0, the
high frequencies contribute equally with low frequencies

• P1 : Lacunarity is the multiplier used to get from one ”octave” to the next in the
”fractalization”.
This parameter affects the size of the frequency gaps in the pattern. (Use values
greater than 1.0)

• P2 : Octaves is the number of different frequencies added to the fractal. Each
octave frequency is the previous one multiplied by ”Lacunarity”. So, using a
large number of octaves can get into very high frequencies very quickly

• P3 : Offset gives a fractal whose fractal dimension changes from altitude to al-
titude. The high frequencies at low altitudes are more damped than at higher
altitudes, so that lower altitudes are smoother than higher areas

• P4 : Gain weights the successive contributions to the accumulated fractal result
to make creases stick up as ridges

• P5 : Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values.

f rounded box(x,y,z, P0, P1, P2, P3). The Rounded Box is defined in a cube from
<-1, -1, -1> to<1, 1, 1>. By changing the ” Scale” parameters, the size can be adjusted,
without affecting the Radius of curvature.

• P0 : Radius of curvature. Zero gives square corners, 0.1 gives corners that match
”sphere{0, 0.1}”

• P1 : Scale x

• P2 : Scale y

• P3 : Scale z

f sphere(x,y,z, P0)

• P0: radius of the sphere

f spikes(x,y,z, P0, P1, P2, P3, P4)

• P0 : Spikiness. Set this to very low values to increase the spikes. Set it to 1 and
you get a sphere

• P1 : Hollowness. Increasing this causes the sides to bend in more

• P2 : Size. Increasing this increases the size of the object

• P3 : Roundness. This parameter has a subtle effect on the roundness of the spikes

• P4 : Fatness. Increasing this makes the spikes fatter

f spikes 2d(x,y,z, P0, P1, P2, P3) =2-D function : f= f(x, z) - y

6.7 functions.inc 333

• P0 : Height of central spike

• P1 : Frequency of spikes in the X direction

• P2 : Frequency of spikes in the Z direction

• P3 : Rate at which the spikes reduce as you move away from the center

f spiral(x,y,z, P0, P1, P2, P3, P4, P5)

• P0 : Distance between windings

• P1 : Thickness

• P2 : Outer diameter of the spiral. The surface behaves as if it is containedby a
sphere of this diameter

• P3 : Not used

• P4 : Not used

• P5 : Cross section type

f steiners roman(x,y,z, P0). The ”Steiners Roman” is composed of four identical
triangular pads which together make up a sort of rounded tetrahedron. There are creases
along the X, Y and Z axes where the pads meet.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f strophoid(x,y,z, P0, P1, P2, P3). The ”Strophoid” is like an infinite plane with
a bulb sticking out of it.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Size of bulb. Larger values give larger bulbs. Negative values give a bulb on
the other side of the plane

• P2 : Sharpness. When zero, the bulb is like a sphere that just touches the plane.
When positive, there is a crossover point. When negative the bulb simply bulges
out of the plane like a pimple

• P3 : Flatness. Higher values make the top end of the bulb fatter

f strophoid 2d(x,y,z, P0, P1, P2, P3, P4, P5, P6). The 2d strophoid curve can
be extruded in the Z direction or rotated about various axes by using the SOR parame-
ters.

• P0 : Field Strength

• P1 : Size of bulb. Larger values give larger bulbs. Negative values give a bulb on
the other side of the plane

• P2 : Sharpness. When zero, the bulb is like a sphere that just touches the plane.
When positive, there is a crossover point. When negative the bulb simply bulges
out of the plane like a pimple

• P3 : Fatness. Higher values make the top end of the bulb fatter

• P4 : SOR Switch

• P5 : SOR Offset

334 Include Files

• P6 : SOR Angle

f superellipsoid(x,y,z, P0, P1). Needs a negative field strength or a negated func-
tion.

• P0 : east-west exponentx

• P1 : north-south exponent

f th(x,y,z) = atan2(x, z)
f th() is a function that is only useful when combined with other surfaces.
It produces a value which is equal to the ”theta” angle, in radians, at any point. The
theta angle is like the longitude coordinate on the Earth. It stays the same as you move
north or south, but varies from east to west. Also look atf ph andf r

f torus(x,y,z, P0, P1)

• P0 : Major radius

• P1 : Minor radius

f torus2(x,y,z, P0, P1, P2). This is different from the ftorus function which just
has the major and minor radii as parameters.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Major radius

• P2 : Minor radius

f torus gumdrop(x,y,z, P0). The ”Torus Gumdrop” surface is something like a torus
with a couple of gumdrops hanging off the end.

• P0 : Field Strength (Needs a negative field strength or a negated function)

f umbrella(x,y,z, P0)

• P0 : Field Strength (Needs a negative field strength or a negated function)

f witch of agnesi(x,y,z, P0, P1, P2, P3, P4, P5). The ”Witch of Agnesi” sur-
face looks something like a witches hat.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Controls the width of the spike. The height of the spike is always about 1
unit

f witch of agnesi 2d(x,y,z, P0, P1, P2, P3, P4, P5). The 2d version of the ”Witch
of Agnesi” curve can be extruded in the Z direction or rotated about various axes by
use of the SOR parameters.

• P0 : Field Strength (Needs a negative field strength or a negated function)

• P1 : Controls the size of the spike

• P2 : Controls the height of the spike

• P3 : SOR Switch

• P4 : SOR Offset

• P5 : SOR Angle

6.7 functions.inc 335

6.7.3 Pre defined functions

eval pigment(Pigm, Vect), This macro evaluates the color of a pigment at a specific
point. Some pigments require more information than simply a point, slope pattern
based pigments for example, and will not work with this macro. However, most pig-
ments will work fine.
Parameters:

• Vect = The point at which to evaluate the pigment.

• Pigm = The pigment to evaluate.

f snoise3d(x, y, z). Just like fnoise3d(), but returns values in the range [-1, 1].

f sine wave(val, amplitude, frequency). Turns a ramping waveform into a sine
waveform.

f scallop wave(val, amplitude, frequency). Turns a ramping waveform into a ”scal-
lop wave” waveform.

Pattern functions

Predefined pattern functions, useful for building custom function patterns or perform-
ing ”displacement mapping” on isosurfaces. Many of them aren’t really useful for these
purposes, they are simply included for completeness.

Some are not implemented at all because they require special parameters that must be
specified in the definition, or information that isn’t available to pattern functions. For
this reason, you probably would want to define your own versions of these functions.

All of these functions take three parameters, the XYZ coordinates of the point to eval-
uate the pattern at.

f agate(x, y, z)

f boxed(x, y, z)

f bozo(x, y, z)

f brick(x, y, z)

f bumps(x, y, z)

f checker(x, y, z)

f crackle(x, y, z)

This pattern has many more options in POV 3.5 than in previous versions, this func-
tion uses the defaults.

f cylindrical(x, y, z)

f dents(x, y, z)

f gradientX(x, y, z)

f gradientY(x, y, z)

f gradientZ(x, y, z)

336 Include Files

f granite(x, y, z)

f hexagon(x, y, z)

f leopard(x, y, z)

f mandel(x, y, z)

Only the basic mandel pattern is implemented, its variants and the other fractal pat-
terns are not implemented.

f marble(x, y, z)

f onion(x, y, z)

f planar(x, y, z)

f radial(x, y, z)

f ripples(x, y, z)

f spherical(x, y, z)

f spiral1(x, y, z)

f spiral2(x, y, z)

f spotted(x, y, z)

f waves(x, y, z)

f wood(x, y, z)

f wrinkles(x, y, z)

6.8 glass.inc, glassold.inc

This file contains glass materials using new features in POV 3.1 and 3.5. The old
glass.inc file is still included for backwards compatibility (it is named glassold.inc, and
is included by glass.inc, so you don’t need to change any scenes), but these materials
will give more realistic results.

6.8.1 Glass colors (with transparency)

Col Glass Beerbottle

Col Glass Bluish

Col Glass Clear

Col Glass Dark Green

Col Glass General

Col Glass Green

Col Glass Old

Col Glass Orange

Col Glass Ruby

Col Glass Vicksbottle

Col Glass Winebottle

Col Glass Yellow

Table 6.1: glass.inc glass colors with transparency

6.8 glass.inc, glass old.inc 337

Col Amber 01

Col Amber 02

Col Amber 03

Col Amber 04

Col Amber 05

Col Amber 06

Col Amber 07

Col Amber 08

Col Amber 09

Col Amethyst 01

Col Amethyst 02

Col Amethyst 03

Col Amethyst 04

Col Amethyst 05

Col Amethyst 06

Col Apatite 01

Col Apatite 02

Col Apatite 03

Col Apatite 04

Col Apatite 05

Col Aquamarine 01

Col Aquamarine 02

Col Aquamarine 03

Col Aquamarine 04

Col Aquamarine 05

Col Aquamarine 06

Col Azurite 01

Col Azurite 02

Col Azurite 03

Col Azurite 04

Col Beerbottle

Col Blue 01

Col Blue 02

Col Blue 03

Col Blue 04

Col Citrine 01

Col Dark Green

Col Emerald 01

Col Emerald 02

Col Emerald 03

Col Emerald 04

Col Emerald 05

Col Emerald 06

Col Emerald 07

Col Fluorite 01

Col Fluorite 02

Col Fluorite 03

Col Fluorite 04

Col Fluorite 05

Col Fluorite 06

Col Fluorite 07

Col Fluorite 08

Col Fluorite 09

Col Green

Col Green 01

Col Green 02

Col Green 03

Col Green 04

Col Gypsum 01

Col Gypsum 02

Col Gypsum 03

Col Gypsum 04

Col Gypsum 05

Col Gypsum 06

Col Orange

Col Red 01

Col Red 02

Col Red 03

Col Red 04

Col Ruby

Col Ruby 01

Col Ruby 02

Col Ruby 03

Col Ruby 04

Col Ruby 05

Col Sapphire 01

Col Sapphire 02

Col Sapphire 03

Col Topaz 01

Col Topaz 02

Col Topaz 03

Col Tourmaline 01

Col Tourmaline 02

Col Tourmaline 03

Col Tourmaline 04

Col Tourmaline 05

Col Tourmaline 06

Col Vicksbottle

Col Winebottle

Col Yellow

Col Yellow 01

Col Yellow 02

Col Yellow 03

Col Yellow 04

Table 6.2: glass.inc glass colors without transparency for fadecolor

338 Include Files

6.8.2 Glass colors (without transparency, for fadecolor)

6.8.3 Glass finishes

F Glass5, ..., F Glass10

6.8.4 Glass interiors

I Glass1, ..., I Glass4

I Glass Fade Sqr1 (identical toI Glass1)

I Glass Fade Exp1 (identical toI Glass2)

I Glass Fade Exp2 (identical toI Glass3)

I Glass Fade Exp3 (identical toI Glass4)

Glass interiors with various fadepower settings.

I Glass Dispersion1, I Glass Dispersion2

Glass interiors with dispersion.I Glass Dispersion1 has an approximately
natural glass dispersion.I Glass Dispersion2 is exaggerated.

I Glass Caustics1, I Glass Caustics2

Glass interiors with caustics.

6.8.5 Glass interior macros

I Glass Exp(Distance) andI Glass Sqr(Distance).
These macros return an interior with either exponential or fadepower 2 falloff, and a
fadedistance of Distance.

6.8.6 glassold.inc

This file contains glass textures for POV-Ray versions 3.1 and earlier. These textures do
not take advantage of the new features of POV-Ray 3.5 and are included for backwards
compatability, you will get better results with the materials in glass.inc.

These textures are designed to be used with the IGlass interior, also defined in this file.

Glass finishes

F Glass1, ..., F Glass4

6.9 math.inc 339

Glass textures

T Glass1

Simple clear glass.

T Glass2

More like an acrylic plastic.

T Glass3

An excellent lead crystal glass.

T Glass4

T Old Glass

T Winebottle Glass

T Beerbottle Glass

T Ruby Glass

T Green Glass

T Dark Green Glass

T Yellow Glass

T Orange Glass

Orange/amber glass.

T Vicksbottle Glass

6.9 math.inc

This file contains many general math functions and macros.

6.9.1 Float functions and macros

even(N). A function to test whether N is even, returns 1 when true, 0 when false.
Parameters

• N = Input value

odd(N). A function to test whether N is odd, returns 1 when true, 0 when false.
Parameters

• N = Input value

Interpolate(GC, GS, GE, TS, TE, Method). Interpolation macro, interpolates be-
tween the float valuesTS andTE. The method of interpolation is cosine, linear or expo-
nential. The position where to evaluate the interpolation is determined by the position
of GC in the rangeGS - GE. See example.
Parameters:

340 Include Files

• GC = global current, float value within the range GS - GE

• GS = global start

• GE = global end

• TS = target start

• TE = target end

• Method = interpolation method, float value:

– Method < 0 : exponential, using the value of Method as exponent.

– Method = 0 : cosine interpolation.

– Method > 0 : exponential, using the value of Method as exponent.

* Method = 1 : linear interpolation,

#declare A = Interpolate(0.5, 0, 1, 0, 10, 1);

#debug str(A,0,2)

// result A = 5.00

#declare A = Interpolate(0.0,-2, 2, 0, 10, 1);

#debug str(A,0,2)

// result A = 5.00

#declare A = Interpolate(0.5, 0, 1, 0, 10, 2);

#debug str(A,0,2)

// result A = 2.50

Mean(A). A macro to compute the average of an array of values.
Parameters:

• A = An array of float or vector values.

Std Dev(A, M). A macro to compute the standard deviation.
Parameters:

• A = An array of float values.

• M = Mean of the floats in the array.

GetStats(ValArr). This macro declares a global array named ”StatisticsArray”
containing: N, Mean, Min, Max, and Standard Deviation
Parameters:

• A = An array of float values.

Histogram(ValArr, Intervals). This macro declares a global, 2D array named ”HistogramArray”.
The first value in the array is the center of the interval/bin, the second the number of
values in that interval.
Parameters:

• ValArr = An array with values.

• Intervals = The desired number of intervals/bins.

6.9 math.inc 341

sind(v), cosd(v), tand(v), asind(v), acosd(v), atan2d(a, b). These functions
are versions of the trigonometric functions using degrees, instead of radians, as the an-
gle unit.
Parameters:
The same as for the analogous built-in trig function.

max3(a, b, c). A function to find the largest of three numbers.
Parameters:

• a, b, c = Input values.

min3(a, b, c). A function to find the smallest of three numbers.
Parameters:

• a, b, c = Input values.

f sqr(v). A function to square a number.
Parameters:

• v = Input value.

sgn(v). A function to show the sign of the number. Returns -1 or 1 depending on the
sign of v.
Parameters:

• v = Input value.

clip(V, Min, Max). A function that limits a value to a specific range, if it goes outside
that range it is ”clipped”. Input values larger thanMax will return Max, those less than
Min will return Min.
Parameters:

• V = Input value.

• Min = Minimum of output range.

• Max = Maximum of output range.

clamp(V, Min, Max). A function that limits a value to a specific range, if it goes
outside that range it is ”clamped” to this range, wrapping around. As the input increases
or decreases outside the given range, the output will repeatedly sweep through that
range, making a ”sawtooth” waveform.
Parameters:

• V = Input value.

• Min = Minimum of output range.

• Max = Maximum of output range.

adj range(V, Min, Max). A function that adjusts input values in the range [0, 1] to a
given range. An input value of 0 will returnMin, 1 will returnMax, and values outside
the [0, 1] range will be linearly extrapolated (the graph will continue in a straight line).
Parameters:

• V = Input value.

• Min =Minimum of output range.

• Max =Maximum of output range.

342 Include Files

adj range2(V, InMin, InMax, OutMin, OutMax). Like f range(), but adjusts input
values in the range[InMin, InMax] to the range[OutMin, OutMax].
Parameters:

• V = Input value.

• InMin = Minimum of input range.

• InMax = Maximum of input range.

• OutMin = Minimum of output range.

• OutMax = Maximum of output range.

6.9.2 Vector functions and macros

These are all macros in the current version because functions can not take vector pa-
rameters, but this may change in the future.

VSqr(V). Square each individual component of a vector, equivalent toV*V.
Parameters:

• V = Vector to be squared.

VPow(V, P), VPow5D(V, P). Raise each individual component of a vector to a given
power.
Parameters:

• V = Input vector.

• P = Power.

VEq(V1, V2). Tests for equal vectors, returns true if all three components ofV1equal
the respective components ofV2.
Parameters:

• V1, V2 = The vectors to be compared.

VEq5D(V1, V2). A 5D version ofVEq(). Tests for equal vectors, returns true if all 5
components ofV1 equal the respective components ofV2.
Parameters:

• V1, V2 = The vectors to be compared.

VZero(V). Tests for a< 0, 0, 0> vector.
Parameters:

• V = Input vector.

VZero5D(V). Tests for a< 0, 0, 0, 0, 0> vector.
Parameters:

• V = Input vector.

VLength5D(V). Computes the length of a 5D vector.
Parameters:

• V = Input vector.

6.9 math.inc 343

VNormalize5D(V). Normalizes a 5D vector.
Parameters:

• V = Input vector.

VDot5D(V1, V2). Computes the dot product of two 5D vectors. See vdot() for more
information on dot products.
Parameters:

• V = Input vector.

VCos Angle(V1, V2). Compute the cosine of the angle between two vectors.
Parameters:

• V1, V2 = Input vectors.

VAngle(V1, V2), VAngleD(V1, V2). Compute the angle between two vectors.VAngle()
returns the angle in radians,VAngleD() in degrees.
Parameters:

• V1, V2 = Input vectors.

VRotation(V1, V2, Axis), VRotationD(V1, V2, Axis).Compute the rotation angle
from V1 to V2 around Axis. Axis should be perpendicular to both V1 and V2. The
output will be in the range between -pi and pi radians or between -180 degrees and
180 degrees if you are using the degree version. However, if Axis is set to<0,0,0> the
output will always be positive or zero, the same result you will get with the VAngle()
macros.
Parameters:

• V1, V2 = Input vectors.

VDist(V1, V2). Compute the distance between two points.
Parameters:

• V1, V2 = Input vectors.

VPerp To Vector(V). Find a vector perpendicular to the given vector.
Parameters:

• V = Input vector.

VPerp To Plane(V1, V2). Find a vector perpendicular to both given vectors. In other
words, perpendicular to the plane defined by the two input vectors
Parameters:

• V1, V2 = Input vectors.

VPerp Adjust(V1, Axis). Find a vector perpendicular to Axis and in the plane of V1
and Axis. In other words, the new vector is a version of V1 adjusted to be perpendicular
to Axis.
Parameters:

• V1, Axis = Input vectors.

VProject Plane(V1, Axis). Project vector V1 onto the plane defined by Axis.
Parameters:

• V1 = Input vectors.

344 Include Files

• Axis = Normal of the plane.

VProject Axis(V1, Axis). Project vector V1 onto the axis defined by Axis.
Parameters:

• V1, Axis = Input vectors.

VMin(V), VMax(V). Find the smallest or largest component of a vector.
Parameters:

• V = Input vector.

VWith Len(V, Len). Create a vector parallel to a given vector but with a given length.
Parameters:

• V = Direction vector.

• Len = Length of desired vector.

6.9.3 Vector Analysis

SetGradientAccuracy(Value): all below macros make use of a constant named ’GradientFn Accuracy’
for numerical approximation of the derivatives. This constant can be changed with the
macro, the default value is 0.001.

fn Gradient(Fn): macro calculating the gradient of a function as a function.
Parameters:

• Fn = function to calculate the gradient from.

fn Gradient Directional(Fn, Dir): macro calculating the gradient of a function in
one direction as a function.
Parameters:

• Fn = function to calculate the gradient from.

• Dir = direction to calculate the gradient.

fn Divergence(Fnx, Fny, Fnz): macro calculating the divergence of a (vector) func-
tion as a function.
Parameters:

• Fnx, Fny, Fnz= x, y and z components of a vector function.

vGradient(Fn, p0): macro calculating the gradient of a function as a vector expres-
sion.
Parameters:

• Fn = function to calculate the gradient from.

• p0 = point where to calculate the gradient.

vCurl(Fnx, Fny, Fnz, p0): macro calculating the curl of a (vector) function as a
vector expression
Parameters:

• Fnx, Fny, Fnz = x, y and z components of a vector function.

• p0 = point where to calculate the gradient.

6.10 metals.inc, golds.inc 345

Divergence(Fnx, Fny, Fnz, p0): macro calculating the divergence of a (vector) func-
tion as a float expression
Parameters:

• Fnx, Fny, Fnz = x, y and z components of a vector function.

• p0 = point where to calculate the gradient.

Gradient Length(Fn, p0): macro calculating the length of the gradient of a function
as a float expression.
Parameters:

• Fn = function to calculate the gradient from.

• p0 = point where to calculate the gradient.

Gradient Directional(Fn, p0, Dir): macro calculating the gradient of a function in
one direction as a float expression.
Parameters:

• Fn = function to calculate the gradient from.

• p0 = point where to calculate the gradient.

• Dir = direction to calculate the gradient.

6.10 metals.inc, golds.inc

These files define several metal textures. The file metals.inc contains copper, silver,
chrome, and brass textures, and golds.inc contains the gold textures.
Rendering the demo files will come in useful in using these textures.

6.10.1 metals.inc

Colors:

P Brass1

Dark brown bronze.

P Brass2

Somewhat lighter brown than Brass4. Old penny, in soft finishes.

P Brass3

Used by Steve Anger’s PolishedBrass. Slightly coppery.

P Brass4

A little yellower than Brass1.

P Brass5

Very light bronze, ranges from med tan to almost white.

P Copper1

346 Include Files

Bronze-like. Best in finish #C.

P Copper2

Slightly brownish copper/bronze. Best in finishes #B-#D.

P Copper3

Reddish-brown copper. Best in finishes #C-#E.

P Copper4

Pink copper, like new tubing. Best in finishes #C-#E.

P Copper5

Bronze in softer finishes, gold in harder finishes.

P Chrome1

20% Gray. Used in Steve Anger’s PolishedChrome.

P Chrome2

Slightly blueish 60% gray. Good steel w/finish #A.

P Chrome3

50% neutral gray.

P Chrome4

75% neutral gray.

P Chrome5

95% neutral gray.

P Silver1

Yellowish silverplate. Somewhat tarnished looking.

P Silver2

Not quite as yellowish as Silver1 but more so than Silver3.

P Silver3

Reasonably neutral silver.

P Silver4

P Silver5

Finishes:

F MetalA

Very soft and dull.

F MetalB

Fairly soft and dull.

F MetalC

6.11 rand.inc 347

Medium reflectivity. Holds color well.

F MetalD

Very hard and highly polished. High reflectivity.

F MetalE

Very highly polished and reflective.

Textures:

T Brass 1A to T Brass 5E

T Copper 1A to T Copper 5E

T Chrome 1A to T Chrome 5E

T Silver 1A to T Silver 5E

6.10.2 golds.inc

This file has its own versions ofF MetalA throughF MetalB.

The gold textures themselves areT Gold 1A throughT Gold 5E.

6.11 rand.inc

A collection of macros for generating random numbers, as well as 4 predefined random
number streams:RdmA, RdmB, RdmC, andRdmD. There are macros for creating random
numbers in a flat distribution (all numbers equally likely) in various ranges, and a
variety of other distributions.

6.11.1 Flat Distributions

SRand(Stream). ”Signed rand()”, returns random numbers in the range [-1, 1].
Parameters:

• Stream = Random number stream.

RRand(Min, Max, Stream). Returns random numbers in the range [Min, Max].
Parameters:

• Min = The lower end of the output range.

• Max = The upper end of the output range.

• Stream = Random number stream.

VRand(Stream). Returns random vectors in a box from< 0, 0, 0> to < 1, 1, 1>
Parameters:

• Stream = Random number stream.

348 Include Files

VRand In Box(PtA, PtB, Stream). Like VRand(), this macro returns a random vector
in a box, but this version lets you specify the two corners of the box.
Parameters:

• PtA = Lower-left-bottom corner of box.

• PtB = Upper-right-top corner of box.

• Stream = Random number stream.

VRand In Sphere(Stream). Returns a random vector in a unit-radius sphere located at
the origin.
Parameters:

• Stream = Random number stream.

VRand On Sphere(Stream). Returns a random vector on the surface of a unit-radius
sphere located at the origin.
Parameters:

• Stream = Random number stream.

VRand In Obj(Object, Stream) This macro takes a solid object and returns a random
point that is inside it. It does this by randomly sampling the bounding box of the
object, and can be quite slow if the object occupies a small percentage of the volume of
its bounding box (because it will take more attempts to find a point inside the object).
This macro is best used on finite, solid objects (non-solid objects, such as meshes and
bezier patches, don’t have a defined ”inside”, and will not work).
Parameters:

• Object = The object the macro chooses the points from.

• Stream = Random number stream.

6.11.2 Other Distributions

Continuous Symmetric Distributions

Rand Cauchy(Mu, Sigma, Stream). Cauchy distribution.
Parameters:

• Mu = Mean.

• Sigma = Standard deviation.

• Stream = Random number stream.

Rand Student(N, Stream). Student’s-t distribution.
Parameters:

• N = degrees of freedom.

• Stream = Random number stream.

Rand Normal(Mu, Sigma, Stream). Normal distribution.
Parameters:

• Mu = Mean.

6.11 rand.inc 349

• Sigma = Standard deviation.

• Stream = Random number stream.

Rand Gauss(Mu, Sigma, Stream). Gaussian distribution. Like RandNormal(), but a
bit faster.
Parameters:

• Mu = Mean.

• Sigma = Standard deviation.

• Stream = Random number stream.

Continuous Skewed Distributions

Rand Spline(Spline, Stream). This macro takes a spline describing the desired dis-
tribution. The T value of the spline is the output value, and the .y value its chance of
occuring.
Parameters:

• Spline = A spline determining the distribution.

• Stream = Random number stream.

Rand Gamma(Alpha, Beta, Stream). Gamma distribution.
Parameters:

• Alpha = Shape parameter> 0.

• Beta = Scale parameter> 0.

• Stream = Random number stream.

Rand Beta(Alpha, Beta, Stream). Beta variate.
Parameters:

• Alpha = Shape Gamma1.

• Beta = Scale Gamma2.

• Stream = Random number stream.

Rand Chi Square(N, Stream). Chi Square random variate.
Parameters:

• N = Degrees of freedom (integer).

• Stream = Random number stream.

Rand F Dist(N, M, Stream). F-distribution.
Parameters:

• N, M = Degrees of freedom.

• Stream = Random number stream.

Rand Tri(Min, Max, Mode, Stream). Triangular distribution
Parameters:

350 Include Files

• Min, Max, Mode: Min <Mode< Max.

• Stream = Random number stream.

Rand Erlang(Mu, K, Stream). Erlang variate.
Parameters:

• Mu = Mean>= 0.

• K = Number of exponential samples.

• Stream = Random number stream.

Rand Exp(Lambda, Stream). Exponential distribution.
Parameters:

• Lambda = rate= 1/mean.

• Stream = Random number stream.

Rand Lognormal(Mu, Sigma, Stream). Lognormal distribution.
Parameters:

• Mu = Mean.

• Sigma = Standard deviation.

• Stream = Random number stream.

Rand Pareto(Alpha, Stream). Pareto distribution.
Parameters:

• Alpha = ?

• Stream = Random number stream.

Rand Weibull(Alpha, Beta, Stream). Weibull distribution.
Parameters:

• Alpha = ?

• Beta = ?

• Stream = Random number stream.

Discrete Distributions

Rand Bernoulli(P, Stream) andProb(P, Stream). Bernoulli distribution. Output is
true with probability equal to the value of P and false with a probability of 1 - P.
Parameters:

• P = probability range (0-1).

• Stream = Random number stream.

Rand Binomial(N, P, Stream). Binomial distribution.
Parameters:

• N = Number of trials.

• P = Probability (0-1)

6.12 shapes.inc, shapes old.inc, shapes2.inc, shapesq.inc 351

• Stream = Random number stream.

Rand Geo(P, Stream). Geometric distribution.
Parameters:

• P = Probability (0-1).

• Stream = Random number stream.

Rand Poisson(Mu, Stream). Poisson distribution.
Parameters:

• Mu = Mean.

• Stream = Random number stream.

6.12 shapes.inc, shapesold.inc, shapes2.inc, shapesq.inc

These files contain predefined shapes and shape-generation macros.

”shapes.inc” includes ”shapesold.inc” and contains many macros for working with
objects, and for creating special objects, such as bevelled text, spherical height fields,
and rounded shapes.

Many of the objects in ”shapesold.inc” are not very useful in the newer versions of
POV-Ray, and are kept for backwards compatability with old scenes written for ver-
sions of POV-Ray that lacked primitives like cones, disks, planes, etc.

The file ”shapes2.inc” contains some more useful shapes, including regular polyhe-
drons, and ”shapesq.inc” contains several quartic and cubic shape definitions.

Some of the shapes in ”shapesq.inc” would be much easier to generate, more flexi-
ble, and possibly faster rendering as isosurfaces, but are still useful for two reasons:
backwards compatability, and the fact that isosurfaces are always finite.

6.12.1 shapes.inc

Isect(Pt, Dir, Obj, OPt) andIsectN(Pt, Dir, Obj, OPt, ONorm)
These macros are interfaces to the trace() function. Isect() only returns the intersection
point, IsectN() returns the surface normal as well. These macros return the point and
normal information through their parameters, and true or false depending on whether
an intersection was found:
If an intersection is found, they return true and set OPt to the intersection point, and
ONorm to the normal. Otherwise they return false, and do not modify OPt or ONorm.
Parameters:

• Pt = The origin (starting point) of the ray.

• Dir = The direction of the ray.

• Obj = The object to test for intersection with.

• OPt = A declared variable, the macro will set this to the intersection point.

352 Include Files

• ONorm = A declared variable, the macro will set this to the surface normal at the
intersection point.

Extents(Obj, Min, Max). This macro is a shortcut for calling both minextent() and
max extent() to get the corners of the bounding box of an object. It returns these values
through the Min and Max parameters.
Parameters:

• Obj = The object you are getting the extents of.

• Min = A declared variable, the macro will set this to the minextent of the object.

• Max = A declared variable, the macro will set this to the maxextent of the object.

Center Object(Object, Axis). A shortcut for using the CenterTrans() macro with
an object.
Parameters:

• Object = The object to be centered.

• Axis = See CenterTrans() in the transforms.inc documentation.

Align Object(Object, Axis, Pt). A shortcut for using the AlignTrans() macro with
an object.
Parameters:

• Object = The object to be aligned.

• Axis = See AlignTrans() in the transforms.inc documentation.

• Point = The point to which to align the bounding box of the object.

Bevelled Text(Font, String, Cuts, BevelAng, BevelDepth, Depth, Offset, UseMerge).
This macro attempts to ”bevel” the front edges of a text object. It accomplishes this by
making an intersection of multiple copies of the text object, each sheared in a different
direction. The results are no perfect, but may be entirely acceptable for some purposes.
Warning: the object generated may render considerably more slowly than an ordinary
text object.
Parameters:

• Font = A string specifying the font to use.

• String = The text string the object is generated from.

• Cuts = The number of intersections to use in bevelling the text. More cuts give
smoother results, but take more memory and are slower rendering.

• BevelAng = The angle of the bevelled edge.

• BevelDepth = The thickness of the bevelled portion.

• Depth = The total thickness of the resulting text object.

• Offset = The offset parameter for the text object. The z value of this vector will
be ignored, because the front faces of all the letters need to be coplanar for the
bevelling to work.

• UseMerge = Switch between merge (1) and union (0).

6.12 shapes.inc, shapes old.inc, shapes2.inc, shapesq.inc 353

Text Space(Font, String, Size, Spacing). Computes the width of a text string,
including ”white space”, it returns the advance widths of all n letters. TextSpace gives
the space a text, or a glyph, occupies in regard to its surroundings.
Parameters:

• Font = A string specifying the font to use.

• String = The text string the object is generated from.

• Size = A scaling value.

• Spacing = The amount of space to add between the characters.

Text Width(Font, String, Size, Spacing). Computes the width of a text string, it
returns the advance widths of the first n-1 letters, plus the glyph width of the last letter.
Text Width gives the ”physical” width of the text and if you use only one letter the
”fysical” width of one glyph.
Parameters:

• Font = A string specifying the font to use.

• String = The text string the object is generated from.

• Size = A scaling value.

• Spacing = The amount of space to add between the characters.

Align Left, Align Right, Align Center. These constants are used by theCircle Text()
macro.

Circle Text(Font, String, Size, Spacing, Depth, Radius, Inverted, Justification,

Angle). Creates a text object with the bottom (or top) of the character cells aligned with
all or part of a circle. This macro should be used inside anobject{...} block.
Parameters:

• Font = A string specifying the font to use.

• String = The text string the object is generated from.

• Size = A scaling value.

• Spacing = The amount of space to add between the characters.

• Depth = The thickness of the text object.

• Radius = The radius of the circle the letters are aligned to.

• Inverted = Controls what part of the text faces ”outside”. If this parameter is
nonzero, the tops of the letters will point toward the center of the circle. Other-
wise, the bottoms of the letters will do so.

• Justification = Align Left, Align Right, or Align Center.

• Angle = The point on the circle from which rendering will begin. The+x direc-
tion is 0 and the+y direction is 90 (i.e. the angle increases anti-clockwise).

Wedge(Angle). This macro creates an infinite wedge shape, an intersection of two
planes. It is mainly useful in CSG, for example to obtain a specific arc of a torus. The
edge of the wedge is positioned along the y axis, and one side is fixed to the zy plane,

354 Include Files

the other side rotates clockwise around the y axis.
Parameters:

• Angle = The angle, in degrees, between the sides of the wedge shape.

Spheroid(Center, Radius). This macro creates an unevenly scaled sphere. Radius is
a vector where each component is the radius along that axis.
Parameters:

• Center = Center of the spheroid.

• Radius = A vector specifying the radii of the spheroid.

Supertorus(MajorRadius, MinorRadius, MajorControl, MinorControl, Accuracy,

MaxGradient). This macro creates an isosurface of the torus equivalent of a superellip-
soid. If you specify a MaxGradient of less than 1, evaluate will be used. You will have
to adjust MaxGradient to fit the parameters you choose, a squarer supertorus will have
a higher gradient. You may want to use the function alone in your own isosurface.
Parameters:

• MajorRadius, MinorRadius = Base radii for the torus.

• MajorControl, MinorControl = Controls for the roundness of the supertorus.
Use numbers in the range [0, 1].

• Accuracy = The accuracy parameter.

• MaxGradient = The maxgradient parameter.

Supercone(EndA, A, B, EndB, C, D). This macro creates an object similar to a cone,
but where the end points are ellipses. The actual object is an intersection of a quartic
with a cylinder.
Parameters:

• EndA = Center of end A.

• A, B = Controls for the radii of end A.

• EndB = Center of end B.

• C, D = Controls for the radii of end B.

Connect Spheres(PtA, RadiusA, PtB, RadiusB). This macro creates a cone that will
smoothly join two spheres. It creates only the cone object, however, you will have to
supply the spheres yourself or use the RoundCone2() macro instead.
Parameters:

• PtA = Center of sphere A.

• RadiusA = Radius of sphere A.

• PtB = Center of sphere B.

• RadiusB = Radius of sphere B.

Wire Box Union(PtA, PtB, Radius),

Wire Box Merge(PtA, PtB, Radius),

Wire Box(PtA, PtB, Radius, UseMerge). Creates a wire-frame box from cylinders
and spheres. The resulting object will fit entirely within a box object with the same

6.12 shapes.inc, shapes old.inc, shapes2.inc, shapesq.inc 355

corner points.
Parameters:

• PtA = Lower-left-front corner of box.

• PtB = Upper-right-back corner of box.

• Radius = The radius of the cylinders and spheres composing the object.

• UseMerge =Whether or not to use a merge.

Round Box Union(PtA, PtB, EdgeRadius),

Round Box Merge(PtA, PtB, EdgeRadius),

Round Box(PtA, PtB, EdgeRadius, UseMerge). Creates a box with rounded edges
from boxes, cylinders and spheres. The resulting object will fit entirely within a box
object with the same corner points. The result is slightly different from a superellipsoid,
which has no truely flat areas.
Parameters:

• PtA = Lower-left-front corner of box.

• PtB = Upper-right-back corner of box.

• EdgeRadius = The radius of the edges of the box.

• UseMerge =Whether or not to use a merge.

Round Cylinder Union(PtA, PtB, Radius, EdgeRadius),

Round Cylinder Merge(PtA, PtB, Radius, EdgeRadius),

Round Cylinder(PtA, PtB, Radius, EdgeRadius, UseMerge). Creates a cylinder with
rounded edges from cylinders and tori. The resulting object will fit entirely within a
cylinder object with the same end points and radius. The result is slightly different
from a superellipsoid, which has no truely flat areas.
Parameters:

• PtA, PtB = The end points of the cylinder.

• Radius = The radius of the cylinder.

• EdgeRadius = The radius of the edges of the cylinder.

• UseMerge =Whether or not to use a merge.

Round Cone Union(PtA, RadiusA, PtB, RadiusB, EdgeRadius),

Round Cone Merge(PtA, RadiusA, PtB, RadiusB, EdgeRadius),

Round Cone(PtA, RadiusA, PtB, RadiusB, EdgeRadius, UseMerge) Creates a cone
with rounded edges from cones and tori. The resulting object will fit entirely within a
cone object with the same end points and radii.
Parameters:

• PtA, PtB = The end points of the cone.

• RadiusA, RadiusB = The radii of the cone.

• EdgeRadius = The radius of the edges of the cone.

• UseMerge =Whether or not to use a merge.

356 Include Files

Round Cone2 Union(PtA, RadiusA, PtB, RadiusB),

Round Cone2 Merge(PtA, RadiusA, PtB, RadiusB),

Round Cone2(PtA, RadiusA, PtB, RadiusB, UseMerge). Creates a cone with rounded
edges from a cone and two spheres. The resulting object will not fit entirely within a
cone object with the same end points and radii because of the spherical caps. The end
points are not used for the conical portion, but for the spheres, a suitable cone is then
generated to smoothly join them.
Parameters:

• PtA, PtB = The centers of the sphere caps.

• RadiusA, RadiusB = The radii of the sphere caps.

• UseMerge =Whether or not to use a merge.

Round Cone3 Union(PtA, RadiusA, PtB, RadiusB),

Round Cone3 Merge(PtA, RadiusA, PtB, RadiusB)

Round Cone3(PtA, RadiusA, PtB, RadiusB, UseMerge). Like RoundCone2(), this
creates a cone with rounded edges from a cone and two spheres, and the resulting
object will not fit entirely within a cone object with the same end points and radii
because of the spherical caps. The difference is that this macro takes the end points
of the conical portion and moves the spheres to be flush with the surface, instead of
putting the spheres at the end points and generating a cone to join them.
Parameters:

• PtA, PtB = The end points of the cone.

• RadiusA, RadiusB = The radii of the cone.

• UseMerge =Whether or not to use a merge.

Quad(A, B, C, D) and Smooth Quad(A, NA, B, NB, C, NC, D, ND). These macros
create ”quads”, 4-sided polygonal objects, using triangle pairs.
Parameters:

• A, B, C, D = Vertices of the quad.

• NA, NB, NC, ND = Vertex normals of the quad.

The HF Macros

There are several HF macros in shapes.inc, which generate meshes in various shapes.
All the HF macros have these things in common:

• The HF macros do not directly use an image for input, but evaluate a user-defined
function. The macros deform the surface based on the function values.

• The macros can either write to a file to be included later, or create an object
directly. If you want to output to a file, simply specify a filename. If you want to
create an object directly, specify ”” as the file name (an empty string).

• The function values used for the heights will be taken from the square that goes
from <0,0,0> to <1,1,0> if UV height mapping is on. Otherwise the function
values will be taken from the points where the surface is (before the deforma-
tion).

6.12 shapes.inc, shapes old.inc, shapes2.inc, shapesq.inc 357

• The texture you apply to the shape will be evaluated in the square that goes
from <0,0,0> to <1,1,0> if UV texture mapping is on. Otherwise the texture is
evaluated at the points where the surface is (after the deformation.

The usage of the different HF macros is described below.

HF Square (Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, MnExt,

MxExt). This macro generates a mesh in the form of a square height field, similar to
the built-in heightfield primitive. Also see the general description of the HF macros
above.
Parameters:

• Function = The function to use for deforming the height field.

• UseUVheight = A boolean value telling the macro whether or not to use UV
height mapping.

• UseUVtexture = A boolean value telling the macro whether or not to use UV
texture mapping.

• Res = A 2D vector specifying the resolution of the generated mesh.

• Smooth = A boolean value telling the macro whether or not to smooth the gener-
ated mesh.

• FileName = The name of the output file.

• MnExt = Lower-left-front corner of a box containing the height field.

• MxExt = Upper-right-back corner of a box containing the height field.

HF Sphere(Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, Center,

Radius, Depth). This macro generates a mesh in the form of a spherical height field.
When UV-mapping is used, the UV square will be wrapped around the sphere starting
at+x and going anti-clockwise around the y axis. Also see the general description of
the HF macros above. Parameters:

• Function = The function to use for deforming the height field.

• UseUVheight = A boolean value telling the macro whether or not to use UV
height mapping.

• UseUVtexture = A boolean value telling the macro whether or not to use UV
texture mapping.

• Res = A 2D vector specifying the resolution of the generated mesh.

• Smooth = A boolean value telling the macro whether or not to smooth the gener-
ated mesh.

• FileName = The name of the output file.

• Center = The center of the height field before being displaced, the displacement
can, and most likely will, make the object off-center.

• Radius = The starting radius of the sphere, before being displaced.

• Depth = The depth of the height field.

358 Include Files

HF Cylinder(Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, EndA,

EndB, Radius,Depth). This macro generates a mesh in the form of an open-ended
cylindrical height field. When UV-mapping is used, the UV square will be wrapped
around the cylinder. Also see the general description of the HF macros above.
Parameters:

• Function = The function to use for deforming the height field.

• UseUVheight = A boolean value telling the macro whether or not to use UV
height mapping.

• UseUVtexture = A boolean value telling the macro whether or not to use UV
texture mapping.

• Res = A 2D vector specifying the resolution of the generated mesh.

• Smooth = A boolean value telling the macro whether or not to smooth the gener-
ated mesh.

• FileName = The name of the output file.

• EndA, EndB = The end points of the cylinder.

• Radius = The (pre-displacement) radius of the cylinder.

• Depth = The depth of the height field.

HF Torus (Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, Major,

Minor, Depth). This macro generates a mesh in the form of a torus-shaped height field.
When UV-mapping is used, the UV square is wrapped around similar to spherical or
cylindrical mapping. However the top and bottom edges of the map wrap over and
under the torus where they meet each other on the inner rim. Also see the general de-
scription of the HF macros above.
Parameters:

• Function = The function to use for deforming the height field.

• UseUVheight = A boolean value telling the macro whether or not to use UV
height mapping.

• UseUVtexture = A boolean value telling the macro whether or not to use UV
texture mapping.

• Res = A 2D vector specifying the resolution of the generated mesh.

• Smooth = A boolean value telling the macro whether or not to smooth the gener-
ated mesh.

• FileName = The name of the output file.

• Major = The major radius of the torus.

• Minor = The minor radius of the torus.

6.12.2 shapesold.inc

Ellipsoid, Sphere

6.12 shapes.inc, shapes old.inc, shapes2.inc, shapesq.inc 359

Unit-radius sphere at the origin.

Cylinder X, Cylinder Y, Cylinder Z

Infinite cylinders.

QCone X, QCone Y, QCone Z

Infinite cones.

Cone X, Cone Y, Cone Z

Closed capped cones: unit-radius at -1 and 0 radius at+1 along each axis.

Plane YZ, Plane XZ, Plane XY

Infinite planes passing through the origin.

Paraboloid X, Paraboloid Y, Paraboloid Z

yˆ2 + zˆ2 - x= 0

Hyperboloid, Hyperboloid Y

y - xˆ2 + zˆ2= 0

UnitBox, Cube

A cube 2 units on each side, centered on the origin.

Disk X, Disk Y, Disk Z

”Capped” cylinders, with a radius of 1 unit and a length of 2 units, centered on
the origin.

6.12.3 shapes2.inc

Tetrahedron

4-sided regular polyhedron.

Octahedron

8-sided regular polyhedron.

Dodecahedron

12-sided regular polyhedron.

Icosahedron

20-sided regular polyhedron.

Rhomboid

Three dimensional 4-sided diamond, basically a sheared box.

Hexagon

6-sided regular polygonal solid, axis along x.

HalfCone Y

360 Include Files

Convenient finite cone primitive, pointing up in the Y axis.

Pyramid

4-sided pyramid (union of triangles, can not be used in CSG).

Pyramid2

4-sided pyramid (intersection of planes, can be used in CSG).

Square X, Square Y, Square Z

Finite planes stretching 1 unit along each axis. In other words, 2X2 unit squares.

6.12.4 shapesq.inc

Bicorn

This curve looks like the top part of a paraboloid, bounded from below by
another paraboloid. The basic equation is:

yˆ2 - (xˆ2+ zˆ2) yˆ2 - (xˆ2+ zˆ2+ 2 y - 1)ˆ2=

Crossed Trough

This is a surface with four pieces that sweep up from the x-z plane.

The equation is: y= xˆ2 zˆ2

Cubic Cylinder

A drop coming out of water? This is a curve formed by using the equation:

y = 1/2 xˆ2 (x+ 1)

as the radius of a cylinder having the x-axis as its central axis. The final form
of the equation is:

yˆ2 + zˆ2= 0.5 (xˆ3+ xˆ2)

Cubic Saddle 1

A cubic saddle. The equation is: z= xˆ3 - yˆ3

Devils Curve

Variant of a devil’s curve in 3-space. This figure has a top and bottom part that
are very similar to a hyperboloid of one sheet, however the central region
is pinched in the middle leaving two teardrop shaped holes. The equation
is:

xˆ4 + 2 xˆ2 zˆ2 - 0.36 xˆ2 - yˆ4+ 0.25 yˆ2+ zˆ4= 0

Folium

This is a folium rotated about the x-axis. The formula is:

2 xˆ2 - 3 x yˆ2 - 3 x zˆ2+ yˆ2 + zˆ2= 0

Glob 5

Glob - sort of like basic teardrop shape. The equation is:

6.12 shapes.inc, shapes old.inc, shapes2.inc, shapesq.inc 361

yˆ2 + zˆ2= 0.5 xˆ5+ 0.5 xˆ4

Twin Glob

Variant of a lemniscate - the two lobes are much more teardrop-like.

Helix, Helix 1

Approximation to the helix z= arctan(y/x). The helix can be approximated with
an algebraic equation (kept to the range of a quartic) with the following
steps:

tan(z)= y/x => sin(z)/cos(z)= y/x =>
(1) x sin(z) - y cos(z)= 0 Using the taylor expansions for sin, cos about z
= 0,
sin(z)= z - zˆ3/3! + zˆ5/5! - ...
cos(z)= 1 - zˆ2/2! + zˆ6/6! - ...
Throwing out the high order terms, the expression (1) can be written as:
x (z - zˆ3/6) - y (1+ zˆ2/2) = 0, or

(2) -1/6 x zˆ3+ x z + 1/2 y zˆ2 - y= 0
This helix (2) turns 90 degrees in the range 0<= z <= sqrt(2)/2. By using
scale<2 2 2>, the helix defined below turns 90 degrees in the range 0<=
z <= sqrt(2)= 1.4042.

Hyperbolic Torus

Hyperbolic Torus having major radius sqrt(40), minor radius sqrt(12). This
figure is generated by sweeping a circle along the arms of a hyperbola. The
equation is:

xˆ4+ 2 xˆ2 yˆ2 - 2 xˆ2 zˆ2 - 104 xˆ2+ yˆ4 - 2 yˆ2 zˆ2+ 56 yˆ2+ zˆ4+ 104 zˆ2
+ 784= 0

Lemniscate

Lemniscate of Gerono. This figure looks like two teardrops with their pointed
ends connected. It is formed by rotating the Lemniscate of Gerono about
the x-axis. The formula is:

xˆ4 - xˆ2+ yˆ2 + zˆ2= 0

Quartic Loop 1

This is a figure with a bumpy sheet on one side and something that looks like a
paraboloid (but with an internal bubble). The formula is:

(xˆ2 + yˆ2 + a c x)ˆ2 - (xˆ2+ yˆ2)(c - a x)ˆ2

-99*xˆ4+40*xˆ3-98*xˆ2*yˆ2-98*xˆ2*zˆ2+99*xˆ2+40*x*yˆ2

+40*x*zˆ2+yˆ4+2*yˆ2*zˆ2-yˆ2+zˆ4-zˆ2

Monkey Saddle

This surface has three parts that sweep up and three down. This gives a saddle
that has a place for two legs and a tail... The equation is:

z = c (xˆ3 - 3 x yˆ2)

362 Include Files

The value c gives a vertical scale to the surface - the smaller the value of c, the
flatter the surface will be (near the origin).

Parabolic Torus 40 12

Parabolic Torus having major radius sqrt(40), minor radius sqrt(12). This fig-
ure is generated by sweeping a circle along the arms of a parabola. The
equation is:

xˆ4+ 2 xˆ2 yˆ2 - 2 xˆ2 z - 104 xˆ2+ yˆ4 - 2 yˆ2 z+ 56 yˆ2+ zˆ2+ 104 z+ 784
= 0

Piriform

This figure looks like a hersheys kiss. It is formed by sweeping a Piriform about
the x-axis. A basic form of the equation is:

(xˆ4 - xˆ3)+ yˆ2 + zˆ2= 0.

Quartic Paraboloid

Quartic parabola - a 4th degree polynomial (has two bumps at the bottom) that
has been swept around the z axis. The equation is:

0.1 xˆ4 - xˆ2 - yˆ2 - zˆ2+ 0.9= 0

Quartic Cylinder

Quartic Cylinder - a Space Needle?

Steiner Surface

Steiners quartic surface

Torus 40 12

Torus having major radius sqrt(40), minor radius sqrt(12).

Witch Hat

Witch of Agnesi.

Sinsurf

Very rough approximation to the sin-wave surface z= sin(2 pi x y).

In order to get an approximation good to 7 decimals at a distance of 1 from
the origin would require a polynomial of degree around 60, which would
require around 200,000 coefficients. For best results, scale by something
like <1 1 0.2>.

6.13 skies.inc, stars.inc

These files contain some predefined skies for you to use in your scenes.

skies.inc:
There are textures and pigment definitions in this file. All pigment definitions start with

6.13 skies.inc, stars.inc 363

”P ”, all sky spheres start with ”S”, all textures start with ”T”, and all objects start
with ”O ”.

stars.inc:
This file contains predefined starfield textures. The starfields become denser and more
colorful with the number, with Starfield6 being the densest and most colorful.

6.13.1 skies.inc

Pigments:

P Cloud1

P Cloud2

P Cloud3

Sky Spheres:

S Cloud1

This skysphere uses PCloud2 and PCloud3.

S Cloud2

This skysphere uses PCloud4.

S Cloud3

This skysphere uses PCloud2.

S Cloud4

This skysphere uses PCloud3.

S Cloud5

This skysphere uses a custom pigment.

Textures:

T Cloud1

2-layer texture using PCloud1 pigment, contains clear regions.

T Cloud2

1-layer texture, contains clear regions.

T Cloud3

2-layer texture, contains clear regions.

Objects:

O Cloud1

Sphere, radius 10000 with TCloud1 texture.

O Cloud2

Union of 2 planes, with TCloud2 and TCloud3.

364 Include Files

6.13.2 stars.inc

Starfield1

Starfield2

Starfield3

Starfield4

Starfield5

Starfield6

6.14 stones.inc, stones1.inc, stones2.inc, stoneold.inc

The two files stones1.inc and stones2.inc contain lists of predefined stone textures.

The file ”stones1.inc” contains texture definitions for TGrnt0 to TGrnt29, TGrnt1a
to T Grnt24a, and TStone0 to TStone24.

The T GrntXX, T GrntXXa, and CrackX textures are ”building blocks that are used to
create the final ”usable” TStoneX textures (and other textures that *you* design, of
course!)

The T GrntXX textures generally contain no transparency, but the TGrntXXa textures
do contain transparency. The CrackX textures are clear with thin opaque bands, simu-
lating cracks.

The file ”stones2.inc” provides additional stone textures, and contains texture defini-
tions for T Stone25 to TStone44.

The file ”stones.inc” simply includes both ”stones1.inc” and ”stones2.inc”, and the file
”stoneold.inc” provides backwards compatability for old scenes, the user is advised to
use the textures in ”stones1.inc” instead.

6.14.1 stones1.inc

T Grnt0

Gray/Tan with Rose.

T Grnt1

Creamy Whites with Yellow & Light Gray.

T Grnt2

Deep Cream with Light Rose, Yellow, Orchid, & Tan.

T Grnt3

Warm tans olive & light rose with cream.

T Grnt4

6.14 stones.inc, stones1.inc, stones2.inc, stoneold.inc 365

Orchid, Sand & Mauve.

T Grnt5

Medium Mauve Med.Rose & Deep Cream.

T Grnt6

Med. Orchid, Olive & Dark Tan ”mud pie”.

T Grnt7

Dark Orchid, Olive & Dark Putty.

T Grnt8

Rose & Light Cream Yellows

T Grnt9

Light Steely Grays

T Grnt10

Gray Creams & Lavender Tans

T Grnt11

Creams & Grays Kahki

T Grnt12

Tan Cream & Red Rose

T Grnt13

Cream Rose Orange

T Grnt14

Cream Rose & Light Moss w/Light Violet

T Grnt15

Black with subtle chroma

T Grnt16

White Cream & Peach

T Grnt17

Bug Juice & Green

T Grnt18

Rose & Creamy Yellow

T Grnt19

Gray Marble with White feather Viens

T Grnt20

White Marble with Gray feather Viens

366 Include Files

T Grnt21

Green Jade

T Grnt22

Clear with White feather Viens (has some transparency)

T Grnt23

Light Tan to Mauve

T Grnt24

Light Grays

T Grnt25

Moss Greens & Tan

T Grnt26

Salmon with thin Green Viens

T Grnt27

Dark Green & Browns

T Grnt28

Red Swirl

T Grnt29

White, Tan, w/ thin Red Viens

T Grnt0a

Translucent TGrnt0

T Grnt1a

Translucent TGrnt1

T Grnt2a

Translucent TGrnt2

T Grnt3a

Translucent TGrnt3

T Grnt4a

Translucent TGrnt4

T Grnt5a

Translucent TGrnt5

T Grnt6a

Translucent TGrnt6

T Grnt7a

6.14 stones.inc, stones1.inc, stones2.inc, stoneold.inc 367

Translucent TGrnt7

T Grnt8a

Aqua Tints

T Grnt9a

Transmit Creams With Cracks

T Grnt10a

Transmit Cream Rose & light yellow

T Grnt11a

Transmit Light Grays

T Grnt12a

Transmit Creams & Tans

T Grnt13a

Transmit Creams & Grays

T Grnt14a

Cream Rose & light moss

T Grnt15a

Transmit Sand & light Orange

T Grnt16a

Cream Rose & light moss (again?)

T Grnt17a

???

T Grnt18a

???

T Grnt19a

Gray Marble with White feather Viens with Transmit

T Grnt20a

White Feather Viens

T Grnt21a

Thin White Feather Viens

T Grnt22a

???

T Grnt23a

Transparent Green Moss

368 Include Files

T Grnt24a

???

T Crack1

T Crack & Red Overtint

T Crack2

Translucent Dark TCracks

T Crack3

Overtint Green w/ Black T Cracks

T Crack4

Overtint w/White T Crack

The StoneXX textures are the complete textures, ready to use.

T Stone1

Deep Rose & Green Marble with large White Swirls

T Stone2

Light Greenish Tan Marble with Agate style veining

T Stone3

Rose & Yellow Marble with fog white veining

T Stone4

Tan Marble with Rose patches

T Stone5

White Cream Marble with Pink veining

T Stone6

Rose & Yellow Cream Marble

T Stone7

Light Coffee Marble with darker patches

T Stone8

Gray Granite with white patches

T Stone9

White & Light Blue Marble with light violets

T Stone10

Dark Brown & Tan swirl Granite with gray undertones

T Stone11

Rose & White Marble with dark tan swirl

6.14 stones.inc, stones1.inc, stones2.inc, stoneold.inc 369

T Stone12

White & Pinkish Tan Marble

T Stone13

Medium Gray Blue Marble

T Stone14

Tan & Olive Marble with gray white veins

T Stone15

Deep Gray Marble with white veining

T Stone16

Peach & Yellow Marble with white veining

T Stone17

White Marble with gray veining

T Stone18

Green Jade with white veining

T Stone19

Peach Granite with white patches & green trim

T Stone20

Brown & Olive Marble with white veining

T Stone21

Red Marble with gray & white veining

T Stone22

Dark Tan Marble with gray & white veining

T Stone23

Peach & Cream Marble with orange veining

T Stone24

Green & Tan Moss Marble

6.14.2 stones2.inc

T Stone25, ..., T Stone44

370 Include Files

6.15 stdinc.inc

This file simply includes the most commonly used include files, so you can get all of
them with a single #include. The files included are:

• colors.inc

• shapes.inc

• transforms.inc

• consts.inc

• functions.inc

• math.inc

• rand.inc

6.16 strings.inc

This include contains macros for manipulating and generating text strings.

CRGBStr(C, MinLen, Padding) andCRGBFTStr(C, MinLen, Padding)
These macros convert a color to a string. The format of the output string is ”rgb< R,
G, B>” or ”rgbft < R, G, B, F, T>”, depending on the macro being called.
Parameters:

• C = The color to be turned into a string.

• MinLen = The minimum length of the individual components, analogous to the
second parameter of str().

• Padding = The padding to use for the components, see the third parameter of the
str() function for details.

Str(A). This macro creates a string containing a float with the systems default preci-
sion. It is a shortcut for using the str() function.
Parameters:

• A = The float to be converted to a string.

VStr2D(V), VStr(V). These macros create strings containing vectors using POV syn-
tax (<X,Y,Z>) with the default system precision. VStr2D() works with 2D vectors,
VStr() with 3D vectors. They are shortcuts for using thevstr() function.
Parameters:

• V = The vector to be converted to a string.

Vstr2D(V,L,P), Vstr(V,L,P). These macros create strings containing vectors using
POV syntax (<X,Y,Z>) with user specified precision. Vstr2D() works with 2D vectors,
Vstr() with 3D vectors. They are shortcuts for using the vstr() function. The function
of L and P is the same as invstr specified in String Functions.
Parameters:

• V = The vector to be converted to a string.

6.17 textures.inc 371

• L =Minimum length of the string and the type of left padding used if the string’s
representation is shorter than the minimum.

• P = Number of digits after the decimal point.”

Triangle Str(A, B, C) andSmooth Triangle Str(A, NA, B, NB, C, NC)
These macros take vertex and normal information and return a string representing a
triangle in POV-Ray syntax. They are mainly useful for generating mesh files.
Parameters:

• A, B, C = Triangle vertex points.

• NA, NB, NC = Triangle vertex normals (SmoothTriangleStr() only).

Parse String(String). This macro takes a string, writes it to a file, and then includes
that file. This has the effect of parsing that string: ”Parse String("MyColor")” will be
seen by POV-Ray as ”MyColor”.
Parameters:

• String = The string to be parsed.

6.17 textures.inc

This file contains many predefined textures, including wood, glass, and metal textures,
and a few texture/pattern generation macros.

6.17.1 Stones

Stone Pigments:

Jade Map, Jade

Drew Wells’ superb Jade. Color map works nicely with other textures, too.

Red Marble Map, Red Marble

Classic white marble with red veins. Over-worked, like checkers.

White Marble Map, White Marble

White marble with black veins.

Blood Marble Map, Blood Marble

Light blue and black marble with a thin red vein.

Blue Agate Map, Blue Agate

A grey blue agate – kind of purplish.

Sapphire Agate Map, Sapphire Agate

Deep blue agate – almost glows.

Brown Agate Map, Brown Agate

Brown and white agate – very pretty.

372 Include Files

Pink Granite Map, Pink Granite

Umm, well, pink granite.

Stone textures:

PinkAlabaster

Gray-pink alabaster or marble. Layers are scaled for a unit object and relative
to each other.

Note: This texture has very tiny dark blue specks that are often mistaken for
rendering errors. They are not errors. Just a strange texture design.

Underlying surface is very subtly mottled with bozo.

Second layer texture has some transmit values, yet a fair amount of color.

Veining is kept quite thin in color map and by the largish scale.

6.17.2 Skies

Sky pigments:

Blue Sky Map, Blue Sky

Basic blue sky with clouds.

Bright Blue Sky

Bright blue sky with very white clouds.

Blue Sky2

Another sky.

Blue Sky3

Small puffs of white clouds.

Blood Sky

Red sky with yellow clouds – very surreal.

Apocalypse

Black sky with red and purple clouds.

Try adding turbulence values from 0.1 - 5.0 – CdW

Clouds

White clouds with transparent sky.

FBM Clouds

Shadow Clouds

A multilayered cloud texture (a real texture, not a pigment).

6.17 textures.inc 373

6.17.3 Woods

Wood pigments:

Several wooden pigments by Tom Price:

Cherry Wood

A light reddish wood.

Pine Wood

A light tan wood whiteish rings.

Dark Wood

Dark wood with a,ish hue to it.

Tan Wood

Light tan wood with brown rings.

White Wood

A very pale wood with tan rings – kind of balsa-ish.

Tom Wood

Brown wood - looks stained.

DMFWood1, DMFWood2, DMFWood3, DMFWood4, DMFWood5

The scaling in these definitions is relative to a unit-sized object (radius 1).

Note: woods are functionally equivalent to a log lying along the z axis. For
best results, think like a woodcutter trying to extract the nicest board out of
that log. A little tilt along the x axis will give elliptical rings of grain like
you’d expect to find on most boards. Experiment.

Wood textures:

DMFWood6

This is a three-layer wood texture. Renders rather slowly because of the trans-
parent layers and the two layers of turbulence, but it looks great. Try other
colors of ”varnish” for simple variations.

DMFLightOak

Is this really oak? I dunno. Quite light, maybe more like spruce.

DMFDarkOak

Looks like old desk oak if used correctly.

EMBWood1

Wood by Eric Barish

Doug Otwell woods:

Yellow Pine

374 Include Files

Yellow pine, close grained.

Rosewood

Sandalwood

makes a great burled maple, too

6.17.4 Glass

Glass Finish is a generic glass finish,Glass Interior is a generic glass interior, it just
adds an ior of 1.5.

Glass materials:

M Glass

Just glass.

M Glass2

Probably more of a ”Plexiglas” than glass.

M Glass3

An excellent lead crystal glass!

M Green Glass

Glass textures contributed by Norm Bowler, of Richland WA. NBglassfinish is used
by these materials.

M NBglass

M NBoldglass

M NBwinebottle

M NBbeerbottle

A few color variations on Norm’s glass.

M Ruby Glass

M Dark Green Glass

M Yellow Glass

M Orange Glass

M Vicks Bottle Glass

6.17.5 Metals

Metal finishes:

Metal

Generic metal finish.

6.17 textures.inc 375

SilverFinish

Basic silver finish

Metallic Finish

Chrome Metal, Brass Metal, Bronze Metal, Gold Metal, Silver Metal, Copper Metal

A series of metallic textures using the Metal finish (except for ChromeMetal,
which has a custom finish). There are identical textures ending inTexture
instead of Metal, but use of those names is discouraged.

Polished Chrome

A highly reflective Chrome texture.

Polished Brass

A highly reflective brass texture.

New Brass

Beautiful military brass texture!

Spun Brass

Spun Brass texture for cymbals & such

Brushed Aluminum

Brushed aluminum (brushed along X axis)

Silver1

Silver2

Silver3

Brass Valley

Sort of a ”Black Hills Gold”, black, white, and orange specks or splotches.

Rust

Rusty Iron

Soft Silver

New Penny

Tinny Brass

Gold Nugget

Aluminum

Bright Bronze

6.17.6 Special textures

Candy Cane

Red & white stripes - Looks best on a y axis Cylinder.

376 Include Files

It ”spirals” because it’s gradient on two axis.

Peel

Orange and Clear stripes spiral around the texture to make an object look like
it was ”Peeled”. Now, you too can be M.C. Escher!

Y Gradient

X Gradient

M Water

Wavy water material. Requires a sub-plane, and may require scaling to fit your
scene.

WARNING: Water texture has been changed to MWater material, see expla-
nation in the ”glass” section of this file.

Cork

Lightning CMap1, Lightning1, and Lightning CMap2, Lightning2

These are just lightning textures, they look like arcing electricity...earlier ver-
sions misspelled them as ”Lightening”.

Starfield

A starfield texture by Jeff Burton

6.17.7 Texture and pattern macros

Irregular Bricks Ptrn (Mortar Thickness, X-scaling, Variation, Roundness). This
function pattern creates a pattern of bricks of varying lengths on the x-y plane. This
can be useful in building walls that don’t look like they were built by a computer. Note
that mortar thickness between bricks can vary somewhat, too.
Parameters:

• Mortar Thickness = Thickness of the mortar (0-1).

• X-scaling = The scaling of the bricks (but not the mortar) in the x direction.

• Variation = The amount by which brick lengths will vary (0=none, 1=100%).

• Roundness= The roundness of the bricks (0.01=almost rectangular, 1=very round).

Tiles Ptrn(). This macro creates a repeating box pattern on the x-y plane. It can be
useful for creating grids. The cells shade continuously from the center to the edges.
Parameters: None.

Hex Tiles Ptrn(). This macro creates a pattern that is a sort of cross between the
hexagon pattern and a repeating box pattern. The hexagonal cells shade continuously
from the center to the edges.
Parameters: None.

Star Ptrn (Radius, Points, Skip). This macro creates a pattern that resembles a
star. The pattern is in the x-y plane, centered around the origin.
Parameters:

6.18 transforms.inc 377

• Radius = The radius of a circle drawn through the points of the star.

• Points = The number of points on the star.

• Skip = The number of points to skip when drawing lines between points to form
the star. A normal 5-pointed star skips 2 points. A Star of David also skips 2
points. Skip must be less than Points/2 and greater than 0. Integers are preferred
but not required. Skipping 1 point makes a regular polygon with Points sides.

• Pigment = The pigment to be applied to the star.

• Background = The pigment to be applied to the background.

6.18 transforms.inc

Several useful transformation macros. All these macros produce transformations, you
can use them anywhere you can use scale, rotate, etc. The descriptions will assume
you are working with an object, but the macros will work fine for textures, etc.

Shear Trans(A, B, C). This macro reorients and deforms an object so its original
XYZ axes point along A, B, and C, resulting in a shearing effect when the vectors
are not perpendicular. You can also use vectors of different lengths to affect scaling, or
use perpendicular vectors to reorient the object.
Parameters:

• A, B, C = Vectors representing the new XYZ axes for the transformation.

Matrix Trans(A, B, C, D). This macro provides a way to specify a matrix transform
with 4 vectors. The effects are very similar to that of the ShearTrans() macro, but the
fourth parameter controls translation.
Parameters:

• A, B, C, D = Vectors for each row of the resulting matrix.

Axial Scale Trans(Axis, Amt). A kind of directional scale, this macro will ”stretch”
an object along a specified axis.
Parameters:

• Axis = A vector indicating the direction to stretch along.

• Amt = The amount to stretch.

Axis Rotate Trans(Axis, Angle). This is equivalent to the transformation done by
the vaxisrotate() function, it rotates around an arbitrary axis.
Parameters:

• Axis = A vector representing the axis to rotate around.

• Angle = The amount to rotate by.

Rotate Around Trans(Rotation, Point). Ordinary rotation operates around the ori-
gin, this macro rotates around a specific point.
Parameters:

• Rotation = The rotation vector, the same as the parameter to the rotate keyword.

378 Include Files

• Point = The point to rotate around.

Reorient Trans(Axis1, Axis2). This alignsAxis1 to Axis2 by rotating the object
around a vector perpendicular to both axis1 and axis2.
Parameters:

• Axis1 = Vector to be rotated.

• Axis2 = Vectors to be rotated towards.

Point At Trans(YAxis). This macro is similar to ReorientTrans(), but it points the y
axis along Axis.
Parameters:

• YAxis = The direction to point the y axis in.

Center Trans(Object, Axis). Calculates a transformation which will center an object
along a specified axis. You indicate the axes you want to center along by adding ”x”,
”y”, and ”z” together in the Axis parameter.

Note: this macro actually computes the transform to center the bounding box of the
object, which may not be entirely accurate. There is no way to define the ”center” of
an arbitrary object.

Parameters:

• Object = The object the center transform is being computed for.

• Axis = The axes to center the object on.

object {MyObj Center_Trans(MyObj, x)} //center along x axis

object {MyObj Center_Trans(MyObj, x+y)} //center along x and y axis

Align Trans(Object, Axis, Pt). Calculates a transformation which will align the
sides of the bounding box of an object to a point. Negative values on Axis will align to
the sides facing the negative ends of the coordinate system, positive values will align
to the opposite sides, 0 means not to do any alignment on that axis.
Parameters:

• Object = The object being aligned.

• Axis = A combination of+x, +y, +z, -x, -y, and -z, or a vector where each
component is -1, 0, or+1 specifying the faces of the bounding box to align to
the point.

• Point = The point to which to align the bounding box of the object.

object {

MyObj

Align_Trans(MyObj, x, Pt) //Align right side of object to be

//coplanar with Pt

Align_Trans(MyObj,-y, Pt) //Align bottom of object to be

// coplanar with Pt

}

6.19 woodmaps.inc, woods.inc 379

vtransform(Vect, Trans) andvinv transform(Vect, Trans).
Thevtransform() macro takes a transformation (rotate, scale, translate, etc...) and a
point, and returns the result of applying the transformation to the point. Thevinv transform()

macro is similar, but applies the inverse of the transform, in effect ”undoing” the trans-
formation. You can combine transformations by enclosing them in a transform block.
Parameters:

• Vect = The vector to which to apply the transformation.

• Trans = The transformation to apply to Vect.

Spline Trans(Spline, Time, SkyVector, ForeSight, Banking). This macro aligns
an object to a spline for a given time value. The Z axis of the object will point in the
forward direction of the spline and the Y axis of the object will point upwards.
Parameters:

• Spline = The spline that the object is aligned to.

• Time = The time value to feed to the spline, for example clock.

• Sky = The vector that is upwards in your scene, usually y.

• Foresight = A positive value that controls how much in advance the object will
turn and bank. Values close to 0 will give precise results, while higher values
give smoother results. It will not affect parsing speed, so just find the value that
looks best.

• Banking = How much the object tilts when turning. The amount of tilting is
equally much controlled by the ForeSight value.

object {MyObj Spline_Trans(MySpline, clock, y, 0.1, 0.5)}

6.19 woodmaps.inc, woods.inc

The file woodmaps.inc contains colormaps designed for use in wood textures. The
M WoodXA maps are intended to be used in the first layer of a multilayer texture, but
can be used in single-layer textures. The MWoodXB maps contain transparent areas,
and are intended to be used in upper texture layers.

The file woods.inc contains predefined wood textures and pigments.

The pigments are prefixed with P, and do not have colormaps, allowing you to specify
a color map from woodmaps.inc or create your own. There are two groups, ”A” and
”B”: the A series is designed to work better on the bottom texture layer, and the B
series is designed for the upper layers, with semitransparent color maps. The pigments
with the same number were designed to work well together, but you don’t necessarily
have to use them that way.

The textures are prefixed with T, and are ready to use. They are designed with the
major axis of the woodgrain ”cylinder” aligned along the Z axis. With the exception of
the few of the textures which have a small amount of rotation built-in, the textures will
exhibit a very straight grain pattern unless you apply a small amount of x-axis rotation
to them (generally 2 to 4 degrees seems to work well).

380 Include Files

6.19.1 woodmaps.inc

Color maps:

M Wood1A, ..., M Wood19A

M Wood1B, ..., M Wood19B

6.19.2 woods.inc

Pigments:

P WoodGrain1A, ..., P WoodGrainA

P WoodGrain1B, ..., P WoodGrainB

Textures:

T Wood1

Natural oak (light)

T Wood2

Dark brown

T Wood3

Bleached oak (white)

T Wood4

Mahogany (purplish-red)

T Wood5

Dark yellow with reddish overgrain

T Wood6

Cocabola (red)

T Wood7

Yellow pine (ragged grain)

T Wood8

Dark brown. Walnut?

T Wood9

Yellowish-brown burl (heavily turbulated)

T Wood10

Soft pine (light yellow, smooth grain)

T Wood11

Spruce (yellowish, very straight, fine grain)

T Wood12

6.20 Other files 381

Another very dark brown. Walnut-stained pine, perhaps?

T Wood13

Very straight grained, whitish

T Wood14

Red, rough grain

T Wood15

Medium brown

T Wood16

Medium brown

T Wood17

Medium brown

T Wood18

Orange

T Wood19, ..., T Wood30

Golden Oak.

T Wood31

A light tan wood - heavily grained (variable coloration)

T Wood32

A rich dark reddish wood, like rosewood, with smooth-flowing grain

T Wood33

Similar to T WoodB, but brighter

T Wood34

Reddish-orange, large, smooth grain.

T Wood35

Orangish, with a grain more like a veneer than a plank

6.20 Other files

There are various other files in the include collection, including font files, color maps,
and images for use in height fields or imagemaps, and includes that are too small to
have their own section.

382 Include Files

6.20.1 logo.inc

The official POV-Ray logo designed by Chris Colefax, in two versions

Povray Logo

The POV-Ray logo object

Povray Logo Prism

The POV-Ray logo as a prism

Povray Logo Bevel

The POV-Ray logo as a beveled prism

6.20.2 raddef.inc

This file defines a macro that sets some common radiosity settings. These settings are
extremely general and are intended for ease of use, and don’t necessarily give the best
results.

Usage:

#include "rad_def.inc"

global_settings {

...

radiosity {

Rad_Settings(Setting, Normal, Media)

}

}

Parameters:

• Setting= Quality setting. Use one of the predefined constants:

– RadiosityDefault

– RadiosityDebug

– RadiosityFast

– RadiosityNormal

– Radiosity2Bounce

– RadiosityFinal

– RadiosityOutdoorLQ

– RadiosityOutdoorHQ

– RadiosityOutdoorLight

– RadiosityIndoorLQ

– RadiosityIndoorHQ

6.20 Other files 383

• Normal = Boolean value, whether or not to use surface normal modifiers for
radiosity samples.

• Media= Boolean value, whether or not to calculate media for radiosity samples.

6.20.3 screen.inc

Screen.inc will enable you to place objects and textures right in front of the camera.
When you move the camera, the objects placed with screen.inc will follow the move-
ment and stay in the same position on the screen. One use of this is to place your
signature or a logo in the corner of the image.

You can only use screen.inc with the perspective camera. Screen.inc will automatically
create a default camera definition for you when it is included. All aspects of the camera
can than be changed, by invoking the appropriate ’SetCamera...’ macros in your
scene. After calling these setup macros you can use the macros ScreenObject and
ScreenPlane.

Note: even though objects aligned using screen.inc follow the camera, they are still
part of the scene. That means that they will be affected by perspective, lighting, the
surroundings etc.

For an example of use, see the screen.pov demo file.

Set Camera Location(Loc) Changes the position of the default camera to a new loca-
tion as specified by theLoc vector.

Set Camera Look At(LookAt) Changes the position the default camera looks at to a
new location as specified by theLookAt vector.

Set Camera Aspect Ratio(Aspect) Changes the default aspect ratio,Aspect is a float
value, usually width divided by the height of the image.

Set Camera Aspect(Width,Height) Changes the default aspect ratio of the camera.

Set Camera Sky(Sky) Sets a new Sky-vector for the camera.

Set Camera Zoom(Zoom) The amount to zoom in or out,Zoom is a float.

Set Camera Angle(Angle) Sets a new camera angle.

Set Camera(Location, LookAt, Angle) Setlocation, look at andangle in one go.

Reset Camera() Resets the camera to its default values.

Screen Object (Object, Position, Spacing, Confine, Scaling) Puts an object in
front of the camera.
Parameters:

• Object = The object to place in front of the screen.

• Position = UV coordinates for the object.<0,0> is lower left corner of the
screen and<1,1> is upper right corner.

• Spacing = Float describing minimum distance from object to the borders. UV
vector can be used to get different horizontal and vertical spacing.

384 Include Files

• Confine = Set to true to confine objects to visible screen area. Set to false to
allow objects to be outside visible screen area.

• Scaling = If the object intersects or interacts with the scene, try to move it closer
to the camera by decreasing Scaling.

Screen Plane (Texture, Scaling, BLCorner, TRCorner) ScreenPlane is a macro
that will place a texture of your choice on a plane right in front of the camera.
Parameters:

• Texture = The texture to be displayed on the camera plane.<0,0,0> is lower
left corner and<1,1,0> is upper right corner.

• Scaling = If the plane intersects or interacts with the scene, try to move it closer
to the camera by decreasing Scaling.

• BLCorner = The bottom left corner of the ScreenPlane.

• TRCorner = The top right corner of the ScreenPlane.

6.20.4 stdcam.inc

This file simply contains a camera, a lightsource, and a ground plane.

6.20.5 stage1.inc

This file simply contains a camera, a lightsource, and a ground plane, and includes
colors.inc, textures.inc, and shapes.inc.

6.20.6 sunpos.inc

This file only contains the sunpos() macro

sunpos(Year, Month, Day, Hour, Minute, Lstm, LAT, LONG). The macro returns the
position of the sun, for a given date, time, and location on earth. The suns position is
also globally declared as the vectorSolarPosition. Two other declared vectors are
theAz (Azimuth) andAl (Altitude), these can be useful for aligning an object (media
container) with the sunlight.
Assumption: in the scene north is in the+Z direction, south is -Z.
Parameters:

• Year= The year in four digits.

• Month= The month number (1-12).

• Day= The day number (1-31).

• Hour= The hour of day in 24 hour format (0-23).

• Minute= The minutes (0-59).

• Lstm= Meridian of your local time zone in degrees (+1 hour= +15 deg, east=
positive, west= negative)

6.20 Other files 385

• LAT= Lattitude in degrees.decimal, northern hemisphere= positive, southern=
negative

• LONG= Longitude in degrees.decimal, east= positive, west is negative

Use :

#include "sunpos.inc"

light_source {

//Greenwich, noon on the longest day of 2000

SunPos(2000, 6, 21, 12, 2, 0, 51.4667, 0.00)

rgb 1

}

cylinder{

<-2,0,0>,<2,0,0>,0.1

rotate <0, Az-90, Al> //align cylinder with sun

texture {...}

}

6.20.7 font files (*.ttf)

The fonts cyrvetic.ttf and timrom.ttf were donated to the POV-Team by their creator,
Ted Harrison (CompuServe:70220,344) and were built using his FontLab for Windows
by SoftUnion, Ltd. of St. Petersburg, Russia.

The font crystal.ttf was donated courtesy of Jerry Fitzpatrick, Red Mountain Corpora-
tion, redmtn@ix.netcom.com

The font povlogo.ttf is created by Fabien Mosen and based on the POV-Ray logo design
by Chris Colefax.

crystal.ttf

A fixed space programmer’s font.

cyrvetic.ttf

A proportional spaces sans-serif font.

timrom.ttf

A proportional spaces serif font.

povlogo.ttf

Only contains the POV-Ray logo.

6.20.8 colormap files (*.map)

These are 255-color colormaps, and are in individual files because of their size.

ash.map

benediti.map

386 Include Files

bubinga.map

cedar.map

marbteal.map

orngwood.map

pinkmarb.map

rdgranit.map

teak.map

whiteash.map

6.20.9 image files (*.png, *.pot, *.df3)

bumpmap .png

A color mandelbrot fractal image, presumably intended for use as a bumpmap.

fract003.png

Some kind of fractal landscape, with color for blue water, brown land, and
white peaks.

maze.png

A maze.

mtmand.pot

A grayscale mandelbrot fractal.

mtmandj.png

A 2D color julia fractal.

plasma2.png, plasma3.png

”Plasma fractal” images, mainly useful for landscape height fields. The file
plasma3.png is a smoother version of plasma2.png, plasma1.png does not
exist.

povmap.png

The text ”Persistance of Vision” in green on a blue background, framed in black
and red.

test.png

A ”test image”, the image is divided into 4 areas of different colors (magenta,
yellow, cyan, red) with black text on them, and the text ”POV-Ray” is cen-
tered on the image in white.

spiral.df3

A 3D bitmap density file. A spiral, ”galaxy” shape.

Chapter 7

Quick Reference

This is a consolidation of the entire syntax for the POV-Ray’s Scene Description Lan-
guage. Note that the syntax conventions used here are slightly different than those used
in the user documentation.

The following syntax conventions are used:

ITEM

An item not in brackets indicates that it is a required item.

[ITEM]

Brackets surround an optional item. If brackets are part of the item, that is noted
where applicable.

ITEM...

An ellipsis indicates an item that may be used one or more times.

[ITEM...]

An ellipsis within brackets indicates an item that may be used zero or more
times.

ITEM ITEM

Two or more juxtaposed items indicates that they should be used in the given
order.

ITEM | ITEM

A pipe separates two or more alternatives from which only one item should be
used.

ITEM & ITEM

An ampersand separates two or more items that may be used in any order.

Juxtaposition has precedence over the pipe or ampersand. In the following example,
you would select one of the keyword and vector pairs. For that last pair, the keyword
itself is optional.

388 Quick Reference

rgb 3D VECTOR —rgbf 4D VECTOR —rgbt 4D VECTOR — [rgbft] 5D VECTOR

Some item names are simply descriptive in nature. An indication of the item’s type is
given by a prefix on the item name, as follows:

F

A FLOAT item

I

An INT item

V

A VECTOR item

V4

A 4-D VECTOR item

NOTE: this document provides only the syntax of the Scene Description Language
(SDL). The intent is to provide a single reference for all statements and keywords. It
does not provide definitions for the numerous keywords nor explain their usage.

7.1 Quick Reference Contents

7.2 The Scene

Describe a POV-Ray scene:

SCENE:

SCENE ITEM...

SCENEITEM:

LANGUAGE DIRECTIVE | CAMERA | LIGHT | OBJECT | ATMOSPHERIC EFFECT | GLOBAL SETTINGS

Quick Reference Contents

7.3 Language Basics

7.3.1 Floats

Float Expressions

FLOAT:

NUMERIC TERM [SIGN NUMERIC TERM]...

SIGN:

+ | -

7.3 Language Basics 389

The Scene
Language Basics

Floats
Vectors
Colors
User-Defined Functions
Strings
Arrays
Splines

Language Directives
File Inclusion
Identifier Declaration
File Input/Output
Default Texture
Version Compatibility
Conditional Directives
Message Streams
Macros
Embedded Directives

Transformations
Camera
Lights

Light Source
Light Group

Objects
Finite Solid Objects
Finite Patch Objects
Infinite Solid Objects
Isosurface
Parametric
Constructive Solid Geometry

Object Modifiers
UV Mapping
Material
Interior
Interior Texture

Texture
Plain Texture
Layered Texture
Patterned Texture
Pigment
Normal
Finish
Pattern
Pattern Modifiers

Media
Atmospheric Effects

Background
Fog
Sky Sphere
Rainbow

Global Settings
Radiosity
Photons

Table 7.1: Quick Reference Overview

390 Quick Reference

NUMERIC TERM:

NUMERIC FACTOR [MULT NUMERIC FACTOR]...

MULT:

* | /

NUMERIC EXPRESSION:

FLOAT LITERAL | FLOAT IDENTIFIER | SIGN NUMERIC EXPRESSION | FLOAT FUNCTION

| FLOAT BUILT IN IDENT | (FULL EXPRESSION) | ! NUMERIC EXPRESSION

| VECTOR.DOT ITEM | FLOAT FUNCTION INVOCATION

FLOAT LITERAL:

[DIGIT...][.]DIGIT...[EXP[SIGN]DIGIT...]

DIGIT:

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

EXP:

e | E

FLOAT FUNCTION:

abs (FLOAT) | acos (FLOAT) | acosh (FLOAT) | asc (STRING) | asin (FLOAT)

| asinh (FLOAT) | atan (FLOAT) | atanh (FLOAT) | atan2 (FLOAT,FLOAT)

| ceil (FLOAT) | cos (FLOAT) | cosh (FLOAT) | defined (IDENTIFIER)

| degrees (FLOAT) | dimensions (ARRAY IDENTIFIER) | dimension size

(ARRAY IDENTIFIER,INT) | div (FLOAT,FLOAT) | exp (FLOAT) | file exists

(STRING) | floor (FLOAT) | int (FLOAT) | inside (SOLID OBJECT IDENT,

VECTOR) | ln (FLOAT) | log (FLOAT) | max (FLOAT,FLOAT[,FLOAT]...)

| min (FLOAT,FLOAT[,FLOAT]...) | mod (FLOAT,FLOAT) | pow (FLOAT,FLOAT)

| radians (FLOAT) | rand (FLOAT) | seed (FLOAT) | select (FLOAT,FLOAT,FLOAT,[FLOAT])

| sin (FLOAT) | sinh (FLOAT) | sqrt (FLOAT) | strcmp (STRING,STRING)

| strlen (STRING) | tan (FLOAT) | tanh (FLOAT) | val (STRING) | vdot

(VECTOR,VECTOR) | vlength (VECTOR)

FLOAT BUILT IN IDENT:

BOOLEAN KEYWORD | clock | clock delta | clock on | final clock | final frame

| frame number | image height | image width | initial clock | initial frame

| pi | version

BOOLEAN KEYWORD:

true | yes | on | false | no | off

FULL EXPRESSION:

LOGICAL EXPRESSION [? FULL EXPRESSION : FULL EXPRESSION]

LOGICAL EXPRESSION:

REL TERM [LOGICAL OPERATOR REL TERM]...

LOGICAL OPERATOR:

7.3 Language Basics 391

& | |

REL TERM:

FLOAT [REL OPERATOR FLOAT]...

REL OPERATOR:

< | <= | = | >= | > | !=

DOT ITEM:

x | y | z | t | u | v | red | green | blue | filter | transmit | gray

INT:

FLOAT

Any fractional part is discarded.

BOOL:

BOOLEAN KEYWORD | LOGICAL EXPRESSION

Quick Reference Contents

7.3.2 Vectors

Vector Expressions

VECTOR:

VECTOR TERM [SIGN VECTOR TERM]...

VECTOR TERM:

VECTOR EXPRESSION [MULT VECTOR EXPRESSION]...

VECTOR EXPRESSION:

VECTOR LITERAL | VECTOR IDENTIFIER | SIGN VECTOR EXPRESSION | VECTOR FUNCTION

| VECTOR BUILT IN IDENT | ! VECTOR EXPRESSION | FLOAT | VECTOR FUNCTION INVOCATION

| COLOR FUNCTION INVOCATION | SPLINE INVOCATION

VECTOR LITERAL:

< FLOAT, FLOAT [, FLOAT [, FLOAT [, FLOAT]]] >

VECTOR FUNCTION:

min extent (OBJECT IDENTIFIER) | max extent (OBJECT IDENTIFIER) | trace

(OBJECT IDENTIFIER,VECTOR,VECTOR[,VECTOR IDENTIFIER]) | vaxis rotate

(VECTOR,VECTOR,FLOAT) | vcross (VECTOR,VECTOR) | vrotate (VECTOR,VECTOR)

| vnormalize (VECTOR) | vturbulence (FLOAT,FLOAT,FLOAT,VECTOR)

VECTOR BUILT IN IDENT:

x | y | z | t | u | v

Quick Reference Contents

392 Quick Reference

7.3.3 Colors

Color Expressions

COLOR:

[color] COLOR BODY | colour COLOR BODY

COLOR BODY:

COLOR VECTOR | COLOR KEYWORD GROUP | COLOR IDENTIFIER

COLOR VECTOR:

rgb 3D VECTOR | rgbf 4D VECTOR | rgbt 4D VECTOR | [rgbft] 5D VECTOR

COLOR KEYWORD GROUP:

[COLOR IDENTIFIER] COLOR KEYWORD ITEMS

COLOR KEYWORD ITEMS:

[red FLOAT] & [green FLOAT] & [blue FLOAT] & [filter FLOAT] & [transmit

FLOAT]

Quick Reference Contents

7.3.4 User defined Functions

User-Defined Functions

USERFUNCTION:

FLOAT USER FUNCTION | VECTOR USER FUNCTION | COLOR USER FUNCTION

FLOAT USERFUNCTION:

function { FN FLOAT } | function (IDENT LIST) { FN FLOAT } | function {

pattern { PATTERN [PATTERN MODIFIERS]} }

IDENT LIST:

IDENT ITEM [, IDENT LIST]

The maximum number of parameter identifiers is 56. An identifier may not be
repeated in the list.

IDENT ITEM:

x | y | z | u | v | PARAM IDENTIFIER

PATTERN:

MAP PATTERN | brick [BRICK ITEM] | checker | hexagon | object { LIST OBJECT

}

VECTOR USERFUNCTION:

function { SPECIAL VECTOR FUNCTION }

SPECIAL VECTOR FUNCTION:

7.3 Language Basics 393

TRANSFORM | SPLINE

COLOR USERFUNCTION:

function { PIGMENT }

Specify a float expression in a user-defined function:

FN FLOAT

LOGIC AND [OR LOGIC AND]

OR:

|

LOGIC AND:

REL TERM [AND REL TERM]

AND:

&

REL TERM:

TERM [REL OPERATOR TERM]

REL OPERATOR:

< | <= | = | >= | > | !=

TERM:

FACTOR [SIGN FACTOR]

SIGN:

+ | -

FACTOR:

EXPRESSION [MULT EXPRESSION]

MULT:

* | /

EXPRESSION:

FLOAT LITERAL | FLOAT IDENTIFIER | FN FLOAT FUNCTION | FLOAT BUILT IN IDENT

| (FN FLOAT) | IDENT ITEM | SIGN EXPRESSION | VECTOR FUNCTION INVOCATION.FN DOT ITEM

| COLOR FUNCTION INVOCATION.FN DOT ITEM | FLOAT FUNCTION INVOCATION

FN DOT ITEM:

DOT ITEM | hf

FN FLOAT FUNCTION:

abs (FN FLOAT) | acos (FN FLOAT) | acosh (FN FLOAT) | asin (FN FLOAT)

| asinh (FN FLOAT) | atan (FN FLOAT) | atanh (FN FLOAT) | atan2 (FN FLOAT,FN FLOAT)

| ceil (FN FLOAT) | cos (FN FLOAT) | cosh (FN FLOAT) | degrees (FN FLOAT)

| exp (FN FLOAT) | floor (FN FLOAT) | int (FN FLOAT) | ln (FN FLOAT)

394 Quick Reference

| log (FN FLOAT) | max (FN FLOAT,FN FLOAT[,FN FLOAT]...) | min (FN FLOAT,FN FLOAT[,FN FLOAT]...)

| mod (FN FLOAT,FN FLOAT) | pow (FN FLOAT,FN FLOAT) | prod (IDENTIFIER,

FN FLOAT, FN FLOAT, FN FLOAT) | radians (FN FLOAT) | sin (FN FLOAT)

| sinh (FN FLOAT) | sqrt (FN FLOAT) | sum (IDENTIFIER, FN FLOAT, FN FLOAT,

FN FLOAT) |tan (FN FLOAT) | tanh (FN FLOAT) | select (FN FLOAT,FN FLOAT,FN FLOAT

[,FN FLOAT])

Create an identifier for a user-defined function:

USERFUNCTION DECLARATION:

#declare FLOAT FUNCTION IDENTIFIER = FLOAT USER FUNCTION |

#local FLOAT FUNCTION IDENTIFIER = FLOAT USER FUNCTION |

#declare VECTOR FUNCTION IDENTIFIER = VECTOR USER FUNCTION |

#local VECTOR FUNCTION IDENTIFIER = VECTOR USER FUNCTION |

#declare COLOR FUNCTION IDENTIFIER = COLOR USER FUNCTION |

#local COLOR FUNCTION IDENTIFIER = COLOR USER FUNCTION

Reference a user-defined function:

FLOAT FUNCTION INVOCATION:

FLOAT FUNCTION IDENTIFIER (FN PARAM LIST)

VECTOR FUNCTION INVOCATION:

VECTOR FUNCTION IDENTIFIER (FN PARAM LIST)

COLOR FUNCTION INVOCATION:

COLOR FUNCTION IDENTIFIER (FN PARAM LIST)

FN PARAM LIST:

FN PARAM ITEM [, FN PARAM LIST]

FN PARAM ITEM:

x | y | z | u | v | FLOAT

Quick Reference Contents

7.3.5 Strings

String Expressions

STRING:

STRING FUNCTION | STRING IDENTIFIER | STRING LITERAL

STRING FUNCTION:

chr (INT) | concat (STRING,STRING[,STRING]...) | str (FLOAT,INT,INT)

| strlwr (STRING) | strupr (STRING) | substr (STRING,INT,INT) | vstr

(INT,VECTOR,STRING,INT,INT)

STRING LITERAL:

QUOTE [CHARACTER...] QUOTE

7.3 Language Basics 395

Limited to 256 characters.

QUOTE:

"

CHARACTER:

Any ASCII or Unicode character, depending on thecharsetsetting inglobal settings.
The following escape sequences might be useful when writing to files or
message streams:

\a - alarm
\b - backspace
\f - form feed
\n - new line
\r - carriage return
\t - horizontal tab
\uNNNN - unicode character four-digit code
\v - vertical tab
\\ - backslash
\’ - single quote
\" - double quote

Quick Reference Contents

7.3.6 Arrays

Define an array:

ARRAY DECLARATION:

#declare ARRAY IDENTIFIER = array DIMENSION... [ARRAY INITIALIZER] |

#local ARRAY IDENTIFIER = array DIMENSION... [ARRAY INITIALIZER]

Limited to five dimensions.

DIMENSION:

[INT]

The brackets here are part of the dimension specification. The integer must be
greater than zero.

ARRAY INITIALIZER:

{ ARRAY INITIALIZER [, ARRAY INITIALIZER]... } |

{ RVALUE [, RVALUE]... }

Place a value into an array:

ARRAY ELEMENT ASSIGNMENT:

#declare ARRAY REFERENCE =RVALUE [;] |

#local ARRAY REFERENCE = RVALUE [;]

The semicolon is required for a FLOAT, VECTOR or COLOR assignment.

396 Quick Reference

Reference an array:

ARRAY REFERENCE:

ARRAY IDENTIFIER ELEMENT...

ELEMENT:

[INT]

The brackets here are part of the element specification.

Quick Reference Contents

7.3.7 Splines

Define a spline:

SPLINE:

spline { SPLINE ITEMS }

SPLINE ITEMS

[SPLINE TYPE] PATH LIST | SPLINE IDENTIFIER [SPLINE TYPE][PATH LIST]

SPLINE TYPE:

linear spline | quadratic spline | cubic spline | natural spline

PATH LIST:

FLOAT, VECTOR [[,] PATH LIST]

Reference a spline:

SPLINE INVOCATION:

SPLINE IDENTIFIER (FLOAT [, SPLINE TYPE])

Quick Reference Contents

7.4 Language Directives

Control the parsing of sections of the scene file:

LANGUAGE DIRECTIVE:

INCLUDE DIRECTIVE | IDENTIFIER DECLARATION | UNDEF DIRECTIVE | FOPEN DIRECTIVE

| FCLOSE DIRECTIVE | READ DIRECTIVE | WRITE DIRECTIVE | DEFAULT DIRECTIVE

| VERSION DIRECTIVE | IF DIRECTIVE | IFDEF DIRECTIVE | IFNDEF DIRECTIVE

| SWITCH DIRECTIVE | WHILE DIRECTIVE | TEXT STREAM DIRECTIVE | MACRO DEFINITION

Quick Reference Contents

7.4 Language Directives 397

7.4.1 File Inclusion

Insert content of another scene file:

INCLUDE DIRECTIVE:

#include FILE NAME

File inclusion may be nested at most 10 levels deep.

FILE NAME:

STRING

Quick Reference Contents

7.4.2 Identifier Declaration

Create an identifier for a value, object, etc.

IDENTIFIER DECLARATION:

#declare IDENTIFIER = RVALUE [;] |

#local IDENTIFIER = RVALUE [;]

Up to 127 characters, starting with a letter, consisting of letters, digits and/or the
underscore. The semicolon is required for a FLOAT, VECTOR or COLOR
declaration.

RVALUE:

FLOAT | VECTOR | COLOR | USER FUNCTION | STRING | ARRAY REFERENCE | SPLINE

| TRANSFORM | CAMERA | LIGHT | OBJECT | MATERIAL | INTERIOR | TEXTURE

| TEXTURE MAP | PIGMENT | COLOR MAP | PIGMENT MAP | NORMAL | SLOPE MAP

| NORMAL MAP | FINISH | MEDIA | DENSITY | DENSITY MAP | FOG | RAINBOW

| SKY SPHERE

Destroy an identifier:

UNDEF DIRECTIVE:

#undef IDENTIFIER

Quick Reference Contents

7.4.3 File Input/Output

Open a text file:

FOPENDIRECTIVE:

#fopen FILE HANDLE IDENTIFIER FILE NAME OPEN TYPE

OPENTYPE:

read | write | append

Close a text file:

398 Quick Reference

FCLOSEDIRECTIVE:

#fclose FILE HANDLE IDENTIFIER

Read string, float and/or vector values from a text file:

READ DIRECTIVE:

#read (FILE HANDLE IDENTIFIER, DATA IDENTIFIER [, DATA IDENTIFIER]...

)

Usedefined(FILE HANDLE IDENTIFIER) to detect end-of-file after a read.

DATA IDENTIFIER:

UNDECLARED IDENTIFIER | FLOAT IDENTIFIER | VECTOR IDENTIFIER | STRING IDENTIFIER

| ARRAY REFERENCE

May read a value into an array reference if the array element’s type has already
been established.

Write string, float and/or vector values to a text file:

WRITE DIRECTIVE:

#write (FILE HANDLE IDENTIFIER, DATA ITEM [, DATA ITEM]...)

DATA ITEM:

FLOAT | VECTOR | STRING

Quick Reference Contents

7.4.4 Default Texture

Specify a default texture, pigment, normal or finish:

DEFAULT DIRECTIVE:

#default { DEFAULT ITEM }

DEFAULT ITEM:

PLAIN TEXTURE | PIGMENT | NORMAL | FINISH

Quick Reference Contents

7.4.5 Version Identfier

Specify the POV-Ray compatibility version number:

VERSION DIRECTIVE:

#version FLOAT;

Quick Reference Contents

7.4 Language Directives 399

7.4.6 Control Flow Directives

Conditionally parse a section of the scene file, depending on a boolean expression:

IF DIRECTIVE:

#if (BOOL) TOKENS [#else TOKENS] #end

TOKENS:

Any number of POV-Ray keywords, identifiers, values and/or punctuation.

Conditionally parse a section of the scene file, depending on the existence of an iden-
tifier:

IFDEF DIRECTIVE:

#ifdef (IDENTIFIER) TOKENS [#else TOKENS] #end

IFNDEF DIRECTIVE:

#ifndef (IDENTIFIER) TOKENS [#else TOKENS] #end

Conditionally parse a section of the scene file, depending on the value of a float ex-
pression:

SWITCH DIRECTIVE:

#switch (FLOAT) SWITCH CLAUSE... [#else TOKENS] #end

SWITCH CLAUSE:

#case (FLOAT) TOKENS [#break] |

#range (F LOW, F HIGH) TOKENS [#break]

Repeat a section of the scene file while a boolean condition is true:

WHILE DIRECTIVE:

#while (LOGICAL EXPRESSION) TOKENS #end

Quick Reference Contents

7.4.7 Message Streams

Send a message to a text stream:

TEXT STREAM DIRECTIVE:

#debug STRING | #error STRING | #warning STRING

Quick Reference Contents

7.4.8 Macro

Define a macro:

MACRO DEFINITION:

400 Quick Reference

#macro MACRO IDENTIFIER ([PARAM IDENTIFIER [, PARAM IDENTIFIER]...]

) TOKENS #end

A parameter identifier may not be repeated in the list.

Invoke a macro:

MACRO INVOCATION:

MACRO IDENTIFIER ([ACTUAL PARAM [, ACTUAL PARAM]...])

ACTUAL PARAM:

IDENTIFIER | RVALUE

Quick Reference Contents

7.4.9 Embedded Directives

Some directives may be embedded in CAMERA, LIGHT, OBJECT and ATMO-
SPHERICEFFECT statements. However, the directives should only include
items (if any) that are valid for a given statement. Also, they should not disrupt
the required order of items, where applicable.

EMBEDDED DIRECTIVE:

IDENTIFIER DECLARATION | UNDEF DIRECTIVE | READ DIRECTIVE | WRITE DIRECTIVE

| IF DIRECTIVE | IFDEF DIRECTIVE | IFNDEF DIRECTIVE | SWITCH DIRECTIVE

| WHILE DIRECTIVE | TEXT STREAM DIRECTIVE

Quick Reference Contents

7.5 Transformations

Rotate, resize, move, or otherwise manipulate the coordinates of an object or texture

TRANSFORMATION:

rotate VECTOR | scale VECTOR | translate VECTOR | TRANSFORM | MATRIX

TRANSFORM:

transform TRANSFORM IDENTIFIER | transform { [TRANSFORM ITEM...] }

TRANSFORMITEM:

TRANSFORM IDENTIFIER | TRANSFORMATION | inverse

MATRIX:

matrix < F VAL00, F VAL01, F VAL02, F VAL10, F VAL11, F VAL12, F VAL20,

F VAL21, F VAL22, F VAL30, F VAL31, F VAL32 >

Quick Reference Contents

7.6 Camera 401

7.6 Camera

Describe the position, projection type and properties of the camera viewing the scene

CAMERA:

Jump to SDL

camera { [CAMERA TYPE] [CAMERA ITEMS] [CAMERA MODIFIERS] } |

camera { CAMERA IDENTIFIER [TANSFORMATIONS ...] }

CAMERA TYPE:

perspective | orthographic | fisheye | ultra wide angle | omnimax | panoramic

| spherical | cylinder CYLINDER TYPE

CYLINDER TYPE:

1 | 2 | 3 | 4

CAMERA ITEMS:

[location VECTOR] & [right VECTOR] & [up VECTOR] & [direction VECTOR]

& [sky VECTOR]

CAMERA MODIFIERS:

[angle [angle F HORIZONTAL] [,F VERTICAL]] & [look at VECTOR] & [FOCAL BLUR]

& [NORMAL] & [TRANSFORMATION...]

FOCAL BLUR:

aperture FLOAT & blur samples INT & [focal point VECTOR] & [confidence

FLOAT] & [variance FLOAT]

Quick Reference Contents

7.7 Lights

Specify light sources for the scene or for specific objects

LIGHT:

LIGHT SOURCE | LIGHT GROUP

Describe the position, type and properties of a light source for the scene:

LIGHT SOURCE:

Jump to SDL

light source { V LOCATION, COLOR [LIGHT SOURCE ITEMS] }

LIGHT SOURCEITEMS:

[LIGHT TYPE] & [AREA LIGHT ITEMS] & [LIGHT MODIFIERS]

LIGHT TYPE:

402 Quick Reference

spotlight [SPOTLIGHT ITEMS] | cylinder [SPOTLIGHT ITEMS]

SPOTLIGHTITEMS:

[radius FLOAT] & [falloff FLOAT] & [tightness FLOAT] & [point at VECTOR]

AREA LIGHT ITEMS:

area light V AXIS1, V AXIS2, I SIZE1, I SIZE2 [AREA LIGHT MODIFIERS]

AREA LIGHT MODIFIERS:

[adaptive INT] & [jitter] & [circular] & [orient]

LIGHT MODIFIERS:

[LIGHT PHOTONS] & [looks like { OBJECT }] & [TRANSFORMATION...] & [fade distance

FLOAT] & [fade power FLOAT] & [media attenuation [BOOL]] & [media interaction

[BOOL]] & [shadowless] & [projected through { OBJECT IDENTIFIER }]

& [parallel [point at VECTOR]]

Specify how a light source should interact with photons:

LIGHT PHOTONS:

photons { LIGHT PHOTON ITEMS }

LIGHT PHOTONITEMS:

[refraction BOOL] & [reflection BOOL] & [area light]

Quick Reference Contents

7.7.1 Lightgroup

Assign objects to specific light sources:

LIGHT GROUP:

Jump to SDL

light group { LIGHT GROUP ITEM... [LIGHT GROUP MODIFIERS] }

LIGHT GROUPITEM:

LIGHT SOURCE | OBJECT | LIGHT GROUP

LIGHT GROUPMODIFIERS:

[global lights BOOL] & [TRANSFORMATION...]

Quick Reference Contents

7.8 Objects

Describe an object in the scene

OBJECT:

7.8 Objects 403

FINITE SOLID OBJECT | FINITE PATCH OBJECT | INFINITE SOLID OBJECT | ISOSURFACE

| PARAMETRIC | CSG OBJECT | OBJECT STATEMENT

OBJECTSTATEMENT:

object { OBJECT IDENTIFIER [OBJECT MODIFIERS] }

Quick Reference Contents

7.8.1 Finite Solid Objects

Describe a solid finite shape:

FINITE SOLID OBJECT:

BLOB | BOX | CONE | CYLINDER | HEIGHT FIELD | JULIA FRACTAL | LATHE |

PRISM | SPHERE | SPHERE SWEEP | SUPERELLIPSOID | SOR | TEXT | TORUS

The blob object:

BLOB:

Jump to SDL

blob { [threshold FLOAT] BLOB ITEM... [BLOB MODIFIERS] }

BLOB ITEM:

sphere { V CENTER, F RADIUS, [strength] F STRENGTH [COMPONENT MODIFIERS]

} |

cylinder { V END1, V END2, F RADIUS, [strength] F STRENGTH [COMPONENT MODIFIERS]

}

COMPONENTMODIFIERS:

[TEXTURE] & [PIGMENT] & [NORMAL] & [FINISH] & [TRANSFORMATION...]

BLOB MODIFIERS:

[hierarchy [BOOL]] & [sturm [BOOL]] & [OBJECT MODIFIERS]

The box object:

BOX:

Jump to SDL

box { V CORNER1, V CORNER2 [BOX MODIFIERS] }

BOX MODIFIERS:

[UV MAPPING] & [OBJECT MODIFIERS]

The cone object:

CONE:

Jump to SDL

cone { V BASE CENTER, F BASE RADIUS, V CAP CENTER, F CAP RADIUS [open]

[OBJECT MODIFIERS] }

404 Quick Reference

The cylinder object:

CYLINDER:

Jump to SDL

cylinder { V BASE CENTER, V CAP CENTER, F RADIUS [open] [OBJECT MODIFIERS]

}

The height field object:

HEIGHT FIELD:

Jump to SDL

height field { HF IMAGE [HF MODIFIERS] }

HF IMAGE:

FUNCTION IMAGE | [HF TYPE] FILE NAME

HF TYPE:

gif | tga | pot | png | pgm | ppm | jpeg | tiff | sys

HF MODIFIERS:

[hierarchy [BOOL]] & [smooth] & [water level FLOAT] & [OBJECT MODIFIERS]

The Julia fractal object:

JULIA FRACTAL:

Jump to SDL

julia fractal { 4D VECTOR [JF ITEMS] [OBJECT MODIFIERS] }

JF ITEMS:

[ALGEBRA ITEM] & [max iteration INT] & [precision FLOAT] & [slice V4 NORMAL,

F DISTANCE]

ALGEBRA ITEM:

quaternion [QUATER FUNCTION] | hypercomplex [HYPER FUNCTION]

QUATER FUNCTION:

sqr | cube

HYPER FUNCTION:

sqr | cube | exp | reciprocal | sin | asin | sinh | asinh | cos | acos

| cosh | acosh | tan | atan | tanh | atanh | ln | pwr (FLOAT,FLOAT)

The lathe object:

LATHE:

Jump to SDL

lathe { [LATHE SPLINE TYPE] I NUM POINTS, POINT LIST [LATHE MODIFIERS]

}

LATHE SPLINE TYPE:

7.8 Objects 405

linear spline | quadratic spline | cubic spline | bezier spline

POINT LIST:

2D VECTOR [, 2D VECTOR]...

The quantity of 2DVECTORs is specified by the INUM POINTS value.

LATHE MODIFIERS:

[sturm [BOOL]] & [UV MAPPING] & [OBJECT MODIFIERS]

The prism object:

PRISM:

Jump to SDL

prism { [PRISM ITEMS] F HEIGHT1, F HEIGHT2, I NUM POINTS, POINT LIST [open]

[PRISM MODIFIERS] }

PRISM ITEMS:

[PRISM SPLINE TYPE] & [PRISM SWEEP TYPE]

PRISM SPLINE TYPE:

linear spline | quadratic spline | cubic spline | bezier spline

PRISM SWEEPTYPE:

linear sweep | conic sweep

PRISM MODIFIERS:

[sturm [BOOL]] & [OBJECT MODIFIERS]

The sphere object:

SPHERE:

Jump to SDL

sphere { V CENTER, F RADIUS [SPHERE MODIFIERS] }

SPHEREMODIFIERS:

[UV MAPPING] & [OBJECT MODIFIERS]

The sphere sweep object:

SPHERESWEEP:

Jump to SDL

sphere sweep { SWEEP SPLINE TYPE I NUM SPHERES, SPHERE LIST [tolerance

F DEPTH TOLERANCE] [OBJECT MODIFIERS] }

SWEEPSPLINE TYPE:

linear spline | b spline | cubic spline

SPHERELIST:

V CENTER, F RADIUS [, SPHERE LIST]

406 Quick Reference

The quantity of VCENTER, FRADIUS pairs is specified by the INUM SPHERES
value.

The superquadric ellipsoid object:

SUPERELLIPSOID:

Jump to SDL

superellipsoid { < FLOAT, FLOAT > [OBJECT MODIFIERS] }

The surface of revolution object:

SOR:

Jump to SDL

sor { I NUM POINTS, POINT LIST [open] [SOR MODIFIERS] }

SORMODIFIERS:

[sturm [BOOL]] & [UV MAPPING] & [OBJECT MODIFIERS]

The text object:

TEXT:

Jump to SDL

text { ttf FILE NAME STRING F THICKNESS, V OFFSET [OBJECT MODIFIERS] }

The torus object:

TORUS:

Jump to SDL

torus { F MAJOR RADIUS, F MINOR RADIUS [TORUS MODIFIERS] }

TORUSMODIFIERS:

[sturm [BOOL]] & [UV MAPPING] & [OBJECT MODIFIERS]

Quick Reference Contents

7.8.2 Finite Patch Objects

Describe a totally thin, finite shape:

FINITE PATCH OBJECT:

Jump to SDL

BICUBIC PATCH | DISC | MESH | MESH2 | POLYGON | TRIANGLE | SMOOTH TRIANGLE

The bicubic patch object:

BICUBIC PATCH:

Jump to SDL

bicubic patch { PATCH ITEMS [PATCH UV VECTORS] CONTROL POINTS [BICUBIC PATCH MODIFIERS]

}

7.8 Objects 407

PATCH ITEMS:

type PATCH TYPE & [u steps INT] & [v steps INT] & [flatness FLOAT]

PATCH TYPE:

0 | 1

PATCH UV VECTORS:

uv vectors V2 CORNER1, V2 CORNER2, V2 CORNER3, V2 CORNER4

CONTROL POINTS:

16 VECTORs, optionally separated by commas.

BICUBIC PATCH MODIFIERS:

[UV MAPPING] & [OBJECT MODIFIERS]

The disc object:

DISC:

Jump to SDL

disc { V CENTER, V NORMAL, F RADIUS [, F HOLE RADIUS] [OBJECT MODIFIERS]

}

The mesh object:

MESH:

Jump to SDL

mesh { MESH TRIANGLE... [MESH MODIFIERS] }

MESH TRIANGLE:

triangle { V CORNER1, V CORNER2, V CORNER3 [MESH UV VECTORS] [MESH TEXTURE]

} |

smooth triangle { V CORNER1, V NORMAL1, V CORNER2, V NORMAL2, V CORNER3,

V NORMAL3 [MESH UV VECTORS] [MESH TEXTURE] }

MESH UV VECTORS:

uv vectors V2 CORNER1, V2 CORNER2, V2 CORNER3

MESH TEXTURE:

texture { TEXTURE IDENTIFIER } |

texture list { TEXTURE IDENTIFIER TEXTURE IDENTIFIER TEXTURE IDENTIFIER

}

MESH MODIFIERS:

[inside vector V DIRECTION] & [hierarchy [BOOL]] & [UV MAPPING] & [OBJECT MODIFIERS]

The mesh2 object:

MESH2:

Jump to SDL

408 Quick Reference

mesh2 { MESH2 VECTORS [TEXTURE LIST] MESH2 INDICES [MESH2 MODIFIERS] }

MESH2 VECTORS:

VERTEX VECTORS [NORMAL VECTORS] [UV VECTORS]

VERTEX VECTORS:

vertex vectors { I NUM VERTICES, VECTOR [, VECTOR]... }

NORMAL VECTORS:

normal vectors { I NUM NORMALS, VECTOR [, VECTOR]... }

UV VECTORS:

uv vectors { I NUM UV VECTORS, 2D VECTOR [, 2D VECTOR]... }

TEXTURE LIST:

texture list { I NUM TEXTURES, TEXTURE [, TEXTURE]... }

MESH2 INDICES:

FACE INDICES [NORMAL INDICES] [UV INDICES]

FACE INDICES:

face indices { I NUM FACES, FACE INDICES ITEM [, FACE INDICES ITEM]...

}

FACE INDICES ITEM:

VECTOR [, I TEXTURE INDEX [, I TEXTURE INDEX, I TEXTURE INDEX]]

NORMAL INDICES:

normal indices { I NUM FACES, VECTOR [, VECTOR]... }

UV INDICES:

uv indices { I NUM FACES, VECTOR [, VECTOR]... }

MESH2 MODIFIERS:

[inside vector V DIRECTION] & [UV MAPPING] & [OBJECT MODIFIERS]

The polygon object:

POLYGON:

Jump to SDL

polygon { I NUM POINTS, V POINT [, V POINT]... [OBJECT MODIFIERS] }

The quantity of VPOINTs is specified by the INUM POINTS value.

The triangle object:

TRIANGLE:

Jump to SDL

triangle { V CORNER1, V CORNER2, V CORNER3 [OBJECT MODIFIERS] }

The smooth triangle object:

7.8 Objects 409

SMOOTH TRIANGLE:

Jump to SDL

smooth triangle { V CORNER1, V NORMAL1, V CORNER2, V NORMAL2, V CORNER3,

V NORMAL3 [OBJECT MODIFIERS] }

Quick Reference Contents

7.8.3 Infinite Solid Objects

Describe a solid, possibly infinite, shape:

INFINITE SOLID OBJECT:

PLANE | POLY | CUBIC | QUARTIC | QUADRIC

The plane object:

PLANE:

Jump to SDL

plane { V NORMAL, F DISTANCE [OBJECT MODIFIERS] }

The poly object:

POLY:

Jump to SDL

poly { ORDER, < POLY COEFFICIENTS > [POLY MODIFIERS] }

ORDER:

An integer value between 2 and 15 inclusive.

POLY COEFFICIENTS:

A quantityn of FLOATs separated by commas, wheren is((ORDER+1)*(ORDER+2)*(ORDER+3))/6.

POLY MODIFIERS:

[sturm [BOOL]] & [OBJECT MODIFIERS]

The cubic object:

CUBIC:

cubic { < CUBIC COEFFICIENTS > [POLY MODIFIERS] }

CUBIC COEFFICIENTS:

20 FLOATs separated by commas.

The quartic object:

QUARTIC:

quartic { < QUARTIC COEFFICIENTS > [POLY MODIFIERS] }

QUARTIC COEFFICIENTS:

410 Quick Reference

35 FLOATs separated by commas.

The quadric object:

QUADRIC:

Jump to SDL

quadric { < FLOAT, FLOAT, FLOAT >, < FLOAT, FLOAT, FLOAT >, < FLOAT,

FLOAT, FLOAT >, FLOAT [OBJECT MODIFIERS] }

Quick Reference Contents

7.8.4 Isosurface

Describe a surface via a mathematical function:

ISOSURFACE:

Jump to SDL

isosurface { FLOAT USER FUNCTION [ISOSURFACE ITEMS] [OBJECT MODIFIERS]

}

ISOSURFACEITEMS:

[contained by { CONTAINER }] & [threshold FLOAT] & [accuracy FLOAT] &

[max gradient FLOAT [evaluate F MIN ESTIMATE, F MAX ESTIMATE, F ATTENUATION]]

& [open] & [INTERSECTION LIMIT]

CONTAINER:

sphere { V CENTER, F RADIUS } | box { V CORNER1, V CORNER2 }

INTERSECTIONLIMIT:

max trace INT | all intersections

Quick Reference Contents

7.8.5 Parametric

Describe a surface using functions to locate points on the surface:

PARAMETRIC:

Jump to SDL

parametric { FLOAT USER FUNCTION, FLOAT USER FUNCTION, FLOAT USER FUNCTION

2D VECTOR, 2D VECTOR [PARAMETRIC ITEMS] [UV MAPPING] & [OBJECT MODIFIERS]

}

PARAMETRIC ITEMS:

[contained by { CONTAINER }] & [max gradient FLOAT] & [accuracy FLOAT]

& [precompute I DEPTH, x, y, z]

CONTAINER:

7.8 Objects 411

sphere { V CENTER, F RADIUS } | box { V CORNER1, V CORNER2 }

Quick Reference Contents

7.8.6 CSG

Describe one complex shape from multiple shapes:

CSGOBJECT:

Jump to SDL

UNION | INTERSECTION | DIFFERENCE | MERGE

Combine multiple shapes into one:

UNION:

union { UNION OBJECT UNION OBJECT... [UNION MODIFIERS] }

UNION OBJECT:

OBJECT | LIGHT

UNION MODIFIERS:

[split union BOOL] & [OBJECT MODIFIERS]

Create a new shape from the overlapping portions of multiple shapes:

INTERSECTION:

intersection { SOLID OBJECT SOLID OBJECT... [INTERSECTION MODIFIERS]

}

SOLID OBJECT:

FINITE SOLID OBJECT | INFINITE SOLID OBJECT | ISOSURFACE | CSG OBJECT

INTERSECTIONMODIFIERS:

[cutaway textures] & [OBJECT MODIFIERS]

Subtract one or more shapes from another:

DIFFERENCE:

difference { SOLID OBJECT SOLID OBJECT... [DIFFERENCE MODIFIERS] }

DIFFERENCEMODIFIERS:

[cutaway textures] & [OBJECT MODIFIERS]

Combine multiple shapes into one, removing internal surfaces:

MERGE:

merge { SOLID OBJECT SOLID OBJECT... [OBJECT MODIFIERS] }

Quick Reference Contents

412 Quick Reference

7.9 Object Modifiers

Manipulate the appearance of an object

OBJECTMODIFIERS:

[OBJECT PHOTONS] & [CLIPPED BY] & [BOUNDED BY] & [MATERIAL] & [INTERIOR]

& [INTERIOR TEXTURE] & [TEXTURE] & [PIGMENT] & [NORMAL] & [FINISH]

& [TRANSFORMATION...] & [no shadow] & [no image[BOOL]] & [no reflection{BOOL]]

& [inverse] & [double illuminate[BOOL]] & [hollow [BOOL]]

Specify how an object should interact with photons:

OBJECTPHOTONS:

Jump to SDL

photons { OBJECT PHOTON ITEMS }

OBJECTPHOTONITEMS:

[target [F SPACING MULT]] & [refraction BOOL] & [reflection BOOL] & [collect

BOOL] & [pass through [BOOL]]

Slice a portion of a shape:

CLIPPEDBY:

clipped by { UNTEXTURED SOLID OBJECT... } |

clipped by { bounded by }

UNTEXTURED SOLID OBJECT:

FINITE SOLID OBJECT | INFINITE SOLID OBJECT

Note, neither with a texture applied.

Specify a bounding shape for an object:

BOUNDED BY:

bounded by { UNTEXTURED SOLID OBJECT... } |

bounded by { clipped by }

Quick Reference Contents

7.9.1 UV Mapping

Map a texture to an object using surface coordinates:

UV MAPPING:

Jump to SDL

uv mapping PIGMENT | pigment { uv mapping PIGMENT BODY } |

uv mapping NORMAL | normal { uv mapping NORMAL BODY } |

uv mapping TEXTURE | texture { uv mapping TEXTURE BODY }

Quick Reference Contents

7.10 Texture 413

7.9.2 Material

Group together surface textures and interior properties:

MATERIAL:

material { [MATERIAL IDENTIFIER] [MATERIAL ITEM ...] }

MATERIAL ITEMS:

TEXTURE | INTERIOR TEXTURE | INTERIOR | TRANSFORMATION

Quick Reference Contents

7.9.3 Interior

Describe the interior of an object:

INTERIOR:

Jump to SDL

interior { [INTERIOR IDENTIFIER] [INTERIOR ITEMS] }

INTERIOR ITEMS:

[ior FLOAT] & [dispersion FLOAT] & [dispersion samples INT] & [caustics

FLOAT] & [fade distance FLOAT] & [fade power FLOAT] & [fade color

COLOR] & [MEDIA...]

Quick Reference Contents

7.9.4 Interior Texture

Describe the interior surface of an object:

INTERIOR TEXTURE:

interior texture { TEXTURE BODY }

Quick Reference Contents

7.10 Texture

Describe the surface of an object

TEXTURE:

PLAIN TEXTURE | LAYERED TEXTURE | PATTERNED TEXTURE

Quick Reference Contents

414 Quick Reference

7.10.1 Plain Texture

Describe a texture consisting of a single pigment, normal and finish:

PLAIN TEXTURE:

texture { PLAIN TEXTURE BODY }

PLAIN TEXTURE BODY:

[PLAIN TEXTURE IDENT] [PNF IDENTIFIERS] [PNF ITEMS]

PNF IDENTIFIERS:

[PIGMENT IDENTIFIER] & [NORMAL IDENTIFIER] & [FINISH IDENTIFIER]

PNF ITEMS:

[PIGMENT] & [NORMAL] & [FINISH] & [TRANSFORMATION...]

Quick Reference Contents

7.10.2 Layered Texture

Describe a texture consisting of two or more semi-transparent layers:

LAYERED TEXTURE:

Jump to SDL

texture { LAYERED TEXTURE IDENT } |

PLAIN TEXTURE PLAIN TEXTURE...

Quick Reference Contents

7.10.3 Patterned Texture

Describe a texture using a pattern or blending function:

PATTERNEDTEXTURE:

Jump to SDL

texture { PATTERNED TEXTURE BODY }

PATTERNEDTEXTURE BODY:

PATTERNED TEXTURE IDENT [TRANSFORMATION...] | TEXTURE PATTERN [PATTERN MODIFIERS]

| MATERIAL MAP [TRANSFORMATION...]

TEXTURE PATTERN:

TEXTURE LIST PATTERN | MAP PATTERN TEXTURE MAP

TEXTURE LIST PATTERN:

7.10 Texture 415

brick TEXTURE, TEXTURE [BRICK ITEMS] |

checker TEXTURE, TEXTURE |

hexagon TEXTURE, TEXTURE, TEXTURE |

object { LIST OBJECT TEXTURE, TEXTURE }

BRICK ITEMS:

[brick size VECTOR] & [mortar FLOAT]

LIST OBJECT:

UNTEXTURED SOLID OBJECT | UNTEXTURED SOLID OBJECT IDENT

TEXTURE MAP:

texture map { TEXTURE MAP BODY } [BLEND MAP MODIFIERS]

TEXTURE MAP BODY:

TEXTURE MAP IDENTIFIER | TEXTURE MAP ENTRY...

There may be from 2 to 256 map entries.

TEXTURE MAP ENTRY:

[FLOAT TEXTURE BODY]

The brackets here are part of the map entry.

TEXTURE BODY:

PLAIN TEXTURE BODY | LAYERED TEXTURE IDENT | PATTERNED TEXTURE BODY

MATERIAL MAP:

material map { BITMAP IMAGE [BITMAP MODIFIERS] TEXTURE... }

Quick Reference Contents

7.10.4 Pigment

Describe a color or pattern of colors for a texture:

PIGMENT:

Jump to SDL

pigment { PIGMENT BODY }

PIGMENT BODY:

[PIGMENT IDENTIFIER] [PIGMENT TYPE] [PIGMENT MODIFIERS]

PIGMENT TYPE:

COLOR | COLOR LIST PATTERN | PIGMENT LIST PATTERN | IMAGE MAP | MAP PATTERN

[COLOR MAP] | MAP PATTERN PIGMENT MAP

COLOR LIST PATTERN:

416 Quick Reference

brick [COLOR [, COLOR]] [BRICK ITEMS] |

checker [COLOR [, COLOR]] |

hexagon [COLOR [, COLOR [, COLOR]]] |

object { LIST OBJECT [COLOR [, COLOR]] }

PIGMENT LIST PATTERN:

brick PIGMENT, PIGMENT [BRICK ITEMS] |

checker PIGMENT, PIGMENT |

hexagon PIGMENT, PIGMENT, PIGMENT |

object { LIST OBJECT PIGMENT, PIGMENT }

IMAGE MAP:

image map {BITMAP IMAGE [IMAGE MAP MODIFIER...] [BITMAP MODIFIERS] }

IMAGE MAP MODIFIER:

filter I PALETTE, F AMOUNT | filter all F AMOUNT | transmit I PALETTE,

F AMOUNT | transmit all F AMOUNT

COLOR MAP:

color map { COLOR MAP BODY } [BLEND MAP MODIFIERS] |

colour map { COLOR MAP BODY } [BLEND MAP MODIFIERS]

COLOR MAP BODY:

COLOR MAP IDENTIFIER | COLOR MAP ENTRY...

There may be from 2 to 256 map entries.

COLOR MAP ENTRY:

[FLOAT COLOR]

The brackets here are part of the map entry.

PIGMENT MAP:

pigment map { PIGMENT MAP BODY } [BLEND MAP MODIFIERS]

PIGMENT MAP BODY:

PIGMENT MAP IDENTIFIER | PIGMENT MAP ENTRY...

There may be from 2 to 256 map entries.

PIGMENT MAP ENTRY:

[FLOAT PIGMENT BODY]

The brackets here are part of the map entry.

PIGMENT MODIFIERS:

[QUICK COLOR] & [PATTERN MODIFIERS]

QUICK COLOR:

quick color COLOR | quick colour COLOR

Quick Reference Contents

7.10 Texture 417

7.10.5 Normal

Simulate the visual or tactile surface characteristics of a texture:

NORMAL:

Jump to SDL

normal { NORMAL BODY }

NORMAL BODY:

[NORMAL IDENTIFIER] [NORMAL TYPE] [NORMAL MODIFIERS]

NORMAL TYPE:

NORMAL PATTERN | BUMP MAP

NORMAL PATTERN:

NORMAL LIST PATTERN |

MAP PATTERN [F DEPTH] [SLOPE MAP] |

MAP PATTERN NORMAL MAP

NORMAL LIST PATTERN:

brick NORMAL, NORMAL [BRICK ITEMS] | brick [F DEPTH] [BRICK ITEMS] |

checker NORMAL, NORMAL | checker [F DEPTH] |

hexagon NORMAL, NORMAL, NORMAL | hexagon [F DEPTH] |

object { LIST OBJECT NORMAL, NORMAL } | object { LIST OBJECT } [F DEPTH]

NORMAL MAP:

normal map { NORMAL MAP BODY } [BLEND MAP MODIFIERS]

NORMAL MAP BODY:

NORMAL MAP IDENTIFIER | NORMAL MAP ENTRY...

There may be from 2 to 256 map entries.

NORMAL MAP ENTRY:

[FLOAT NORMAL BODY]

The brackets here are part of the map entry.

SLOPEMAP:

slope map { SLOPE MAP BODY } [BLEND MAP MODIFIERS]

SLOPEMAP BODY:

SLOPE MAP IDENTIFIER | SLOPE MAP ENTRY...

There may be from 2 to 256 map entries.

SLOPEMAP ENTRY:

[FLOAT, < F HEIGHT, F SLOPE >]

The brackets here are part of the map entry.

418 Quick Reference

BUMP MAP:

bump map { BITMAP IMAGE [BUMP MAP MODIFIERS] }

BUMP MAP MODIFIERS:

[BITMAP MODIFIERS] & [BUMP METHOD] & [bump size FLOAT]

BUMP METHOD:

use index | use color | use colour

NORMAL MODIFIERS:

[PATTERN MODIFIERS] & [bump size FLOAT] & [no bump scale [BOOL]] & [accuracy

FLOAT]

Quick Reference Contents

7.10.6 Finish

Describe the reflective properties of a surface:

FINISH:

Jump to SDL

finish { [FINISH IDENTIFIER] [FINISH ITEMS] }

FINISH ITEMS:

[ambient COLOR] & [diffuse FLOAT] & [brilliance FLOAT] & [PHONG] & [SPECULAR]

& [REFLECTION] & [IRID] & [crand FLOAT] & [conserve energy [BOOL]]

PHONG:

phong FLOAT & [phong size FLOAT] & [metallic [FLOAT]]

SPECULAR:

specular FLOAT & [roughness FLOAT] & [metallic [FLOAT]]

REFLECTION:

reflection COLOR [reflection exponent FLOAT] |

reflection { [COLOR,] COLOR [REFLECTION ITEMS] }

REFLECTIONITEMS:

[fresnel BOOL] & [falloff FLOAT] & [exponent FLOAT] & [metallic [FLOAT]]

Must also useinterior {ior FLOAT} in the object whenfresnel is used.

IRID:

irid { F AMOUNT [IRID ITEMS] }

IRID ITEMS:

[thickness FLOAT] & [turbulence FLOAT]

Quick Reference Contents

7.10 Texture 419

7.10.7 Pattern

Specify a pattern function for a texture, pigment, normal or density:

MAP PATTERN:

Jump to SDL

AGATE | average | boxed | bozo | bumps | cells | CRACKLE | cylindrical

| DENSITY FILE | dents | FACETS | FRACTAL | function { FN FLOAT }

| gradient VECTOR | granite | IMAGE PATTERN | leopard | marble |

onion | pigment pattern { PIGMENT BODY } | planar | QUILTED | radial

| ripples | SLOPE | spherical | spiral1 I NUM ARMS | spiral2 I NUM ARMS

| spotted | waves | wood | wrinkles

AGATE:

agate [agate turb FLOAT]

CRACKLE:

crackle [CRACKLE TYPES]

CRACKLE TYPES:

[form VECTOR] & [metric FLOAT] & [offset FLOAT] & [solid]

DENSITY FILE:

density file df3 FILE NAME [interpolate DENSITY INTERPOLATE]

DENSITY INTERPOLATE:

0 | 1 | 2

FACETS:

facets FACETS TYPE

Note,facets can only be used as anormal pattern.

FACETSTYPE:

coords F SCALE | size F SIZE FACTOR

FRACTAL:

MANDELBROT FRACTAL | JULIA FRACTAL | MAGNET MANDEL FRACTAL | MAGNET JULIA FRACTAL

MANDELBROT FRACTAL:

mandel I ITERATIONS [exponent INT] [exterior EXTERIOR TYPE, F FACTOR]

[interior INTERIOR TYPE, F FACTOR]

JULIA FRACTAL:

julia V2 COMPLEX, I ITERATIONS [exponent INT] [exterior EXTERIOR TYPE,

F FACTOR] [interior INTERIOR TYPE, F FACTOR]

MAGNET MANDEL FRACTAL:

420 Quick Reference

magnet MAGNET TYPE mandel I ITERATIONS [exterior EXTERIOR TYPE, F FACTOR]

[interior INTERIOR TYPE, F FACTOR]

MAGNET TYPE:

1 | 2

MAGNET JULIA FRACTAL:

magnet MAGNET TYPE julia V2 COMPLEX, I ITERATIONS [exterior EXTERIOR TYPE,

F FACTOR] [interior INTERIOR TYPE, F FACTOR]

EXTERIOR TYPE:

0 | 1 | 2 | 3 | 4 | 5 | 6

INTERIOR TYPE:

0 | 1 | 2 | 3 | 4 | 5 | 6

IMAGE PATTERN:

image pattern {BITMAP IMAGE [IMAGE PATTERN MODIFIERS] }

IMAGE PATTERN MODIFIERS:

[BITMAP MODIFIERS] & [use alpha]

QUILTED:

quilted [control0 FLOAT] [control1 FLOAT]

SLOPE:

slope { V DIRECTION [, F LOW SLOPE, F HIGH SLOPE] [altitude VECTOR [,

F LOW ALT, F HIGH ALT]] }

Theslope pattern does not work in media densities.

Quick Reference Contents

7.10.8 Pattern Modifiers

Modify the evaluation of a pattern function:

PATTERN MODIFIERS:

Jump to SDL

[TURBULENCE] & [WARP...] & [TRANSFORMATION...] & [noise generator

NG TYPE]

NG TYPE:

1 | 2 | 3

TURBULENCE:

turbulence VECTOR & [octaves INT] & [omega FLOAT] & [lambda FLOAT]

WARP:

7.10 Texture 421

warp { WARP ITEM }

WARP ITEM:

REPEAT WARP | BLACK HOLE WARP | TURBULENCE | CYLINDRICAL WARP | SPHERICAL WARP

| TOROIDAL WARP | PLANAR WARP

REPEATWARP:

repeat VECTOR [offset VECTOR] [flip VECTOR]

BLACK HOLE WARP:

black hole V LOCATION, F RADIUS [BLACK HOLE ITEMS]

BLACK HOLE ITEMS:

[strength FLOAT] & [falloff FLOAT] & [inverse] & [repeat VECTOR [turbulence

VECTOR]]

CYLINDRICAL WARP:

cylindrical [orientation VECTOR] [dist exp FLOAT]

SPHERICALWARP:

spherical [orientation VECTOR] [dist exp FLOAT]

TOROIDAL WARP:

toroidal [orientation VECTOR] [dist exp FLOAT] [major radius FLOAT]

PLANAR WARP:

planar [V NORMAL, F DISTANCE]

Modify the usage of a blend map:

BLEND MAP MODIFIERS:

Jump to SDL

frequency FLOAT & [phaseFLOAT] & [WAVEFORM]

WAVEFORM:

Jump to SDL

ramp wave | triangle wave | sine wave | scallop wave | cubic wave | poly wave

[F EXPONENT]

Specify a two-dimensional bitmap image for a pattern:

BITMAP IMAGE:

FUNCTION IMAGE | BITMAP TYPE FILE NAME

FUNCTION IMAGE:

Jump to SDL

function I WIDTH, I HEIGHT { FUNCTION IMAGE BODY }

FUNCTION IMAGE BODY:

422 Quick Reference

PIGMENT | FN FLOAT | pattern { PATTERN [PATTERN MODIFIERS] }

PATTERN:

MAP PATTERN | brick [BRICK ITEMS] | checker | hexagon | object { LIST OBJECT

}

BITMAP TYPE:

Jump to SDL

gif | tga | iff | ppm | pgm | png | jpeg | tiff | sys

Modify how a 2-D bitmap is to be applied to a 3-D surface:

BITMAP MODIFIERS:

Jump to SDL

[once] & [map type MAP TYPE] & [interpolate INTERPOLATE TYPE]

MAP TYPE:

0 | 1 | 2 | 5

INTERPOLATE TYPE:

2 | 4

Quick Reference Contents

7.11 Media

Describe particulate matter

MEDIA:

Jump to SDL

media { [MEDIA IDENTIFIER] [MEDIA ITEMS] }

MEDIA ITEMS:

[method METHOD TYPE] & [intervals INT] & [samples I MIN, I MAX] & [confidence

FLOAT] & [variance FLOAT] & [ratio FLOAT] & [absorption COLOR] &

[emission COLOR] & [aa threshold FLOAT] & [aa level INT] & [SCATTERING]

& [DENSITY...] & [TRANSFORMATION...] & [collect BOOL]

METHOD TYPE:

1 | 2 | 3

SCATTERING:

scattering { SCATTERING TYPE, COLOR [eccentricity FLOAT] [extinction

FLOAT] }

SCATTERINGTYPE:

1 | 2 | 3 | 4 | 5

7.12 Atmospheric Effects 423

DENSITY:

density { DENSITY BODY }

DENSITY BODY:

[DENSITY IDENTIFIER] [DENSITY TYPE] [PATTERN MODIFIERS]

DENSITY TYPE:

COLOR | COLOR LIST PATTERN | DENSITY LIST PATTERN | MAP PATTERN [COLOR MAP]

| MAP PATTERN DENSITY MAP

DENSITY LIST PATTERN:

brick DENSITY, DENSITY [BRICK ITEMS] |

checker DENSITY, DENSITY |

hexagon DENSITY, DENSITY, DENSITY |

object { LIST OBJECT DENSITY, DENSITY }

DENSITY MAP:

density map { DENSITY MAP BODY } [BLEND MAP MODIFIERS]

DENSITY MAP BODY:

DENSITY MAP IDENTIFIER | DENSITY MAP ENTRY...

There may be from 2 to 256 map entries.

DENSITY MAP ENTRY:

[FLOAT DENSITY BODY]

The brackets here are part of the map entry.

Quick Reference Contents

7.12 Atmospheric Effects

Describe various background and atmospheric features

ATMOSPHERICEFFECT:

MEDIA | BACKGROUND | FOG | SKY SPHERE | RAINBOW

Quick Reference Contents

7.12.1 Background

Specify a background color for the scene:

BACKGROUND:

background { COLOR }

Quick Reference Contents

424 Quick Reference

7.12.2 Fog

Simulate a hazy or foggy atmosphere:

FOG:

Jump to SDL

CONSTANT FOG | GROUND FOG

CONSTANT FOG:

fog { [FOG IDENTIFIER] [fog type 1] FOG ITEMS }

FOG ITEMS:

distance FLOAT & COLOR & [TURBULENCE [turb depth FLOAT]]

GROUND FOG:

fog { [FOG IDENTIFIER] fog type 2 GROUND FOG ITEMS }

GROUND FOG ITEMS:

FOG ITEMS & fog offset FLOAT & fog alt FLOAT & [up VECTOR [TRANSFORMATION...]]

Quick Reference Contents

7.12.3 Sky Sphere

Specify a sky pigment:

SKY SPHERE:

sky sphere { [SKY SPHERE IDENTIFIER] [SKY SPHERE ITEM...] }

SKY SPHEREITEM:

PIGMENT | TRANSFORMATION

Quick Reference Contents

7.12.4 Rainbow

Specify a rainbow arc:

RAINBOW:

Jump to SDL

rainbow { [RAINBOW IDENTIFIER] [RAINBOW ITEMS] }

RAINBOW ITEMS:

direction VECTOR & angle FLOAT & width FLOAT & distance FLOAT & COLOR MAP

& [jitter FLOAT] & [up VECTOR] & [arc angle FLOAT] & [falloff angle

FLOAT]

Quick Reference Contents

7.13 Global Settings 425

7.13 Global Settings

Specify various settings that apply to the entire scene

GLOBAL SETTINGS:

Jump to SDL

global settings { GLOBAL SETTING ITEMS }

GLOBAL SETTING ITEMS:

[adc bailout FLOAT] & [ambient light COLOR] & [assumed gamma FLOAT] &

[hf gray 16 [BOOL]] & [irid wavelength COLOR] & [charset GLOBAL CHARSET]

& [max intersections INT] & [max trace level INT] & [number of waves

INT] & [noise generator NG TYPE] & [RADIOSITY] & [PHOTONS]

GLOBAL CHARSET:

ascii | utf8 | sys

NG TYPE:

1 | 2 | 3

Quick Reference Contents

7.13.1 Radiosity

Enable radiosity to compute diffuse inter-reflection of light:

RADIOSITY:

Jump to SDL

radiosity { [RADIOSITY ITEMS] }

RADIOSITY ITEMS:

[adc bailout FLOAT] & [always sample BOOL] & [brightness FLOAT] & [count

INT] & [error bound FLOAT] & [gray threshold FLOAT] & [load file FILE NAME]

& [low error factor FLOAT] & [max sample FLOAT] & [media BOOL] & [minimum reuse

FLOAT] & [nearest count INT] & [normal BOOL] & [pretrace end FLOAT]

& [pretrace start FLOAT] & [recursion limit INT] & [save file FILE NAME]

Quick Reference Contents

7.13.2 Photons

Enable photon mapping to render reflective and refractive caustics:

PHOTONS:

Jump to SDL

photons { PHOTON QUANTITY [PHOTON ITEMS] }

426 Quick Reference

PHOTONQUANTITY:

spacing FLOAT | count INT

PHOTONITEMS:

[gather I MIN, I MAX] & [media I MAX STEPS [, F FACTOR]] & [jitter FLOAT]

& [max trace level INT] & [adc bailout FLOAT] & [save file FILE NAME]

& [load file FILE NAME] & [autostop FLOAT] & [expand thresholds F INCREASE,

F MIN] & [radius [FLOAT, FLOAT, FLOAT, FLOAT]]

Quick Reference Contents

Index

+a, 105
+am, 105
+b, 88
+c, 81
+d, 82
+ec, 80
+ef, 78
+ep, 85
+er, 80
+f, 86
+fc, 86
+fn, 86
+fp, 86
+fs, 86
+ga, 100
+gd, 100
+gf, 100
+gi, 81
+gr, 100
+gs, 100
+gw, 100
+h, 79, 102
+hi, 91
+hn, 89
+hs, 90
+ht, 89
+htc, 89
+htn, 89
+htp, 89
+hts, 89
+htt, 89
+htx, 89
+i, 91
+j, 105
+k, 76
+kc, 78
+kff, 76
+kfi, 76
+ki, 76
+l, 92
+mb, 103

+mv, 92
+o, 88
+p, 84
+q, 103
+r, 105
+sc, 80
+sf, 78
+sp, 85
+sr, 80
+su, 104
+ua, 86
+ud, 84
+uf, 79
+ul, 103
+uo, 79
+ur, 104
+uv, 103
+v, 84
+w, 79
+wl, 102
+x, 81
-a, 105
-b, 88
-c, 81
-d, 82
-f, 86
-ga, 100
-gd, 100
-gf, 100
-gr, 100
-gs, 100
-gw, 100
-j, 105
-kc, 78
-mb, 103
-p, 84
-su, 104
-ua, 86
-ud, 84
-uf, 79
-ul, 103

428 INDEX

-uo, 79
-ur, 104
-uv, 103
-v, 84
-x, 81
#break, 66
#case, 66
#debug, 68
#declare, 56
#default, 63
#else, 65
#end, 65
#error, 68
#fclose, 61
#fopen, 60
#if, 65
#ifdef, 66
#ifndef, 66
#include, 56
#local, 56
#macro, 70
#range, 66
#read, 61
#render, 68
#statistics, 68
#switch, 66
#undef, 60
#version, 64
#warning, 68
#while, 67
#write, 62

aa level, 295
aa threshold, 295
abs, 25
accuracy, 173

normals, 217
parametric, 176

acos, 25
julia, 149

acosd, 341
acosh, 25

julia, 149
adaptive, 188
adcbailout

global settings, 124
photons, 303
radiosity, 132

adj range, 341
adj range2, 342

agateturb, 240
Align Object, 352
Align Trans, 378
all, 212
All Console, 100
All File, 101
all intersections, 175
alpha, 212
altitude, 262
angle, 110

camera, 110
rainbow, 122

Animation
cyclic, 78
external loop, 76
field rendering, 79
internal loop, 76
options, 76
subsets of frames, 78

Antialias, 105
Antialias Depth, 105
Antialias Threshold, 105
aperture, 116
append, 60
arc angle, 123
arealight, 187
Array

declaring, 51
identifiers, 51
initialization, 52

array, 51
quickref, 395

arrays
quickref, 395

asc, 25
ascii, 129
asin, 25

julia, 149
asind, 341
asinh, 26

julia, 149
atan, 149
atan2, 26
atan2d, 341
atanh, 26

julia, 149
atmosphere, 290
atmospheric effects

quickref, 423
Axial ScaleTrans, 377

INDEX 429

Axis RotateTrans, 377

b spline, 154
background

quickref, 423
BevelledText, 352
bezier, 161
Bezier Patch, 161
bezierspline, 150
bicubic patch, 161
Bits PerColor, 86
black hole, 272
blob

component, 140
component, cylinder, 139
component, sphere, 139

Blobs, 138
blue, 40
Blur, 116
blur samples, 117
BMP output, 86
boolean, 28
Bounding, 103
BoundingThreshold, 103
break, 66
brick size, 243
Buffer Output, 88
Buffer Size, 88
bumpmap, 219

Camera
coordinate system, 113
focal blur, 116
placing, 109
types of, 114

case, 66
Caustics, 289

simulated, 289
ceil, 26
CenterObject, 352
CenterTrans, 378
chr, 50
CHSL2RGB, 314
CHSV2RGB, 315
Circle Text, 353
circular, 189
clamp, 341
clip, 341
clock, 29
clock delta, 29

clock on, 30
collect, 304
Color

common pitfalls, 41
functions, user-defined, 47
identifiers, 40
keywords, 40
operators, 41
specifying, 37
vectors, 39

color, 38
quickref, 392

color map, 207
density, 297
rainbow, 122

colors
quickref, 392

colour, 38
quickref, 392

colour map, 207
component, 140
composite, 178
concat, 50
conditional directives

quickref, 399
confidence, 117

focal blur, 117
media, 295

conic sweep, 153
ConnectSpheres, 354
conserveenergy, 228
constant fog, 120
Constructive Solid Geometry

quickref, 411
containedby, 173

isosurface, 173
parametric, 175

contents
quickref, 388

ContinueTrace, 81
control0, 259
control1, 259
ConvertColor, 315
Coordinate system

camera, 113
coords, 248
cos, 26

julia, 149
cosd, 341
cosh, 26

430 INDEX

julia, 149
crackle, 245
crand, 224
CreateIni, 81
CRGB2HSL, 315
CRGB2HSV, 315
CRGBStr, 370
Cross Section Type, 320
CSG, 176

difference, 179
intersection, 179
merge, 180
union, 177

cube, 148
cubic, 169
cubic spline, 150
cubic wave, 270
cutawaytextures, 239
Cyclic Animation, 78
cylinder

blob component, 139
light source, 186

cylindrical
projection, 115
warp, 279

debug, 68
debug.inc, 318

DebugConsole, 100
DebugFile, 101
declare, 56
Declaring

arrays, 51
default, 63
Default Output Directory, 88
default texture

quickref, 398
Default values

bicubic patch, 161
blob, 139
camera, 108
disc, 162
fog, 119
global settings, 124
height field, 143
interior, 283
isosurface, 173
julia fractal, 147
lathe, 149
light source, 182

media, 291
mesh, 163
parametric, 175
pattern modifiers, 267
photons, 302
poly, 170
prism, 151
rainbow, 122
sor, 156
spheresweep, 154
torus, 160

defined, 26
degrees, 26
densitymap, 298
Depth of field, 116
df3, 247
dimensionsize, 26
dimensions, 26
direction, 111

rainbow, 122
Directives

#language, #declare vs. #local, 58
language, 55
language, #declare, 56
language, #local, 56
language, #macro, 70
language, #version, 64
language, conditional, 65
language, default texture, 63
language, file I/O, 60
language, identifiers, 56
language, identifiers, destroying,

60
language, user messages, 68

Directory
default output, 88

dispersion
photons, 309

dispersionsamples, 288
Display, 82
Display Gamma, 82
dist exp, 279
distance, 120

fog, 120
rainbow, 122

div, 26
Divergence, 345
Draw Vistas, 84
dynamic maxgradient, 174

INDEX 431

eccentricity, 294
else, 65
end, 65
End Column, 80
End Row, 80
error, 68

debug.inc, 318
eval pigment, 335
evaluate, 174
even, 339
exp, 26

julia, 149
expandthresholds, 309
exponent, 227

fractal pattern, 249
reflection, 227

Expressions
float, 22
vector, 32

Extents, 352
exterior, 249
extinction, 293

f algbr cyl1, 321
f algbr cyl2, 321
f algbr cyl3, 322
f algbr cyl4, 322
f bicorn, 322
f bifolia, 322
f blob, 323
f blob2, 323
f boy surface, 323
f comma, 323
f crossellipsoids, 323
f crossedtrough, 323
f cubic saddle, 323
f cushion, 324
f devils curve, 324
f devils curve2d, 324
f dupin cyclid, 324
f ellipsoid, 324
f enneper, 324
f flangecover, 324
f folium surface, 325
f folium surface2d, 325
f glob, 325
f heart, 325
f helical torus, 325
f helix1, 326
f helix2, 326

f heteromf, 326
f hex x, 326
f hex y, 326
f hunt surface, 327
f hyperbolictorus, 327
f isectellipsoids, 327
f kampyleof eudoxus, 327
f kampyleof eudoxus2d, 328
f klein bottle, 328
f kummersurfacev1, 328
f kummersurfacev2, 328
f lemniscateof gerono, 328
f lemniscateof gerono2d, 328
f mesh1, 329
f mitre, 329
f nodal cubic, 329
f noise3d, 329
f noisegenerator, 329
f odd, 329
f ovalsof cassini, 329
f parabolictorus, 329
f paraboloid, 329
f ph, 330
f pillow, 330
f piriform, 330
f piriform 2d, 330
f poly4, 330
f polytubes, 330
f quantum, 331
f quartic cylinder, 331
f quarticparaboloid, 331
f quartic saddle, 331
f r, 331
f ridge, 331
f ridgedmf, 331
f roundedbox, 332
f scallopwave, 335
f sinewave, 335
f snoise3d, 335
f sphere, 332
f spikes, 332
f spikes2d, 332
f spiral, 333
f sqr, 341
f steinersroman, 333
f strophoid, 333
f strophoid2d, 333
f superellipsoid, 334
f th, 334
f torus, 334

432 INDEX

f torus2, 334
f torusgumdrop, 334
f umbrella, 334
f witch of agnesi, 334
f witch of agnesi2d, 334
face indices, 164
fadecolor, 289
fadecolour, 289
fadedistance, 192

interior, 289
light source, 192

fadepower, 192
interior, 289
light source, 192

falloff, 183
light source, 183
reflection, 227
warp, 272

falloff angle, 123
false, 28
FatalConsole, 100
FatalError Command, 93
FatalError Return, 95
FatalFile, 101
fclose, 61
Field Render, 79
file i/o

quickref, 397
file inclusion

quickref, 397
file exists, 26
filter, 38

bitmap modfier, 212
Final Clock

ini-option, 76
final clock, 30
Final Frame

ini-option, 76
final frame, 30
Finding include files, 92
finish

quickref, 418
fisheye, 115
flatness, 161
flip, 275
Float

boolean, 28
expressions, 22
functions, 25
functions, user-defined, 46

identifiers, 23
literals, 23
operators, 24

float
quickref, 388

float expressions
quickref, 388

floats
quickref, 388

floor, 26
fn Divergence, 344
fn Gradient, 344
fn GradientDirectional, 344
focal point, 116
fog

quickref, 424
fog alt, 120
fog offset, 120
fog type, 120
fopen, 60
form, 245
fractal, 146
Fractal Object, 146
framenumber, 30
frequency, 269
fresnel, 227
function, 43

as pattern, 251
internal bitmap, 252

Functions, 43
float, 25
internal, 48
string, 50
user-defined, 43
user-defined, color, 47
user-defined, float, 46
user-defined, vector, 47
vector, 34

Gamma
image file, 127
monitor, 126
scene file, 127

gamma
determining your display, 83
test image, 83

gather, 303
GetStats, 340
gif, 211
global settings

INDEX 433

quickref, 425
global lights, 193
global settings, 123
GradientDirectional, 345
GradientLength, 345
gray, 41
green, 40
ground fog, 120

Height, 79
height field, 143
Hex Tiles Ptrn, 376
HF Cylinder, 358
HF Sphere, 357
HF Square, 357
HF Torus, 358
hierarchy, 140

blob, 140
height field, 146
mesh, 164

Histogram, 340
HistogramGrid Size, 90
HistogramName, 89
HistogramType, 89
hypercomplex, 148

identifier
declaration, quickref, 397

Identifiers
array, 51
color, 40
declaring, 56
destroying, 60
float, 23
string, 49
vector, 33

if, 65
ifdef, 66
iff, 211
ifndef, 66
imageheight, 30
imagemap, 210
imagepattern, 255
imagewidth, 30
include, 56

standard files, 311
Include Files

finding, 92
Include Path, 92
IncludeHeader, 91

ini files
constant, 90

Initial Clock
ini-option, 76

initial clock, 30
Initial Frame

ini-option, 76
initial frame, 30
Initialization

arrays, 52
Input File Name, 91
inside, 26
insidevector, 164
int, 26
interior

fadedistance, 289
fadepower, 289
fractal pattern, 249
quickref, 413

interior texture, 413
interior texture, 238
internal, 48

functions.inc, 319
Interpolate

macro, 339
interpolate, 281
intervals, 294
ior, 287
irid, 228
IrregularBricks Ptrn, 376
Isect, 351

jitter, 188
anti-aliasing , 105
arealight, 188
photons, 303
rainbow, 122

Jitter Amount, 105
jpeg, 211
julia, 249
julia fractal, 146

Keywords
color, 40

Language
identifiers, camera, 117

language
basics, quickref, 388
directives, quickref, 396

434 INDEX

language basics
quickref, 388

language directives
quickref, 396

layered texture
quickref, 414

Library Path, 92
Light Sources

and photons, 304
Light Buffer, 103
light group, 193
light source, 181

arealight, 187
arealight, adaptive, 188
arealight, circular, 189
arealight, jitter, 188
arealight, orient, 189
cylinder, 186
fadedistance, 192
fadepower, 192
looks like, 191
mediaattenuation, 193
mediainteraction, 193
parallel, 186
projectedthrough, 191
shadowless, 191
spotlight, 182
spotlight, falloff, 183
spotlight, radius, 183
spotlight, tightness, 183

lightgroup
quickref, 402

lights
quickref, 401

linear spline, 150
linear sweep, 152
Literals

float, 23
string, 48

ln, 26
julia, 149

load file, 135
photons, 303
radiosity, 135

local, 56
location, 109
log, 26
look at, 109

macro, 70

quickref, 399
Macros, 70

declaring, 70
invoking, 70
return values in parameters, 74
returning values from, 72

macros
quickref, 399

magnet, 249
major radius, 279
mandel, 249
mandelbrot, 249
map type, 281
material

quickref, 413
materialmap, 232
Matrix Trans, 377
max, 26
max3, 341
max extent, 35
max gradient, 173

isosurface, 173
parametric, 175

max iteration, 147
max trace, 175
max tracelevel

photons, 303
Mean, 340
Media

and photons, 305
media

photons, 303
quickref, 422

mediaattenuation, 193
mediainteraction, 193
message streams

quickref, 399
metallic, 225

highlight, 225
reflection, 227

method, 295
metric, 245
min, 27
min3, 341
min extent, 35
mod, 27
mortar, 243
Mountains

generating with a height field, 143
Moving

INDEX 435

camera, 109

naturalspline, 53
no, 28
no image, 200
no reflection, 200
no bumpscale, 221
no image, 200
no reflection, 200
noise generator, 270
normal

quickref, 417
normal indices, 164
normalmap, 218
normalvectors, 164

object, 137
modifiers, quickref, 412
pattern, 257

object media, 290
object modifiers

quickref, 412
Objects

empty and solid, 285
objects

csg, quickref, 411
finite patch, quickref, 406
finite solid, quickref, 403
infinite solid, quickref, 409
isosurface, quickref, 410
parametric, quickref, 410
quickref, 402

odd, 339
Odd Field, 79
off, 28
offset, 275

crackle, 245
repeat warp, 275

omnimax, 115
on, 28
once, 280
open, 283

isosurface, 174
Operators

color, 41
float, 24
promotion, 34
vector, 34

Options
animation, 76

anti-aliasing, 105
bounding, automatic, 103
bounding, manual, 104
display, 82
general output, 79
height and width, 79
help screen, 102
interruption, 80
partial output, 79
rendering, 102
resuming, 81
text output, 98
tracing, 102

Optios
parsing, 90

orient, 189
orientation, 279
orthographic, 114
Output

BMP, 86
PNG, 86
PPM, 86
system-specific, 86
Targa, compressed, 86
Targa, uncompressed, 86

Output File
placing in a default directory, 88

output formats, 86
OutputAlpha, 86
OutputFile Name, 88
OutputFile Type, 86
Output to File, 86

Palette, 82
panoramic, 115
parallel, 186
parametric, 175
ParseString, 371
passthrough, 304
Path

includ files, 92
pattern, 46

quickref, 419
pattern modifiers

quickref, 420
patterned texture

quickref, 414
PauseWhenDone, 84
perspective, 114
Perturbation

436 INDEX

camera ray, 117
pgm, 211
phase, 269
phong, 224
phongsize, 224
photons

dispersion, 309
media, 303
quickref, 425

pi, 28
pigment

quickref, 415
pigmentmap, 209
pigmentpattern, 258
Pigments

color list, 207
color maps, 207
pigment list, 209
solid color, 206

Pitfalls
color, 41

plain texture
quickref, 414

planar
warp, 279

png, 211
PNG output, 86
point at, 183

parallel, 186
spotlight, 183

Point At Trans, 378
poly, 169
poly wave, 270
PostFrameCommand, 93
PostFrameReturn, 95
PostSceneCommand, 93
PostSceneReturn, 95
pot, 145
pow, 27
ppm, 211
PPM output, 86
PreFrameCommand, 93
PreFrameReturn, 95
PreSceneCommand, 93
PreSceneReturn, 95
precision, 147
precompute, 176
pretraceend, 135
pretracestart, 135
PreviewEnd Size, 85

PreviewStartSize, 85
prod, 44
projection

cylindrical, 115
fisheye, 115
omnimax, 115
orthographic, 114
panoramic, 115
perspective, 114
spherical, 116
ultra wide angle, 115

pwr, 149

Quad, 356
quadraticspline, 150
Quality, 103
quartic, 169
quaternion, 148
quick color, 213
quick colour, 213
quickref, 387

arrays, 395
atmospheric effects, 423
background, 423
bitmap, 421
blendmapmodifiers, 421
brick item, 415
camera, 401
colors, 392
conditional directives, 399
contents, 388
csg objects, 411
default texture, 398
dot item, 391
embedded directives, 400
file i/o, 397
file inclusion, 397
finish, 418
finite patch objects, 406
finite solid objects, 403
floats, 388
fog, 424
function invocation, 394
global settings, 425
identifier declaration, 397
infinite solid objects, 409
interior, 413
interior texture, 413
isosurface objects, 410
language basics, 388

INDEX 437

language directives, 396
layered texture, 414
lightgroup, 402
lights, 401
list object, 415
logical expression, 390
macros, 399
material, 413
media, 422
message streams, 399
normal, 417
object modifiers, 412
objects, 402
parametric objects, 410
pattern, 419
pattern modifiers, 420
patterned texture, 414
photons, 425
pigment, 415
plain texture, 414
radiosity, 425
rainbow, 424
scene, 388
sky sphere, 424
splines, 396
strings, 394
texture, 413
transformations, 400
user-defined functions, 392
uv mapping, 412
vectors, 391
version, 398

radians, 27
Radiosity

adjusting, 132
how it works, 131
tips, 136

radiosity
quickref, 425

radius, 183
light source, 183
photons, 303

rainbow
quickref, 424

rampwave, 270
rand, 27
RandArray Item, 311
RandBernoulli, 350
RandBeta, 349

RandBinomial, 350
RandCauchy, 348
RandChi Square, 349
RandErlang, 350
RandExp, 350
RandF Dist, 349
RandGamma, 349
RandGauss, 349
RandGeo, 351
RandLognormal, 350
RandNormal, 348
RandPareto, 350
RandPoisson, 351
RandSpline, 349
RandStudent, 348
RandTri, 349
RandWeibull, 350
range, 66
ratio, 295
read, 61
reciprocal, 149
red, 40
refelection

metallic, 227
reflection, 226

exponent, 227
falloff, 227

reflectionexponent, 227
RemoveBounds, 104
render, 68
RenderConsole, 100
RenderFile, 101
ReorientTrans, 378
repeat, 275
ResizeArray, 311
Resolution, 79
ReverseArray, 311
rgb, 39
rgbf, 40
rgbft, 40
rgbt, 40
right, 111
RotateAround Trans, 377
roughness, 225
RoundBox Union, 355
RoundCone2Union, 356
RoundCone3Union, 356
RoundConeUnion, 355
RoundCylinder Union, 355
RRand, 347

438 INDEX

samples, 295
SamplingMethod, 105
savefile, 135

photons, 303
radiosity, 135

scallopwave, 270
scene

quickref, 388
Scene Description Language, 15
Search Path, 92
seed, 27
select, 27
SetGradientAccuracy, 344
Settings

global, 123
sgn, 341
shadowless, 191
ShearTrans, 377
sin, 27

julia, 149
sind, 341
sinewave, 270
sinh, 27

julia, 149
size, 248
sky, 110
sky sphere

quickref, 424
sky sphere, 121
slice, 147
slopemap, 215
smooth, 146
smoothtriangle, 167
solid, 245
solid triangle mesh, 164
sor, 156
Sort Array, 312
Sort Compare, 311
Sort PartialArray, 312
Sort SwapData, 312
spacing, 302
spacingmultiplier, 304
specular, 225
sphere

blob component, 139
spheresweep, 154
spherical

projection, 116
warp, 279

Spheroid, 354

spiral, 264
spline, 53

quickref, 396
spline trans, 379
splines

quickref, 396
Split Unions, 104
spotlight, 182
sqr, 148
sqrt, 28
SRand, 347
StarPtrn, 376
StartColumn, 80
StartRow, 80
StatisticConsole, 100
StatisticFile, 101
statistics, 68
Std Dev, 340
Str

strings.inc, 370
str, 50
strcmp, 27
stream, 98
strength, 140

black hole warp, 272
blob, 140

String
functions, 50
identifiers, 49
literals, 48

string
quickref, 394

String Literals, 48
strings

quickref, 394
strlen, 27
strlwr, 50
strupr, 51
sturm

lathe, 151
prism, 153
sor, 157
torus, 160

SubsetEnd Frame, 78
SubsetStartFrame, 78
substr, 51
sum, 44
sunpos, 384
Supercone, 354
superellipsoid, 155

INDEX 439

superquadric, 155
Supertorus, 354
switch, 66
sys, 129

imagemap, 211
System-specific output, 86

t, 34
tan, 28

julia, 149
tand, 341
tanh, 28

julia, 149
Targa output

compressed, 86
uncompressed, 86

target, 304
TestAbort, 81
TestAbort Count, 81
Text Space, 353
Text Width, 353
texture, 203

layered, quickref, 414
patterned, quickref, 414
plain, quickref, 414
quickref, 413

texture-list, 164
texturelist, 238
texturemap, 230
Textures

default, 63
tga, 211
The scene

quickref, 388
thickness, 228
threshold, 139

isosurface, 173
tiff, 211
tightness, 183
tile2, 231
Tiles Ptrn, 376
tolerance, 154
toroidal, 279

warp, 279
trace, 35
transformations

quickref, 400
transmit, 38

bitmap modifier, 212
triangle, 167

TriangleStr, 371
triangleWave, 267
true, 28
ttf, 159
turb depth, 121
turbulence

fog, 121
irid, 228
warp, 276

type, 161

u, 34
u steps, 161
ultra wide angle, 115
undef, 60
up, 111, 123
usealpha, 255
usecolor, 220
usecolour, 220
useindex, 220
user-defined functions

quickref, 392
UserAbort Command, 93
UserAbort Return, 95
utf8, 129
uv indices, 164
uv mapping, 236

quickref, 412
uv vectors, 164

v, 34
v steps, 161
val, 28
VAngle, 343
variable reflection, 227
variance, 117

focal blur, 117
media, 295

vaxis rotate, 36
VCos Angle, 343
vcross, 36
vCurl, 344
VDist, 343
vdot, 28
VDot5D, 343
Vector, 32

built-in identifiers, 36
color, 39
expressions, 32
functions, 34

440 INDEX

functions, user-defined, 47
identifiers, 33
operators, 34

Vectors
direction, 111
sky, 110

VEq, 342
VEq5D, 342
Verbose, 84
Version

ini-option, 92
version, 64

quickref, 398
version identfier

quickref, 398
vertexvectors, 164
vGradient, 344
Video Mode, 82
Vista Buffer, 103
vlength, 28
VLength5D, 342
VMin, 344
vnormalize, 36
VNormalize5D, 343
VPerpAdjust, 343
VPerpTo Plane, 343
VPerpTo Vector, 343
VPow, 342
VPow5D, 342
VProjectAxis, 344
VProjectPlane, 343
VRand, 347
VRand In Box, 348
VRand In Obj, 348
VRand In Sphere, 348
VRandOn Sphere, 348
vrotate, 36
VRotation, 343
VSqr, 342
Vstr

strings.inc, 370
vstr, 51
VStr2D, 370
Vstr2D, 370
vtransform, 379
vturbulence, 36
VWith Len, 344
VZero, 342
VZero5D, 342

warning, 68
debug.inc, 318

WarningConsole, 100
WarningFile, 101
WarningLevel, 102
warp, 271

cylindrical, 279
falloff, 272
planar, 279
spherical, 279
toroidal, 279

water level, 146
Wedge, 353
while, 67
Width, 79
width

rainbow, 122
Wire Box Union, 354
write, 62

x, 34

y, 34
yes, 28

z, 34

