
ChainReaction: a Causal+ Consistent
Datastore based on Chain Replication

Sérgio Almeida
INESC-ID, Instituto Superior
Técnico, U. Técnica de Lisboa
sergiogarrau@gsd.inesc-id.pt

João Leitão
CITI / DI-FCT-Universidade Nova

de Lisboa and INESC-ID, IST, UTL
jc.leitao@fct.unl.pt

Luı́s Rodrigues
INESC-ID, Instituto Superior
Técnico, U. Técnica de Lisboa

ler@ist.utl.pt

Abstract
This paper proposes a Geo-distributed key-value datastore,
named ChainReaction, that offers causal+ consistency, with
high performance, fault-tolerance, and scalability. ChainRe-
action enforces causal+ consistency which is stronger than
eventual consistency by leveraging on a new variant of chain
replication. We have experimentally evaluated the benefits of
our approach by running the Yahoo! Cloud Serving Bench-
mark. Experimental results show that ChainReaction has
better performance in read intensive workloads while offer-
ing competitive performance for other workloads. Also we
show that our solution requires less metadata when com-
pared with previous work.

Categories and Subject Descriptors C.2.4 [Computer Sys-
tems Organization]: Distributed Systems; C.4 [Performance
of Systems]

Keywords Key-value storage, causal+ consistency, Geo-
replication, chain-replication

1. Introduction
The trade-offs among consistency and performance, in par-
ticular for systems supporting Geo-replication, introduce
some of the most challenging aspects in the design of
datastores for cloud-computing applications. A subset of
these trade-offs have been captured by the well-known
CAP Theorem [5], which states that it is impossible to of-
fer simultaneously consistency, availability, and partition-
tolerance. As a result, several datastores have been pro-
posed in the last few years, implementing different com-
binations of consistency guarantees and replication proto-
cols [2, 6, 10, 14, 17, 22, 23]. Some solutions opt to weaken

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Eurosys’13 April 15-17, 2013, Prague, Czech Republic
Copyright c© 2013 ACM 978-1-4503-1994-2/13/04. . . $15.00

consistency, in order to achieve the desired efficiency. Un-
fortunately, weak consistency imposes a complexity burden
on the application programmer. On the other hand, solutions
that use stronger consistency models, such as linearizabil-
ity, provide very intuitive semantics to the programmers but
suffer from scalability problems.

In this context, chain-replication [25], is a very interest-
ing mechanism that is able to provide linearizability, while
enabling a high degree of parallelization in the processing
of write operations issued by different clients. The inher-
ent simplicity and parallelism of this approach has moti-
vated us to further study mechanisms that can enable chain-
replication to offer high performance and strong consistency
guarantees in Geo-replicated scenarios.

As a result of this, we propose a novel datastore design,
named ChainReaction. Our solution relies on a novel vari-
ant of chain-replication that offers the causal+ consistency
criteria (recently formalized in [17, 18]) and is able to lever-
age the existence of multiple replicas to distribute the load of
read requests. As a result, ChainReaction avoids the bottle-
necks of linearizability while providing competitive perfor-
mance when compared with systems merely offering even-
tual consistency. Additionally, our variant of chain replica-
tion enables us to more efficiently deal with metadata in-
formation that encodes causal dependencies between opera-
tions, when compared with a state of the art solution that also
offers causal+ consistency. For this purpose, we implement
a stabilization procedure that allows to preserve causal guar-
antees while keeping the metadata overhead low (both at the
client and at the datastore levels). Furthermore, ChainReac-
tion can be deployed either on a single datacenter or on Geo-
replicated scenarios, over multiple datacenters. Finally, and
similarly to [17], our solution also provides a transactional
construct that allows a client to read the value of multiple
objects in a causal+ consistent way.

We have experimentally evaluated the benefits of our ap-
proach by running the Yahoo! Cloud Serving Benchmark
to a prototype deployment that includes ChainReaction,
Apache Cassandra [14], FAWN-KV [2], and a system that
emulates COPS [17].

85

The rest of the paper is organized as follows. Section 2
addresses related work. Section 3 discusses the operation
of ChainReaction in a single datacenter, Section 4 presents
our extensions to support Geo-replication, and Section 5
describes the support for GET-TRANSACTIONS. Section 6
provides a brief discussion on the current implementation.
Section 7 presents the results of the experimental evaluation.
Section 8 concludes the paper.

2. Related Work
A datastore for Geo-replicated systems must address the oc-
currence of faults, client locality (latency), and avoid block-
ing in face of network partitions. Therefore, there is an inher-
ent necessity for some form of replication, including repli-
cation over the wide-area. Ideally, such a datastore would
provide linearizability [11], as this is probably the most in-
tuitive model for programmers. Unfortunately, as the CAP
theorem shows, a strongly consistent system may block (and
therefore become unavailable) if a network partition occurs,
something that is not unlikely in a Geo-replicated scenario.
Furthermore, even if no partitions occur, strong consistency
is generally expensive to support in a replicated system,
because of the need to totally order all write operations.
Therefore, datastores for these environments usually sacri-
fice strong consistency in order to provide both availability,
and efficiency.

Relevant examples include Yahoo’s PNUTS [6] which
is a Geo-replicated key-value store that offers storage for
large-scale applications. This system tries to provide guar-
antees that lie between strong and eventual consistency by
implementing the per-record timeline consistency model [6].
PNUTS provides an API containing a new set of operations
that allows to achieve different degrees of consistency. This
however somewhat limits the ability of existing applications
to operate over PNUTS. Recent work [22], introduced a new
Geo-distributed key-value datastore, named Walter, that sup-
ports transactions. This datastore implements a new transac-
tional consistency model called parallel snapshot isolation.
In order to enforce this consistency model, Walter resorts
to the use of counting sets and also of per-object preferred
sites that must handle all write operations over that objects.
In sharp contrast, ChainReaction allows write operations to
be directed to any site, which is essential to provide service
to users in the face of the unavailability of some datacenters
(for instance because of network partitions, or a catastrophic
event).

Chain replication [25] is a data replication technique that
provides linearizability, high throughput, and availability.
This approach organizes replicas in a chain topology. Write
operations are directed to the head of the chain and are
propagated until they reach the tail. At this point the tail
sends a reply to the client and the write finishes. Contrary
to write operations, read operations are always routed to the
tail. Since all the values stored in the tail are guaranteed

to have been propagated to all replicas, reads are always
consistent. Chain replication exhibits a higher latency than
multicast-based replication solutions but, on the other hand,
it is extremely resource efficient and, therefore, it has been
adopted in several practical systems. FAWN-KV [2] and Hy-
perdex [9] are two datastores that offer strong consistency
using chain-replication as the main replication technique.
CRAQ [23] is also based on chain replication but, for per-
formance, supports eventual consistency by not constraining
reads to be executed on the tail.

Apache Cassandra [14] uses a quorum technique to main-
tain replicas consistent. These quorums can be configured
to provide different forms of consistency. Quorums are also
used by Amazon’s Dynamo [10], that provides eventual con-
sistency over the wide-area and resorts to conflict resolu-
tion mechanisms based on vector clocks. Also the work de-
scribed in [12] provides a simple adaptation of the chain
replication protocol to a Geo-replicated scenario including
multiple datacenters. This solution avoids intra-chain links
over the wide area network. Google Megastore [3] is also
deployable in a multi datacenter scenario providing serializ-
able transactions over the wide area network, and relies on
(blocking) consensus to ensure consistency.

COPS [17] is a datastore designed to provide high scala-
bility over the wide-area. For this purpose, COPS has pro-
posed a weak consistency model that, contrary to eventual
consistency, can provide precise guarantees to the applica-
tion developer. This consistency model, named causal+, en-
sures that operations are executed in an order that respects
causal order [15] and that concurrent operations are even-
tually ordered in a consistent way across datacenters1. To
provide such guarantees, COPS requires clients to main-
tain metadata that encodes dependencies among operations.
These dependencies are included in the write requests issued
by a client. COPS also introduces a new type of operations
named get-transactions that allow a client to read several
mutually consistent objects in single operation [17].

3. Single Site ChainReaction
We now describe the operation of ChainReaction in a sin-
gle site. The description of the extensions required to sup-
port Geo-replication is postponed to Section 4. We start by
briefly discussing the consistency model offered by Chain-
Reaction, followed by a general overview and, subsequently,
a description of each component of the architecture.

3.1 Consistency Model
We have opted to offer the causal+ consistency model [4, 17,
20]. We have selected causal+ because it provides a good
trade-off between consistency and performance. Contrary to
linearizability, causal+ allows for a reasonable amount of
parallelism in the processing of concurrent requests while

1 In fact, a similar consistency model has been used before, for instance in
[4, 18, 20] , but was only coined as causal+ in [17].

86

7

50

15

61

90

77

47

23

Client

App

Client

Library

Head Tail

DC 1

Client Proxy

Data Server

DC N

Client Proxy

Data Server

…

Figure 1. Overview of the ChainReaction architecture.

still respecting the causal dependencies associated with these
request. Although replicas can temporarily diverge due to
concurrent updates at different sites, they are guaranteed to
eventually converge (a guarantee that is not provided by
causal consistency). On the other hand, and in opposition
to eventual consistency, it provides precise guarantees about
the state observed by applications. Similarly to COPS [17],
our system also supports GET-TRANSACTIONS, that allows
an application to obtain a causal+ consistent snapshot of a
set of objects.

3.2 Architecture Overview
The architecture of ChainReaction is loosely based on the
architecture of the FAWN-KV system [2] which relies on
(classical) chain replication. We consider that each datacen-
ter is composed of multiple data servers (back-ends) and
multiple client proxies (front-ends). Data servers are respon-
sible for serving read and write requests for one or more data
items. Client proxies receive the requests from end-users (for
instance a browser) or client applications and redirect the re-
quests to the appropriate data server. An overview of Chain-
Reaction’s architecture is presented in Figure 1.

Data servers self-organize in a DHT ring such that con-
sistent hashing can be used to assign data items to data
servers. Each data item is replicated across R consecutive
data servers in the DHT ring. Data servers execute the chain-
replication protocol to keep the copies of the data consistent:
the first node in the ring serving the data item acts as head
of the chain and the last node acts as tail of the chain. Note
that, since consistent hashing is used, a data server may serve
multiple data items, thus being a member of multiple chains
(i.e., head node for one chain, tail for another, and a middle
node for R− 2 chains).

We further assume that, in each datacenter, the number
of servers, although large, can be maintained in a one-hop
DHT [16]. Therefore, each node in the system, including
the client proxies, can always locally map keys to servers
without resorting to DHT routing or to an external directory.

Considering the architecture above, we now describe the
lifecycle of a typical request in the FAWN-KV system which
employs a classical chain-replication solution. ChainReac-
tion uses a variant of this workflow that will be explained
in the next subsections. The client request is received by a
client proxy. The proxy uses consistent hashing to select the

first server to process the request: if it is a write request it
is forwarded to the head data server of the corresponding
chain; if it is a read request, it is forwarded directly to the
tail data server. In the write case, the request is processed
by the head and then propagated “down” in the chain un-
til it reaches the tail. For both read and write operations the
tail sends the reply to the proxy which, in turn, forwards an
answer back to the source of the request.

3.3 A Chain Replication Variant
The operation of the original chain replication protocol,
briefly sketched above, is able to offer linearizable execu-
tions. In fact, read and write operations are serialized at a
single node, the tail of the chain. The drawback of this ap-
proach is that the existing replicas are not leveraged to pro-
mote load balancing among concurrent read operations. In
ChainReaction we decided to provide causal+ consistency
as this allows us to more efficiently use resources required
to provide fault-tolerance.

Our approach departs from the following observation: if
a node x in the chain is causally consistent with respect to
some client operations, then all nodes that are predecessors
of x in the chain are also causally consistent. This prop-
erty trivially derives from the update invariant of the origi-
nal chain replication protocol [25]. Therefore, assume that a
node observes a value returned by node x for a given object
O, as a result of a read or a write operation op. Future read
operations over O that causally depend on op are constrained
to read from any replica between the head of the chain and
node x, in order to obtain a consistent state (according to the
causal+ criteria). However, as soon as the operation op is
propagated to the tail of the chain, new read operations are
no longer constrained, and a consistent state can be obtained
by reading any server in the chain.

ChainReaction uses this insight to distribute the load of
concurrent read requests among all replicas. Furthermore,
it permits to extend the chain (in order to have additional
replicas for load balancing) without increasing the latency
of write operations, by allowing writes to return as soon as
they are processed by the first k replicas (where k defines the
fault-tolerance of the chain; k is usually lower than the total
number of replicas). The propagation of writes from node
k until the tail of the chain can be performed lazily, which
minimizes the interference, due to the larger replication set
for a given object, over the propagation of write request in
other chains.

We note that our use of the parameter k may, at first
sight, appear equivalent to the use of a write quorum (as in
quorum based systems). However, in contrast with a quorum
system, the k nodes that are required to process the data
are not arbitrary but instead defined by the chain topology.
Additionally, replicas that are allowed to process a particular
read are chosen considering their position in the chain.

To ensure the correctness of read operations according
to the causal+ consistency model across multiple objects,

87

clients are required to know the chain position of the node
that processed their last read requests for each object they
have read.2 To store this information we use a similar strat-
egy as the one used in COPS. We maintain metadata entries
stored by a client library. However, contrary to COPS, we
do not require each individual datacenter to offer lineariz-
ability as this is an impairment to scalability ([17] relies on
a classical chain-replication solution to provide this). Addi-
tionally, we ensure that the results of write operations only
become visible when all their causal dependencies have been
fully propagated over their respective chains in the local dat-
acenter. This allows the versions divergence to be only one
level deep, which avoids violation of the causal order when
accessing multiple objects.

3.4 Client Interface and Library
The basic API offered by ChainReaction is similar to that
of most existing distributed key-value storage systems. The
operations available for clients are the following. PUT (key,
val) that allows to assign (write) the value val to an object
identified by key. val ← GET (key), that returns (reads)
the value of the object identified by the key, reflecting the
outcome of previous PUT operations.

These operations are provided by a client library that is
responsible for managing client metadata, which is then au-
tomatically added to requests and extracted from replies.
When considering a system deployed over a single datacen-
ter, the metadata stored by the client library is in the form
of a table, which includes one entry for each object that was
accessed by that particular client. Each entry comprises a
tuple on the form (key, version, chainIndex). The chainIn-
dex consists of an identifier that captures the chain position
of the node that processed and replied to the last request of
the client for the object to which the metadata refers. When
a client makes a read operation on a data item identified by
key, it must present the metadata above. Furthermore, Chain-
Reaction may update the metadata as a result of executing
such an operation.

3.5 Processing of Put Operations
We now provide a detailed description on how PUT opera-
tions are executed in ChainReaction. To simplify the exposi-
tion we rely on the following definition:

DC-Write-Stable(d) A write operation is said to be DC-
Write-Stable(d) for a datacenter d, when the write has been
propagated and applied to all nodes in the chain located in
datacenter d that is responsible for the object targeted by the
write operation. We note that when a write operation for the
version of an object o become DC-Write-Stable(d), no client
is able to read a previous version of object o in datacenter d.

When a client issues a PUT operation using the Client
API, the client library makes a request to a client proxy in-

2 Notice that if a client crashes and recovers it can be seen as a new client
without any causal history.

cluding the key and the value val. The client library tags this
request with the metadata relative to the last PUT performed
by that client as well as the metadata that relates to the GET
operations performed over any objects since that PUT. Meta-
data is only maintained for objects whose version write oper-
ation is not yet known to be DC-Write-Stable(d); DC-Write-
Stable(d) versions do not put constraints on the execution of
PUT or GET operations on datacenter d (we discuss GET op-
eration further ahead). This allows to control the amount of
metadata that is required to be stored at each client.

Because we aim at boosting the performance of read op-
erations while ensuring causal+ consistency guarantees, we
have opted to delay (slightly) the execution of PUT opera-
tions on chains, as to ensure that the version of any object
from which the current PUT causally depends has become
DC-Write-Stable(d) (i.e., the version has been applied to the
respective tail on datacenter d). This ensures that no client
is able to read mutually inconsistent versions of two distinct
objects. To ensure this, when a client proxy receives a PUT
request, it has to ensure that all write operations associated
with the dependencies of that PUT have become DC-Write-
Stable(d). This is achieved using a dependency stabilization
procedure, that consists of issuing a blocking read operation
for each object versions that is in the causal history of the
client issuing that operation. Each of these read operations
is directed to the tail of the appropriate chain and carries
the version of that particular object from which the PUT de-
pends, and only returns to the client proxy when that version,
or a newer one, has reached that node.

As soon as all write operations associated with the depen-
dencies have become DC-Write-Stable(d), the proxy uses
consistent hashing to discover which data server is the head
node of the chain associated with the target key, and forwards
the PUT request to that node. The head then processes the
PUT operation, assigning a new version to the object, and
forwarding the request down the chain, as in the original
chain replication protocol, until the k element of the chain
is reached (we call this the eager propagation phase). At
this point, a result, which includes the most recent version
of the object and a chainIndex representing the kth node is
returned to the proxy. The proxy, in turn, forwards the reply
to the client library. Finally, the library extracts the metadata
and updates the corresponding entry in the table (updating
the values of the object version and chainIndex).

In parallel with the processing of the reply, the update
continues to be propagated in a lazy fashion until it reaches
the tail of the chain. As we have noted, a data server may be
required to process and forward write requests for different
chains. Updates being propagated in lazy mode have lower
priority than operations that are being propagated in eager
mode. This ensures that the latency of write operations of a
given data item is not negatively affected by the additional
replication degree of another item. When the PUT becomes
DC-Write-Stable(d), an acknowledgment message is sent

88

upwards in the chain (up to the head) to notify the remaining
nodes. This message includes the key and version of the
object so that a node can set that version of the object to
a stable state.

3.6 Processing of Get Operations
Upon receiving the GET request, the proxy consults the
metadata entry for the requested key and forwards the re-
quest along with the version and the chainIndex to a data
server. The client proxy uses the chainIndex included in the
metadata to decide to which data server the GET operation
is forwarded to. If chainIndex is equal to R, the size of the
chain, the request can be sent to any node in the chain at
random. Otherwise, the proxy selects a target data server
t at random with an index from 0 (the head of the chain)
to chainIndex. This strategy allows to distribute the load
of read requests among the multiple servers whose state is
causally consistent. The selected server t processes the re-
quest and returns to the proxy the value of the data item,
and the version read. Then the client proxy returns the value
and the metadata to the client library which, in turn, uses
this information to update its local metadata. Assume that a
GET operation obtains version newversion from node with
index tindex. The metadata is updated as follows: i) If the
newversion is already stable, chainIndex is set to R; ii) If
newversion is the same as pversion, chainIndex is set to
max(chainIndex,tindex); iii) If newversion is greater than
pversion, chainIndex is set to tindex.

3.7 Fault-Tolerance
The mechanisms employed by ChainReaction to recover
from the failure of a node are the same as in the original
chain replication. However, unlike the original chain replica-
tion, we can continue to serve clients even if the tail fails. If
a node fails, two particular actions are taken: i) Chain recov-
ery by adding to the tail of the chain a node that already is in
the system (i.e., recover the original chain size); ii) Minimal
chain repair for resuming normal operations (with a reduced
number of nodes). Moreover, a node can later join the system
(and the DHT) for load balance and distribution purposes.

In our system a chain with R nodes can sustain R −
k node failures, as it cannot process any PUT operation
with fewer than k nodes. When a node fails a chain must
be extended, therefore a node is added to the tail of the
chain. To add this node, we must guarantee that the current
tail (T) propagates its current state to the new tail (T+).
During the state transfer T+ is in a quarantine mode and
all new updates propagated by T are saved locally for future
execution. When the state transfer ends, node T+ is finally
added to the chain and applies pending updates sent by T .
We note that nodes located before T in the chain can still
process and propagate PUT operations while the chain is
being repaired. Moreover, we can have the following 3 types
of failures and corresponding repairs:

Head Failure: When the head node fails (H), its succes-
sor (H+) takes over as the new head, as H+ contains most
of the previous state of H . All updates that were in H but
were not propagated to H+ are retransmitted by the client
proxy when the failure is detected.

Tail Failure: The failure of a tail node (T), its easily
recovered by replacing the tail with T predecessor, say T−.
Because of the properties of the chain, T− is guaranteed to
have newer or equal state to the failing tail T .

Failure of a middle node: When a middle node (X) fails
between nodes A and B, the chain is repaired by connecting
A to B without any state transfer, however node A may have
to retransmit some pending PUT operations that were sent to
X but did not arrive to B. The failure of node with index k
(or of its predecessor) is treated in the same way.

In all cases, failures are almost transparent to the client,
that only notices a small delay in receiving the response
mostly because of the time required for detecting the failure
of a node. It is worth noticing that the above procedures are
also applied if a node leaves the chain in an orderly fashion
(for instance, because of maintenance).

Finally, the reconfiguration of a chain, after a node
leaves/crashes or when a node joins, may invalidate part of
the metadata stored by the client library, namely the seman-
tics of the chainIndex. However, since the last version read is
also stored in the metadata, this scenario can be detected. If
the node serving a GET request does not have a version equal
or newer than the last seen by the client, the request will be
routed upwards in the chain until it finds a node that contains
the required version (usually its immediate predecessor).

4. Supporting Geo-Replication
We now describe how ChainReaction addresses a scenario
where data is replicated across multiple datacenters. We sup-
port Geo-replication by introducing a minimal set of changes
with regard to the operation on a single site. However, meta-
data needs to be enriched to account for the fact that multiple
replicas are maintained at different datacenters and that write
operations may now be executed across multiple datacenters
concurrently. We start by describing the modifications to the
metadata and then we describe the changes to the operation
of the algorithms.

First, the version of a data item is no longer identified
by a single version number but by a version vector (sim-
ilarly to what happens in classical systems such as Lazy
Replication [13]). Also, instead of keeping a single chain-
Index, a chainIndexVector is maintained, that keeps an es-
timate of how far the current version has been propagated
across chains in each datacenter. We also consider a new def-
inition that captures the notion of DC-Write-Stable(d) across
all datacenters:

Global-Write-Stable A write operation is said to be
Global-Write-Stable when the write is DC-Write-Stable(d)
for all datacenters d. We note that when a write operation for

89

the version of an object o become Global-Write-Stable, no
client is able to read a previous version of object o.

We can now describe how the protocols for PUT and GET
operations need to be modified to address Geo-replication.
For simplicity of exposition, we assume that datacenters are
numbered from 0 to D − 1, where D is the number of
datacenters, and that each datacenter number is the position
of its entry in the version vector and chainIndexVector.

4.1 Processing of Put Operations
The initial steps of the PUT operation are similar to the steps
of the single datacenter case. Assume that the operation takes
place in datacenter i. The operation is received by a client
proxy, the dependency stabilization procedure executed, and
then the request is forwarded to the head of the correspond-
ing chain. The operation is processed and the object is as-
signed a new version by incrementing the ith entry of the
version vector. The update is pushed down in the chain un-
til it reaches node k. At this point a reply is returned to the
proxy, that initializes the corresponding chainIndexVector as
follows: all entries of the vector are set to 0 (i.e., which
comes from a conservative assumption that only the heads of
the sibling chains in remote datacenters will become aware
of the update) except for the ith entry that is set to k. This
metadata is then returned to the client library. In parallel, the
update continues to be propagated lazily down in the chain.
When the update finally reaches the tail, an acknowledgment
is sent upward (to notify elements of the chain that the oper-
ation has become DC-Write-Stable(d)) and to the tails of the
sibling chains in remote datacenters (since all siblings tails
execute this procedure, the update is eventually detected as
being Global-Write-Stable in all datacenters).

Also, as soon as the update is processed by the head of
the chain, the update is scheduled to be transferred in back-
ground to the remote datacenters by forwarding the request
to a local remote-proxy3. A remote-proxy combines several
updates in a single remote-update that is then propagated to
the remote-proxies located in other datacenters. To ensure
that operations performed by clients in remote datacenters
respect the causality between operations, one has to ensure
that PUT operations are only applied - and therefore become
visible - in remote datacenters when all versions of objects
in their causal history have become DC-Write-Stable(d) in
that particular datacenter d.

To achieve this we have to ensure that: i) causal depen-
dencies of operations originally executed in other datacen-
ters have become stable and ii) causal dependencies among
operations in a given remote-update are respected. We now
discuss how we ensure both these properties.

3 For fault-tolerance, the remote-proxy should be replicated. We however
do not address this issue explicitly as there are well known techniques that
can be easily employed for this [21].

4.1.1 Dependencies among operations issued to
different datacenters

To enforce dependencies among write operations that orig-
inate from different datacenters, we restrict the order in
which remote-updates can be applied in each datacenter.
Each remote-proxy maintains a version vector, named re-
mote proxy vector, or simply rvp, that encodes the number of
remote-updates that the remote-proxy has issued to other dat-
acenters and the number of remote-updates originated from
remote datacenters that itself has applied.

Considering this, when the remote-proxy in datacenter i
issues a remote-update, it tags the remote-update with its
local rvp, after which it increases the ith position of the
local rvp. When the remote-proxy of datacenter j receives
this update, it compares its local rvp with the rvpi enclosed
in the update to verify that all positions with the exception
of the jth have the same (or higher) value. If this is true,
the remote-update can be processed, otherwise the remote-
proxy has to wait for the missing remote-updates. When
a remote-proxy starts processing of a remote-update issued
by datacenter i it sets the ith position of its local rvp to
the value of the ith position of the rvpi enclosed in the
update. It is relevant to observe that this scheme allows for
concurrent remote-updates to be processed in parallel on
each datacenter.

We note that if two datacenters, say a and b, become un-
able to communicate with each other, while still being able
to communicate with the remaining datacenters, a and b may
become unable to apply remote-updates. To circumvent this
problem, we enable remote-proxies to cache remote-updates
from other datacenters so that they can retransmit them to
remote-proxies that have missed them and that explicitly re-
quest them. Note however, that the rvps enclosed in each
remote-update encode enough information to enable each
remote-proxy to locally garbage collect updates that have al-
ready been applied in every datacenter.

4.1.2 Dependencies among operations in a single
remote-update

When a remote-update is processed by a remote-proxy, we
must ensure that causal dependencies among individual put
operations enclosed in that update are respected. A straight-
forward way to achieve this could be to apply individual PUT
operation contained in a remote-update sequentially. This
however would be highly inefficient, as no parallelization
could be achieved. In order to attain a significant level of
parallelism on the application of remote-updates, while at
the same time enforcing causal dependencies, we resort to an
efficient encoding technique that relies on Adaptable Bloom
Filters [8]. We now discuss how this solution operates.

Whenever a client issues a get or put operation, ChainRe-
action returns to that client, as part of the metadata, a bloom
filter that encodes the identifier (which is composed of the
unique identifier and the version) of the accessed object. This

90

bloom filter is stored by the Client Library in a list named
AccessedObjects. When the client issues a put operation, it
tags its request with a bloom filter, named dependency filter,
which is locally computed by the client library by perform-
ing a binary OR over all bloom filters stored in its Accesse-
dObjects set. Upon receiving the reply, the ClientLibrary re-
moves all bloom filters from the local AccessedObjects set,
and stores the bloom filter encoded in the returned metadata.

The dependency filter tagged by the Client Library on
the put request, and the bloom filter that is returned to the
issuer of the PUT (we will refer to this bloom filter as reply
filter in the following text), are used by the datacenter that
receives the PUT operation as follows: When a PUT request is
scheduled to be disseminated across datacenters it is tagged
with both the dependency filter and the reply filter that are
associated with the local corresponding PUT request. On
the remote datacenter, when the remote-proxy processes a
remote-update it puts all contained PUT in a waiting queue
for being applied in the near future.

The two bloom filters associated with PUT requests en-
code causal dependencies among them. If a wide-area-put
request op1 has a dependency filter that contains all bits of
a reply filter associated with another wide-area-put request
op2, we say that op2 is potentially causally dependent on
op1. We say potentially because bloom filters can provide
false positives, as the relevant bits of the dependency filter
of op1 can be set to one due to the inclusion of other iden-
tifiers in the bloom filter. The use of adaptable bloom filters
allows us to trade the expected false positive rate with the
size of the bloom filters. In our experiments, we have con-
figured the false positive rate of bloom filters to 10%, which
resulted in bloom filters with 163 bits.

When a particular PUT is cleared for execution it is sent
to the head of the corresponding chain. If the update is more
recent than the update locally known, it is propagated down
the chain. Otherwise, it is discarded as it is already super-
seded by a more recent update. This update is removed from
the execution list by the remote-proxy when it is either dis-
carded or it becomes DC-Write-Stable(d) in that datacenter.

It is worth noting that each datacenter may configure a
different value of k for the local chain, as the configuration
of this parameter may depend on the characteristics of the
hardware and software being used in each datacenter.

4.2 Processing of Get Operation
The processing of a GET operation in a Geo-replicated sce-
nario is mostly identical to the processing in a single data-
center scenario. The only difference is that, when datacenter
i receives a query, the set of potential targets to serve the
query is defined using the ith position of the chainIndexVec-
tor. Finally, it may happen that the head of the local chain
does not have the required version (because updates are
propagated among different datacenters asynchronously). In
this case, the GET operation can either be redirected to an-
other datacenter or blocked until a fresh enough update be-

comes locally available. Note that the execution of a GET of-
fers the possibility for updating the chainIndex in the client
library by taking into consideration the information that is
locally available to the node that replied to the client con-
cerning the Global-Write-Stable of the write operation asso-
ciated with the version of the object being returned.

4.3 Conflict Resolution
Since the metadata carries dependency information, opera-
tions that are causally related with each other are always
processed in the right order. In particular, a read that depends
(even if transitively) from a given write, will be blocked un-
til it can observe that, or a subsequent write, even if it is
submitted to a different datacenter.

On the other hand, concurrent updates can be processed
in parallel in different datacenters. However, similarly to
many other systems that ensure convergence of conflicting
object versions, ChainReaction’s conflict resolution method
is based on the last writer wins rule [24]. For this purpose,
each update is timestamped when received by a proxy with
a pair (c, s) where c is the clock of the proxy, and s its data-
center which allows to establish a total order among updates.
Note that physical clocks do not need to be tightly synchro-
nized although, for fairness, it is desirable that clocks be
loosely synchronized (for instance, using NTP). If two up-
dates have identical values for c, the value of s is used as a
last tiebreaker. This approach offers a concurrency control
that is more fair than simply relying on datacenters identi-
fiers.

4.4 Fault-Tolerance over the Wide-Area
In ChainReaction, we have opted to return from a PUT oper-
ation as soon as it has been propagated to k nodes in a single
datacenter. Propagation of the values to other datacenters is
processed asynchronously. Therefore, in the rare case a dat-
acenter becomes unavailable before the updates are propa-
gated, causally dependent requests may be blocked until the
datacenter recovers. If the datacenter is unable to recover,
those updates may then been lost.

There is nothing fundamental in our approach that pre-
vents the enforcement of stronger guarantees. For instance,
the reply could be postponed until an acknowledgment is re-
ceived from d datacenters, instead of waiting just for the ac-
knowledgment of the local kth replica (the algorithm would
need to be slightly modified, to trigger the propagation of
an acknowledgment when the update reaches the kth node
in the chain, both for local and remote updates). This would
ensure survivability of the update in case of disaster. Note
that the client can always re-submit the request to another
datacenter if no reply is received after some pre-configured
period of time. Although such extensions would be trivial to
implement, they would impose an excessive latency on PUT
operation, so we have not implement them. In a production
environment, it could make sense to have this as an optional
feature, for critical PUT operations.

91

5. Providing Get-transactions
The work presented in [17] has introduced a transactional
construct, named GET-TRANSACTION, which enables a
client to read multiple objects in a single operation in a
causal+ consistent manner. This construct can significantly
simplify the work of developers, as it offers a stronger form
of consistency on read operations over multiple objects. To
use this transactional operation a client must issue a call to
the Client Library through the following interface:
{val1, ..., valN} ← GET-TRANSACTION (key1, ..., keyN)
Consider a scenario where client c1 makes multiple up-

dates to two objects X and Y in the following causal order
x1 → y1 → x2 → y2. Assume that another client c2 con-
currently reads the same objects X and Y and observes the
following values x1 → y2. Although these reads do not vi-
olate causality, they may violate the purposes of client c1.
For interesting examples of the potential negative effects of
reads from different snapshots, we refer the reader to [17].

To support GET-TRANSACTION operations we must en-
sure that they are atomically ordered with respect to con-
current write operations. On the other hand, for efficiency,
GET-TRANSACTION operations should not block write oper-
ations. We conciliate these goals as follows:

First, our implementation uses a sequencer process, sim-
ilar to the one used in [19], that is local to each datacen-
ter. This sequencer is used to order: i) all PUT operations
and ii) reads that are part of a GET-TRANSACTION. The se-
quencer process maintains a different sequence number for
each chain, and PUT operations are processed taking these
numbers into account. Namely, to avoid delays, the most re-
cent PUT operation is always processed by the head of the
chain and late PUT operations are just used to create the old
versions required to support GET-TRANSACTION.

Second, to avoid blocking of PUT operations during the
execution of a GET-TRANSACTION, we resort to multiver-
sion. This allows a proxy to read versions consistent to
causal+, even if new versions are created concurrently. This
is implemented by returning the version created by the PUT
that preceded the GET-TRANSACTION, considering the se-
quence numbers of operations. An interesting feature of this
scheme is that, in opposition to [17], we can avoid 2 rounds
to process most GET-TRANSACTION.

With this in mind, a GET-TRANSACTION is processed as
follows. The client proxy receives the GET-TRANSACTION
and requests a sequence number for each chain where rele-
vant keys are stored. These sequence numbers are assigned
atomically by the sequencer. Then, the individual reads are
sent to the head of the corresponding chains, which then re-
turn the value of the previous PUT. The proxy waits for all
values, along with the corresponding metadata, assembles a
reply, and sends it back to the client library. The metadata
is processed by the client library in a manner similar to that
described before for individual GET operations.

Due to the asynchrony of the system, it may happen
that the PUT operation that was sequenced before the GET-
TRANSACTION is not yet available at a particular chain head
when the associated read request is processed. In this case,
the processing of the operation is delayed, until the version
becomes locally available or a timeout occurs. In the latter
case, the chain head replies to the proxy that issued the
request, aborting the GET-TRANSACTION. The proxy should
then gather new sequence numbers from the sequencer and
re-issue the GET-TRANSACTION to all head of the chains
involved in the processing of that particular operation.

GET-TRANSACTIONS in a Geo-replicated scenario have
the following additional complexity. Assume that a GET-
TRANSACTION is being processed by datacenter i but it in-
cludes dependencies from values written or read in a differ-
ent datacenter. Such updates may have not yet been propa-
gated to datacenter i when the GET-TRANSACTION is pro-
cessed. In this case, the read is aborted and retried in a
(slower) two-phase procedure. First, the proxy verifies all
dependencies that have failed from the corresponding heads,
by using the blocking read operation employed in the sta-
bilization procedure discussed previously (however in this
case, these operations are directed to the head of the corre-
sponding chains). Then, the GET-TRANSACTION is reissued
as described above (in this case it is guaranteed to succeed).

6. Implementation Issues
We have implemented ChainReaction on top of a version
of FAWN-KV, that we have optimized. These optimizations
were mostly related to the client proxies (frontends), key dis-
tribution over the chains, and read/write processing improv-
ing the overall performance of the FAWN-KV system. We
also extended FAWN-KV to support multi-versioned objects
in order to support GET-TRANSACTIONS.

7. Experimental Evaluation
In this section we present experimental results, including
comparative performance measures with three other sys-
tems: FAWN-KV, Cassandra, and COPS. We conducted ex-
periments in four distinct scenarios, as follows: i) we have
first assessed the throughput and latency of operations on
ChainReaction in a single datacenter, and compare its results
with those of FAWN-KV and Cassandra; ii) then we have
assessed the performance of the system in a Geo-replicated
scenario (using 2 virtual datacenters), again comparing the
performance with FAWN-KV and Cassandra; iii) we mea-
sured the performance of ChainReaction using a custom
workload able to exercise GET-TRANSACTIONS; iv) finally,
we measured the size of the metadata required by our so-
lution and the overhead that it incurs. Throughput results
were obtained from five independent runs of each test. La-
tency results reflect the values provided by YCSB in a single
random run. Finally, the results from the metadata overhead
were obtained from ten different clients. Confidence inter-

92

0

10

20

30

40

50

60

70

80

Workload A Workload B Workload C Workload D Workload F

Th
ro

u
gh

p
u

t
(t

h
o

u
sa

n
d

 o
p

s/
s)

Cassandra-E
Cassandra-L
FAWN-KV 3
FAWN-KV 6
ChainReaction

0

10

20

30

40

50

60

70

80

50/50 25/75 15/85 10/90 5/95 0/100

Th
ro

u
gh

p
u

t
(t

h
o

u
sa

n
d

 o
p

s/
s)

Cassandra-E
Cassandra-L
FAWN-KV 3
FAWN-KV 6
ChainReaction

(a) Standard YCSB Workloads.

0

10

20

30

40

50

60

70

80

Workload A Workload B Workload C Workload D Workload F

Th
ro

u
gh

p
u

t
(t

h
o

u
sa

n
d

 o
p

s/
s)

Cassandra-E
Cassandra-L
FAWN-KV 3
FAWN-KV 6
ChainReaction

0

10

20

30

40

50

60

70

80

50/50 25/75 15/85 10/90 5/95 0/100

Th
ro

u
gh

p
u

t
(t

h
o

u
sa

n
d

 o
p

s/
s)

Cassandra-E
Cassandra-L
FAWN-KV 3
FAWN-KV 6
ChainReaction

(b) Custom Workloads (single object).

Figure 2. Throughput (single site).

vals are plotted in all figures. The interested reader can refer
to [1] where additional results are presented and discussed.

7.1 Single Datacenter Scenario
We first compare the performance of ChainReaction against
FAWN-KV [2] and Apache Cassandra 0.8.10 in a single dat-
acenter scenario. For sake of fairness, in the comparisons
we have used the version of FAWN-KV with the same opti-
mizations that we have implemented for ChainReaction. Our
experimental setup uses 9 data nodes plus one additional in-
dependent node to generate the workload. Each node runs
Ubuntu 10.04.3 LTS and has 2x4 core Intel Xeon E5506
CPUs, 16GB RAM, and 1TB Hard Drive. All nodes are con-
nected by a 1Gbit Ethernet network. In our tests we used 5
different system configurations, as described below:
Cassandra-E and Cassandra-L: Deployments of Apache
Cassandra configured to provide eventual consistency with
a replication factor of 6 nodes. In the first deployment write
operations are applied on 3 nodes while read operations are
processed at a single node. In the second deployment both
operations are processed by a majority of replicas (4 nodes).
FAWN-KV 3 and FAWN-KV 6: Deployments of the opti-
mized version of FAWN-KV configured with a replication
factor of 3 and 6 nodes, respectively, which provides lin-
earizability (chain replication).
ChainReaction: Single Site deployment of ChainReaction,
configured with R = 6 and k = 3. Provides causal+
consistency.

All configurations have been subject to the Yahoo! Cloud
Serving Benchmark (YCSB) version 0.1.3[7]. We choose
to run standard YCSB workloads with a total of 1,000,000

0

25

50

75

100

1 2 4 8 16 32 64

C
D

F
(%

)

Latency (ms)

Cassandra-E

Cassandra-L

FAWN-KV 3

FAWN-KV 6

ChainReaction

(a) Read Latency.

0

25

50

75

100

1 2 4 8 16 32 64

C
D

F
(%

)

Latency (ms)

Cassandra-E
Cassandra-L
FAWN-KV 3
FAWN-KV 6
ChainReaction

0

25

50

75

100

1 2 4 8 16 32 64

C
D

F
(%

)

Latency (ms)

Cassandra-E

Cassandra-L

FAWN-KV 3

FAWN-KV 6

(b) Write Latency.

Figure 3. Latency CDF for Workload A (single site).

objects. In all our experiments each object had a size of
1 Kbyte. We have also created a micro benchmark by using
custom workloads with a single object varying the write/read
ratio from 50/50 to 0/100. The latter allows assessing the
behavior of our solution when a single chain is active. All the
workloads were generated by a single node simulating 200
clients that, together, submit a total of 2,000,000 operations.

The throughput results are presented in Figure 2. La-
tency Cumulative Distribution Function (CDF) results4 for
workloads A and B are presented in Figures 3 and 4. Fig-
ure 2(a) shows that ChainReaction in a single datacenter
outperforms both FAWN-KV and Cassandra in all standard
YCSB workloads. In workloads A and F (which are write-
intensive) the performance of ChainReaction approaches
that of Cassandra-E and FAWN-KV 3. This is expected,
since ChainReaction is not optimized for write operations. In
fact, for write-intensive workloads, it is expected that our so-
lution under-performs when compared to FAWN-KV, given
that ChainReaction needs to write on 6 nodes instead of 3
and also has to make sure, at each write operation, that all
dependencies are stable before executing the next write op-
eration. Fortunately, this effect is compensated by the gains
in the read operations. This can be observed in the latency
results for workload A in Figures 3(a) and 3(b). These fig-
ures also show that Cassandra exhibits a better write latency.
Notice however, that Cassandra has much slower read oper-
ations than ChainReaction and FAWN-KV since it is opti-
mized for write-heavy environments. In workload C, which

4 Note that in all Latency CDF charts the CDF is in percentage and the
latency is in a logarithmic scale.

93

0

25

50

75

100

1 2 4 8 16 32 64

C
D

F
(%

)

Latency (ms)

Cassandra-E
Cassandra-L
FAWN-KV 3
FAWN-KV 6
ChainReaction

0

25

50

75

100

1 2 4 8 16 32 64

C
D

F
(%

)

Latency (ms)

Cassandra-E
Cassandra-L
FAWN-KV 3
FAWN-KV 6
ChainReaction

(a) Read (Workload B).

0

25

50

75

100

1 2 4 8 16 32 64

C
D

F
(%

)

Latency (ms)

Cassandra-E
Cassandra-L
FAWN-KV 3
FAWN-KV 6
ChainReaction

0

25

50

75

100

1 2 4 8 16 32 64

C
D

F
(%

)

Latency (ms)

Cassandra-E
Cassandra-L
FAWN-KV 3
FAWN-KV 6
ChainReaction

(b) Write (Workload B).

Figure 4. Latency CDF for Workload B (single site).

is read only, FAWN-KV 6 exhibits a throughput that is ap-
proximately 50% of the throughput exhibited by FAWN-KV
3. This happens because in our implementation multiple ob-
jects may be stored in the same file. In FAWN-KV 6 each
node has to manage twice the number of objects of each
node in FAWN-KV 3, which increases the time required to
scan files to read objects. Different implementations may not
exhibit such difference.

For workloads B and D, which are read-heavy, one ex-
pects ChainReaction to outperform all other solutions. In-
deed, the throughput of ChainReaction in workload B is
178% better than that of Cassandra-E and 45% better than
that of FAWN-KV 3. Performance results for workload D
(Figure 2(a)) are similar to those of workload B. Notice that
the latency of read operations for our solution is much better
when compared with the remaining solutions (Figures 4(a)
and 4(b)). Additionally, in workload C (read-only) ChainRe-
action exhibits a boost in performance of 177% in relation to
Cassandra-E and of 72% in relation to FAWN-KV 3.

The micro benchmark that relies on the custom single ob-
ject workloads has the purpose of showing that our solution
makes a better use of the available resources in a chain, when
compared with the remaining tested solutions. In the write-
heavy workload (50/50) one can observe that Cassandra-E
outperforms our solution by 70%. This can be explained by
the fact that Cassandra is highly optimized for write opera-
tions specially on a single object. However, when we rise the
number of read operations our solution starts to outperform
Cassandra by 13%, 20%, 34%, and 39% in workloads 25/75,
15/85, 10/90, and 5/95, respectively. In terms of latency one

can see that ChainReaction always exhibits a better read la-
tency than Cassandra-E having more operations to complete
at lower latencies. We can also observe that as the number
of reads increases the write latency of ChainReaction is also
better than Cassandra-E write latency.

Additionally, ChainReaction outperforms FAWN-KV 3
and FAWN-KV 6 in all single object custom workloads. The
performance increases as the percentage of read operations
grows. Moreover, the throughput of the latter systems is
always the same, which can be explained by the fact that
the performance is bounded by a bottleneck on the tail node.
If a linear speedup was achievable, our solution operating
with 6 replicas would exhibit a throughput 6 times higher
than FAWN-KV on a read-only workload (0/100 workload)
with a single object. Although the speedup is sub-linear.
As depicted in Figure 2(b), the throughput is still 4.3 times
higher than that of FAWN-KV 3. The sub-linear growth is
due to processing delays in proxies and network latency
variations. Latency results for single-object workloads are
consistent with that of the standard YCSB workloads.

7.2 Geo-Replication
To evaluate the performance of our solution in a Geo-replica-
ted scenario, we ran the same systems, by configuring nodes
in our test setup to be divided in two groups with high la-
tency between them to emulate 2 distant datacenters. In this
test setup, each datacenter was attributed 4 machines, and
we used two machines to run the Yahoo! benchmark (each
YCSB client issues requests to one datacenter). The addi-
tional latency between nodes associated to different datacen-
ters, was achieved by introducing a delay of 120 ms (in RTT)
with a jitter of 10 ms. We selected these values as we mea-
sured them with the PING command to www.facebook.com
(Oregon) from our laboratory in Lisbon, Portugal. Each sys-
tem considered the following configurations:
Cassandra-E and Cassandra-L: Eventual-consistency with
4 replicas at each datacenter. In the first deployment write
operations are applied on 2 nodes and read operations are
processed at a single node. In the second deployment oper-
ations are processed by a majority of replicas at each data-
center (3 nodes in each datacenter).
FAWN-KV 4 and FAWN-KV 8: Deployment of FAWN-KV
configured with a replication factor of 4 and 8, respectively.
In this case each chain is composed of nodes located in both
datacenters.
ChainReaction: Deployment of our solution with a replica-
tion factor of 4 for each datacenter and a k equal to 2.
CR-COPS: We introduced a new system deployment that
consists of ChainReaction configured to offer linearizabil-
ity on the local datacenter with a replication factor of 4
nodes. This deployment allows to compare the performance
with systems that offer stronger local guarantees and weaker
guarantees over the wide-area (in particular, COPS).

We employed the same workloads as in the previous
experiments. However, in this case we run two YCSB clients

94

0

10

20

30

40

50

60

70

80

Workload A Workload B Workload C Workload D Workload F

Th
ro

u
gh

p
u

t
(t

h
o

u
sa

n
d

 o
p

s/
s)

 Cassandra-E
Cassandra-L
FAWN-KV 4
FAWN-KV 8
ChainReaction
CR-COPS

0

10

20

30

40

50

60

70

80

50/50 25/75 15/85 10/90 5/95 0/100

Th
ro

u
gh

p
u

t
(t

h
o

u
sa

n
d

 o
p

s/
s)

 Cassandra-E Cassandra-L
FAWN-KV 4 FAWN-KV 8
ChainReaction CR-COPS

(a) Standard YCSB Workloads.

0

10

20

30

40

50

60

70

80

Workload A Workload B Workload C Workload D Workload F

Th
ro

u
gh

p
u

t
(t

h
o

u
sa

n
d

 o
p

s/
s)

 Cassandra-E
Cassandra-L
FAWN-KV 4
FAWN-KV 8
ChainReaction
CR-COPS

0

10

20

30

40

50

60

70

80

50/50 25/75 15/85 10/90 5/95 0/100

Th
ro

u
gh

p
u

t
(t

h
o

u
sa

n
d

 o
p

s/
s)

 Cassandra-E Cassandra-L
FAWN-KV 4 FAWN-KV 8
ChainReaction CR-COPS

(b) Custom Workloads (single object).

Figure 5. Throughput (multiple sites).

(one for each datacenter) with 100 threads each. We also
divided the workload among the two sites, meaning that each
workload generator performs 1,000,000 operations on top
of 1,000,000 objects. We aggregated the results of the two
clients and present them in the following plots.

The throughput results are presented in Figure 5. La-
tency Cumulative Distribution Function (CDF) results are
presented in Figures 6 and 7. Considering the standard
YCSB workloads, we can see that ChainReaction outper-
forms the remaining solutions in all workloads except the
write-heavy workloads (A and F) where Cassandra-E and
CR-COPS are better. These results indicate that ChainRe-
action, Cassandra-E, and CR-COPS are the most adequate
solutions for a Geo-replicated deployment. The difference in
performance between our solution and Cassandra-E is due to
the fact that Cassandra offers weaker guarantees that our sys-
tem and is also optimized for write operations resulting in an
increase in performance. When comparing with CR-COPS
our system needs to guarantee that a version is committed
before proceeding with a write operation while CR-COPS
does not, leading to some delay in write operations. In terms
of latency in write-heavy workloads our system is slightly
outperformed by Cassandra-E and CR-COPS.

On read-heavy workloads (B and D), our solution sur-
passes both Cassandra-E and CR-COPS achieving 56%/22%
better throughput in workload B and 38%/26% better perfor-
mance in workload D. The latency results depicted in Fig-
ure 7 shows that our solution provides better write and read
latency in the read heavy workload B than the other solu-

0

25

50

75

100

1 4 16 64 256

C
D

F
(%

)

Latency (ms)

Cassandra-E
Cassandra-L
FAWN-KV 4
FAWN-KV 8
ChainReaction
CR-COPS

0

25

50

75

100

1 4 16 64 256

C
D

F
(%

)

Latency (ms)

Cassandra-E
Cassandra-L
FAWN-KV 4
FAWN-KV 8
ChainReaction
CR-COPS

(a) Read latency.

0

25

50

75

100

1 4 16 64 256

C
D

F
(%

)

Latency (ms)

Cassandra-E
Cassandra-L
FAWN-KV 4
FAWN-KV 8
ChainReaction
CR-COPS

0

25

50

75

100

1 4 16 64 256

C
D

F
(%

)

Latency (ms)

Cassandra-E
Cassandra-L
FAWN-KV 4
FAWN-KV 8
ChainReaction
CR-COPS

(b) Write latency.

Figure 6. Latency CDF for Workload A (multiple sites).

tions. Finally, on workload C our solution exhibits an in-
crease in performance of 62% and 53% in comparison with
Cassandra-E and CR-COPS, respectively.

The low throughput of the Cassandra-L and FAWN-KV
deployments is due to the fact that write operations always
have to cross the wide-area network. Moreover, in FAWN-
KV, when the chain tail is on a remote datacenter, read oper-
ations on that objects must cross the wide-area. Additionally,
ChainReaction has a significantly higher throughput than
FAWN-KV 4 ranging from 1,028% (workload F) to 3,012%
(workload C), i.e., up to 3 orders of magnitude better.

The results for the micro benchmark (Figure 5(b)) in the
Geo-replicated scenario are interesting because they show
that the original Chain Replication protocol is not adapt-
able to a Geo-replicated scenario. The large error bars for
both FAWN-KV deployments are a result of the difference in
throughput in each datacenter. The client that has the tail of
the object in the local datacenter has a better read throughput
than the client on the remote datacenter, resulting in a great
difference in each datacenter performance. Our solution out-
performs FAWN-KV 4 in all workloads with a difference
that ranges from 188% (Workload 5/95) to 1,249% (Work-
load 50/50). In terms of latency its possible to observe that
50% of write operations in FAWN-KV 3 take more than 100
ms to complete corresponding to the latency introduced be-
tween datacenters. The results for Cassandra-L and FAWN-
KV 8 are similar. Finally, results show that Cassandra-E out-
performs our solution in all single object workloads with
exception of the read-only workload (where our solution is

95

0

25

50

75

100

1 4 16 64 256

C
D

F
(%

)

Latency (ms)

Cassandra-E
Cassandra-L
FAWN-KV 4
FAWN-KV 8
ChainReaction
CR-COPS

0

25

50

75

100

1 4 16 64 256

C
D

F
(%

)

Latency (ms)

Cassandra-E
Cassandra-L
FAWN-KV 4
FAWN-KV 8
ChainReaction
CR-COPS

(a) Read latency.

0

25

50

75

100

1 4 16 64 256

C
D

F
(%

)

Latency (ms)

Cassandra-E
Cassandra-L
FAWN-KV 4
FAWN-KV 8
ChainReaction
CR-COPS

0

25

50

75

100

1 4 16 64 256

C
D

F
(%

)

Latency (ms)

Cassandra-E
Cassandra-L
FAWN-KV 4
FAWN-KV 8
ChainReaction
CR-COPS

(b) Write latency.

Figure 7. Latency CDF for Workload B (multiple sites).

15% better). This happens because Cassandra behaves better
with a single object and is optimized for write operations.

7.3 Support for GetTransactions
In this experiment we evaluate the performance of GET-
TRANSACTION operations in the Geo-replicated scenario.
For this purpose we have executed ChainReaction (the other
solutions do not support this operation) deployed in the 8
machines like in the previous scenario (4 in each simulated
datacenter). We have attempted to perform similar tests with
COPS unfortunately, we were unable to successfully deploy
this system across multiple nodes. We have created three
custom workloads and changed the YCSB source in order
to issue GET-TRANSACTION operations. The created work-
loads comprise the following distribution of write, read and
GET-TRANSACTION operations: 10% writes, 85% reads, 5%
GET-TRANSACTIONS on workload 10/85/5, 5% writes, 90%
reads, 5% GET-TRANSACTIONS on workload 5/90/5, and
95% reads, 5% GET-TRANSACTIONS on workload 0/95/5.
A total of 500,000 operations were executed over 10,000
objects, where a GET-TRANSACTION includes 2 to 5 keys
(chosen randomly). This workload was executed by 2 YCSB
clients (one at each datacenter) with 100 threads each.

Results depicted on Figure 8 show that the throughput for
executed workloads is quite reasonable. We achieve an ag-
gregate throughput that approximates of 12,000 operations
per second in all workloads showing that the percentage of
write and read operations do not affect the performance of
GET-TRANSACTIONS and vice-versa.

0

2

4

6

8

10

12

14

16

18

20

10/85/5 5/90/5 0/95/5

Th
ro

u
gh

p
u

t
(t

h
o

u
sa

n
d

 o
p

s/
s)

ChainReaction

Figure 8. Throughput for GET-TRANSACTION.

0

25

50

75

100

1 4 16 64 256

C
D

F
(%

)

Latency (ms)

Write

Read

Get-Transaction

0

25

50

75

100

1 4 16 64 256

C
D

F
(%

)

Latency (ms)

Write

Read

Get-Transaction

0

25

50

75

100

1 4 16 64 256

C
D

F
(%

)

Latency (ms)

Read

Get-Transaction

(a) Workload 10/85/5.

Figure 9. Latency for GET-TRANSACTIONS.

In terms of operation latency we can see on Figure 9 that
the introduction of GET-TRANSACTIONS does not affects the
latency of write and read operations in Workload 10/85/5
(results for the other workloads are similar). On the other
hand, since we give priority to the other two operations, the
average latency for GET-TRANSACTIONS is in the order of
approximately 400 ms (which we consider acceptable from
a practical point of view).

7.4 Fault-Tolerance Experiments
To assess the behavior of our solution when failures occur
we deployed ChainReaction in a single datacenter with 9
data nodes and a single chain, with a replication factor of
6 and a k equal to 3. A single chain was used so that
the failures could be targeted to the different zones of the
chain. We used the custom-made workloads 50/50 and 5/95
to measure the average throughput of our solution during
a period of 140 seconds. During the workload we failed a
single node at 60 seconds. We tested two scenarios of failure:
a) a random node between the head and node k (including k);
b) a random node between k and the tail (excluding k). The
workloads were executed with 100 client threads that issue
3,000,000 operations over a single object.

The results for the average throughput during execution
time can be observed in Figure 10. In the first scenario, de-
picted by Figure 10(a), one can observe that the failure of a
node between the head of the chain and node k results in a
drop in throughput. This drop reaches approximately 2000
operations per second in both workloads and is due to the
fact that write operations are stalled until the failure is de-

96

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100 110 120 130 140

Th
ro

u
gh

p
u

t
(t

h
o

u
sa

n
d

 o
p

s/
s)

Elapsed Time (s)

Workload 50/50

Workload 5/95

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100 110 120 130 140

Th
ro

u
gh

p
u

t
(t

h
o

u
sa

n
d

 o
p

s/
s)

Elapsed Time (s)

Workload 50/50

Workload 5/95

(a) Node between the head of the chain and node k.

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100 110 120 130 140

Th
ro

u
gh

p
u

t
(t

h
o

u
sa

n
d

 o
p

s/
s)

Elapsed Time (s)

Workload 50/50

Workload 5/95

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100 110 120 130 140

Th
ro

u
gh

p
u

t
(t

h
o

u
sa

n
d

 o
p

s/
s)

Elapsed Time (s)

Workload 50/50

Workload 5/95

(b) Node between kand the tail of the chain.

Figure 10. Throughput in face of failures.

tected and the chain is repaired. Also, 20 seconds after the
failure of the node the throughput starts increasing reaching
its initial peak 30 seconds after the failure. The results for
the second scenario, depicted in Figure 10(b), show that the
failure of a node after node k has a low impact in the perfor-
mance of the system, as the write operations can terminate
with no problems. Also, the variations of the throughput dur-
ing the chain repair are due to the fact that read operations
are processed by only 5 nodes in this period.

7.5 Metadata Experiments
In the last experiment we focus on measuring the overhead
imposed by the amount of metadata exchanged in the net-
work with ChainReaction when compare with COPS. For
this purpose we simulated two datacenters in a single ma-
chine and deployed a data node for each datacenter. We re-
sorted to this micro benchmark to overcome limitations of
the COPS prototype, that was kindly made available to us
by the authors, which did not support chain sizes above 1.

The two systems were also tested using the Yahoo! Cloud
Serving Benchmark standard workloads. Each workload was
executed by 10 YCSB client threads that submitted a total of
1,000,000 operations over 1KByte objects. In each execution
we measured the size of metadata sent across datacenters
and the metadata included in write operations during the first
100 seconds of execution. The values presented result from
an average of the 10 clients, error bars are also displayed.
We do not present results for the size of data stored at the
client library as this is extremely dependent of the workload.

0

5000

10000

15000

20000

25000

5 15 25 35 45 55 65 75 85 95

Si
ze

 (
B

yt
es

)

Time Elapsed (seconds)

ChainReactionMessage
ChainReactionMetadata
COPSMessage
COPSMetadata

0

5000

10000

15000

20000

25000

5 15 25 35 45 55 65 75 85 95

Si
ze

 (
B

yt
es

)

Time Elapsed (seconds)

ChainReactionMessage
ChainReactionMetadata
COPSMessage
COPSMetadata

(a) Average size of one PUT message.

0

5000

10000

15000

20000

25000

5 15 25 35 45 55 65 75 85 95

Si
ze

 (
B

yt
e

s)

Time Elapsed (seconds)

ChainReactionMessage
ChainReactionMetadata
COPSMessage
COPSMetadata

0

5000

10000

15000

20000

25000

5 15 25 35 45 55 65 75 85 95

Si
ze

 (
B

yt
e

s)

Time Elapsed (seconds)

ChainReactionMessage
ChainReactionMetadata
COPSMessage
COPSMetadata

(b) Average size of one wide-area message.

Figure 11. Metadata overhead

Our solution stores one entry for each accessed data and,
similarly to COPS, in the worst case, having a linear cost
with the number of items read (without performing a write).

Figure 11 depicts the results for the measurements of the
size of the exchanged messages (and corresponding meta-
data) sent across datacenters and also the size of write re-
quests sent to the local datacenter in workload A. We can ob-
serve that COPS sends much more data across datacenters,
increasing during the execution of the workload, peaking
at an average of approximately 16,300 Bytes (16 KBytes).
However, in our the solution the average size of one mes-
sage remains stable during the workload execution and is
the same for both workloads peaking at 450 Bytes (due to
the usage of bloom filters). One can also observe that on
COPS most of the message payload is metadata in the form
of dependencies reaching 92% of the message payload. In
our solution the metadata size is approximately 280 Bytes
corresponding to the key, value and the two bloom filters
sent in the message. Similar to the results for the propaga-
tion messages we can observe that COPS also sends larger
write requests than our solution. Also the size of messages,
in COPS, increases during the execution of both workloads
peaking at 20,000 Bytes (19 KBytes). The behavior exposed
by our system is similar to the previous scenario as the size
of messages remains stable at 380 Bytes.

These results are explained by the fact that in our sys-
tem, each PUT enable a client to garbage collect all locally
stored dependencies, as the stabilization procedure executed
by proxies before applying the PUT implicitly ensures that

97

those dependencies have become DC-Write-Stable(d). Ad-
ditionally, in the wide-area, these dependencies are already
encoded in the logical clocks used by remote-proxies and
in the bloom filters that tag each individual PUT in remote-
updates. COPS cannot rely on PUT to ensure the stability of
decencies in the wide-area, leading them to present the com-
munication overhead shown in this micro benchmark.

8. Conclusions
This paper proposes ChainReaction, a distributed key-value
store that offers high-performance, scalability, and high-
availability. Our solution offers the recently formalized
causal+ consistency guarantees which are useful for pro-
grammers. Similarly to COPS, we also provide a trans-
actional construct called GET-TRANSACTION , that allows
to get a consistent view over a set of objects. This data-
store can be deployed in a single datacenter scenario or
across multiple datacenters, in a Geo-replicated scenario.
We have implemented a prototype of ChainReaction and
used the Yahoo! Cloud Serving Benchmark to test our solu-
tion against existing datastores. Experimental results using
this testbed show that ChainReaction outperforms Cassandra
and FAWN-KV in most workloads that were run on YCSB.

Acknowledgments We wish to sincerely thank our shepherd
Lorenzo Alvisi, the anonymous reviewers, Rodrigo Rodrigues, and
Nuno Preguiça for all their comments, which were invaluable for
us to improve the manuscript. Additionally, our thanks to Maria
Couceiro, Amar Phanishayee, and Wyatt Lloyd for their help with
bloom filters, FAWN-KV, and COPS respectively. This work was
partially supported by Fundação para a Ciência e Tecnologia (FCT)
via the INESC-ID multi-annual funding through the PIDDAC Pro-
gram fund grant, under project PEst-OE/ EEI/ LA0021/ 2011, and
via the project HPCI (PTDC/ EIA-EIA/ 102212/ 2008).

References
[1] S. Almeida. Geo-replication in large scale cloud computing

applications. Master’s thesis, Univ. Técnica de Lisboa, 2007.

[2] D. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,
L. Tan, and V. Vasudevan. FAWN: a fast array of wimpy
nodes. Comm. ACM, 54(7):101–109, 2011.

[3] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson,
J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore:
Providing scalable, highly available storage for interactive
services. In CIDR, pages 223–234, 2011.

[4] N. Belarami, M. Dahlin, L. Gao, A. Nayate, A. Venkatara-
mani, P. Yalagandula, and J. Zheng. PRACTI replication. In
USENIX NSDI, pages 59–72, 2006.

[5] E. Brewer. Towards robust distributed systems (abstract). In
ACM PODC, page 7, 2000.

[6] B. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yer-
neni. PNUTS: Yahoo!’s hosted data serving platform. In
VLDB, pages 1277–1288. VLDB Endowment, 2008.

[7] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB.
In ACM SOCC, pages 143–154, 2010.

[8] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues.
D2STM: Dependable distributed software transactional mem-
ory. In IEEE PRDC, pages 307–313, 2009.

[9] R. Escriva, B. Wong, and E. G. Sirer. HyperDex: A dis-
tributed, searchable key-value store for cloud computing.
Technical report, CSD, Cornell University, 2011.

[10] D. Hastorun, M. Jampani, G. Kakulapati, A. Pilchin, S. Siva-
subramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s
highly available key-value store. In ACM SOSP, pages 205–
220, 2007.

[11] M. Herlihy and J. Wing. Linearizability: a correctness condi-
tion for concurrent objects. ACM TOPLAS, 12:463–492, 1990.

[12] G. Laden, R. Melamed, and Y. Vigfusson. Adaptive and
dynamic funnel replication in clouds. In ACM LADIS, 2011.

[13] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing
high availability using lazy replication. ACM TOCS, 10:360–
391, 1992.

[14] A. Lakshman and P. Malik. Cassandra: a decentralized struc-
tured storage system. SIGOPS OSR, 44:35–40, 2010.

[15] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Comm. of the ACM, 21:558–565, 1978.

[16] C. Lesniewski-Laas. A sybil-proof one-hop DHT. In ACM
SNS, pages 19–24, 2008.

[17] W. Lloyd, M. Freedman, M. Kaminsky, and D. Andersen.
Don’t settle for eventual: scalable causal consistency for wide-
area storage with cops. In ACM SOSP, pages 401–416, 2011.

[18] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, availabil-
ity, and convergence. Technical Report TR-11-22, Univ. Texas
at Austin, 2011.

[19] D. Malkhi, M. Balakrishnan, J. Davis, V. Prabhakaran, and
T. Wobber. From paxos to CORFU: a flash-speed shared log.
SIGOPS OSR, 46:47–51, Feb. 2012.

[20] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. J.
Demers. Flexible update propagation for weakly consistent
replication. In ACM SOSP, pages 288–301, 1997.

[21] F. Schneider. Replication management using the state-
machine approach. In S. Mullender, editor, Distributed
Systems (2nd Ed.), ACM-Press, chapter 7. Addison-Wesley,
1993.

[22] Y. Sovran, R. Power, M. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In ACM SOSP, pages 385–
400, 2011.

[23] J. Terrace and M. J. Freedman. Object storage on CRAQ:
high-throughput chain replication for read-mostly workloads.
In Proc. USENIX Annual Tech. Conference, USA, 2009.

[24] R. Thomas. A majority consensus approach to concurrency
control for multiple copy databases. ACM TODS, 1979.

[25] R. van Renesse and F. Schneider. Chain replication for sup-
porting high throughput and availability. In USENIX OSDI,
USA, 2004.

98

