Introduction to POV-Ray

POV-Team

for POV-Ray Version 3.6 BETA

Contents

1

Introduction 13
1.1 Program Description 14
1.2 WhatisRay-Tracing? i 14
1.3 WhatisPOV-Ray? 15
14 Features o i e 15
1.5 TheEarly Historyof POV-Ray 16
1.5.1 The Original Creation Message 18
152 TheName. 19
1.5.3 AMHistoric 'Version History” 21
1.6 HowDolBegin? 22
1.7 Notation and Basic Assumptions 22
Getting Started 25
2.1 OurFirstimage 25
2.1.1 Understanding POV-Ray’s Coordinate System. 25
2.1.2 Adding Standard Include Files 27
213 AddingaCamera 28
2.1.4 DescribinganObject 28
2.1.5 Adding TexturetoanObject 28
2.1.6 DefiningalightSource 29
2.2 BasicShapes 30
221 BoxObject 30
222 ConeObject 31
223 CylinderObject. 31
224 PlaneObject 31
225 TorusObject 32
2.3 CSGObjeCts 38
231 WhatisCSG?. i 38
232 CSGUNION 38
233 CSGlintersection 39
234 CSGODfference 40
235 CSGMerge i 41
236 CSGPitfalls 42
2.4 ThelightSource 42
2.4.1 ThePointlightSource 43
2.4.2 The SpotlightSource 44

2.4.3 The Cylindrical Light Source 45

CONTENTS

244 TheArealightSource 46
245 The AmbientLightSource 47
2.4.6 LightSource Specials 48
25 Simple TextureOptions 50
25.1 SurfaceFinishes 50
252 AddingBumpiness 0 50
25.3 CreatingColorPatterns. 51
254 Pre-definedTextures 52
2.6 UsingtheCamera, 53
26.1 UsingFocalBlur 53
2.7 POV-Ray Coordinate System 54
2.7.1 Transformations 55
2.7.2 TransformationOrder 58
2.7.3 Inverse Transform 58
2.7.4 TransformIdentifiers L. 58
2.7.5 Transforming Textures and Objects 59
28 POV-RayOptions e 60
2.8.1 CommandLine Switches 60
2.82 UsingINIFiles 61
2.8.3 Using the POVINI Environment Variable 63
Advanced Features 65
3.1 SplineBasedShapes, 65
3.1.1 LatheObject 65
3.1.2 Surface of Revolution Object. 74
3.1.3 PrismObject 75
3.1.4 Sphere SweepObject 81
3.1.5 Bicubic PatchObject 82
3.1.6 TextObject 87
3.2 PolygonBased Shapes, 91
3.21 MeshObject 91
3.22 Mesh2Object. 92
3.2.3 PolygonObject 99
3.3 OtherShapes 101
3.3.1 BlobObject. 101
3.3.2 HeightFieldObject. 106
3.3.3 IsosurfaceObject 107
3.34 PolyObject 120
3.3.5 Superquadric Ellipsoid Object 126
3.4 Advanced Texture Options 129
341 Pigments 130
342 Normals. e 135
343 Finishes 138
3.4.4 Working With PigmentMaps 143
3.4.5 Working With NormalMaps 144
3.4.6 Working With Texture Maps 145
3.4.7 Working With List Textures 146
3.48 WhatAboutTiles? 147
349 AverageFunction. 147

3.4.10 Working With Layered Textures 148

CONTENTS 5
3.4.11 When All Else Fails: MaterialMaps 154
3.4.12 Limitations Of Special Textures 156

3.5 Using Atmosphericfects L. 157
3.5.1 TheBackground 157
35.2 TheSkySphere. 158
353 TheFog e 162
354 TheRainbow 167

3.6 Radiosity 171
3.6.1 Introduction. 171
3.6.2 Radiosity with conventional lighting 172
3.6.3 Radiosity without conventional lighting 176
3.6.4 NormalsandRadiosity 181
3.6.5 Performance considerations 182

3.7 Making Animations 182
3.7.1 The Clock Variable: Key ToItAll 182
3.7.2 Clock Dependant Variables And Multi-Stage Animations . . . 184
3.7.3 ThePhaseKeyword 185
3.7.4 DoNotUselditterOrCrand 187
3.75 INIFileSettings, 187

3.8 While-looptutorial 189
3.8.1 What a while-loop is and whatitisnot. 189
3.8.2 How does a single while-loopwork? 189
3.8.3 Howdo I make awhile-loop? 190
3.8.4 Whatis a condition and how do | make one? 191
3.8.5 What about loop types other than simple for-loops? 192
3.8.6 Whatabout nested loops? 193
3.8.7 Mixed-typenestedloops 195
3.8.8 Otherthingstonote. 195

3.9 SDLtutorial: Araytracer 197
3.9.1 Introduction. 198
3.9.2 Theideaandthecode 198
3.9.3 Shortintroductiontoraytracing 203
3.94 Globalsettings 204
3.9.5 Scenedefinition.0 Lo oL 205
3.9.6 Initializing theraytracer 206
3.9.7 Ray-sphereintersection. 207
398 TheTracemacro 211
3.9.9 Calculatingtheimage 216
3.9.10 Creatingthecoloredmesh 216
3.9.11 TheCamera-setup 221

3.10 Isosurface Object 221
3.10.1 Functionsinlsosurface, 222
3.10.2 Transformations on Functions 224
3.10.3 CombiningFunctions. 226
3.10.4 Improving Isosurface Speed 227

4 Questions and Tips 229

4.1 Language Tips and tricks to achieve usefulthings 229
4.1.1 Howdolmake avisible lightsource? 229
4.1.2 Howdolmake brightobjects? 230

CONTENTS

4.2

4.3

4.4

4.5

4.6

4.7

4.1.3 How do I move the camerain acircular path? 230
4.1.4 Howdo | use an image to texture my object? 231
4.1.5 Howcanlgenerateaspline? 232
4.1.6 How can lsimulate motionblur? 232
4.1.7 How can | find the size of atextobject? 232
4.1.8 Howdolmakeextrudedtext? 232
4.1.9 Howdolmake anobjecthollow? 232
4.1.10 How can I fill a glass with water or other objects? 233
4.1.11 Howcanlbendaobject?. 234
4.1.12 Canlgetnon-grainy focalblur? 235
Language Things that don'twork asoneexpects 235
4.2.1 Using several transparent objects makes them black? 235
4.2.2 I'm getting color bandingintheimage 236
4.2.3 Rotation behavesverystrangely 236
4.2.4 The image gets distorted when rendering a square image . . . 237

4.2.5 Why are there strange dark pixels or noise on my CSG object? 238
4.2.6 Why won't the textures in stars.inc work with my séghere? 238
4.2.7 When | use filter or transmit with my .tga image map nothing

happens. 239
4.2.8 Isosurface not rendering properly? 239
Languagerelatedthings 240
4.3.1 Howdo lturnanimationon? 240
4.3.2 Can POV-Ray use multiple processors? 240
4.3.3 Canl getawireframe render of my scene? 242
4.3.4 Can | specify variable IOR foran object? 243
4.3.5 Whatis Photon Mapping? 244
FileFormats 245
4.4.1 Savingtheimagetodisk.. 245
4.4.2 Can |l convert my POV-Ray scenes to another format? 245

4.4.3 How can | convert my scenes from format X to POV-Ray format?246
4.4.4 How do | import all of my textures | created in 3DS Max into

POV-Ray?. 246
4.4.5 How can | avoid artifacts and still get good JPEG compression? 246
4.4.6 Why are there no converters from POV to other formats? . . . 247
4.4.7 Why are triangle meshes in ASCIl format? 248
Utilities, models, etc. 249
45.1 Whatis the best animation program available? 249
4.5.2 Creatinfyiewing MPEG-files. 249
45.3 Where can | find modeétextures? 249
4.5.4 What are the best modellers for POV-Ray? 249
455 Any POV-Ray modellersforMac? 249
4.5.6 Isthere any user gallery of POV-Ray images? 249
4.5.7 Any good heightfield modellers? 250
4.5.8 Anyeasyway of creatingtrees? 250
Renderingspeed 250
4.6.1 Will POV-Ray render fasterwitha3Dcard? 250
4.6.2 Howdo lincrease renderingspeed? 250
46.3 CSGspeed 252
4.6.4 DoesPOV-Ray support3DNow? 254

CONTENTS 7

4.7.1 Where do | suggest new features? 255
4.7.2 I'm getting a "lllegal grid value in dd&aversal()” 255
4.7.3 Nobeepwhenfinished? 256
4.7.4 POV-Rayviruses? i 256
475 GUlforUnix POV-Ray? 257
4.8 Theshadowlineartifact. 257
48.1 Whatistheproblem? 257
4.8.2 Whatcausestheproblem? 258
4.8.3 Canthisproblembesolved? 260
4.8.4 Possible solutions? 261
4.9 Smoothtriangleartifact oo 262
49.1 Whatistheproblem? 262
4,9.2 Whatcausestheproblem? 263
4,9.3 Canthisproblembesolved? 264
4.10 Setting POV-Ray Options 265
4.10.1 Command Line Switches 265
4.10.2 UsingINIFiles 265
4.10.3 Using the POVINI Environment Variable 267
5 TBD 269
5.1 POV-RaylLegalDocument 269
5.2 ThePOV-Team i 280
5.2.1 Contactingthe Authors 281
522 TheTAG e 283
5.2.3 POV-Ray3.5Development. 283
5.3 Whattodoifyoudonthave POV-Ray 283
5.3.1 Which Version of POV-Ray should youuse? 285
5.3.2 Whereto Find POV-RayFiles 288
5.4 SuggestedReading, 289

CONTENTS

Figures

2.1
2.2
2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34

The left-handed coordinate system 26
Computer Graphics Aerobics L. 26
The torus object can be used to create chains. 37
Asimple latheobject.o 66
Asimple 68
Moving some points of the spline. 69
A quadratic splinelathe. 69
Acubicsplinelathe. L. 70
abeziessplinelathe oL oo 71
two bezierspline segments, notsmooth 73
smooth beziesplinelathe 73
The point configuration of our cup object. 74
A surface of revolution object. 75
A hexagonal prismshape. 76
A cubic, triangular prism shape. oL 77
Using sub-shapes to create a more complexshape. 78
Creating a pyramid using conic sweeping. 79
Choosing a second height larger than one for the conic sweep. 80
Increasing the first height for the conicsweep. 81
Bicubicpatch with control points 84
patches, (un)smoothly connected 86
3 patches, some control points L. 87
Textcarved fromstone. L. 90
tobewrittenasmesh2 o oL 93
Theword 101
A simple, two-partblob. Lo o 102
The spherical components made visible. 103
Ahand made withblobs. 105
The hand without the swollenjoints. 106
A height field created completely with POV-Ray. 108
Isosurface sample (functiopm }) 108
Isosurface sample (functi¢m }, threshold 1) 109
Isosurface sample (functi¢m },open) 109
Isosurface sample (plane function) 110
Isosurface sample (plane function) 110
Isosurface sample (functigmbs(x)-1},open) 111
Isosurface sample (combined linear functions) 111

10 FIGURES
3.35 Isosurface sample (combined linear functions) 112
3.36 Isosurface sample (non-linear function) 112
3.37 Isosurface sample (cylinder function) 112
3.38 Isosurface sample (cone function) 113
3.39 Isosurface sample (sphere function) 113
3.40 Isosurface sample (torus function) 114
3.41 Isosurface sample (merge) 114
3.42 Isosurface sample (intersection) 115
3.43 Isosurface sample (tBrence) 115
3.44 lIsosurface sample (blob) oL 116
3.45 Isosurface sample (noise3d) 117
3.46 lIsosurface sample (noise3d 'heightfield’) 117
3.47 Isosurface sample (noise3d 'heightfield’ inverted) 118
3.48 Isosurface sample (noise3donsphere) 118
3.49 Isosurface sample (noise3d on spherescaled) 118
3.50 Isosurface sample (pigment function) 119
3.51 Sphere polynomial o 123
3.52 5th order polynomialexample 124
3.53 Toruspolynomial, 125
3.54 Some superellipsoids hovering above atiled floor. 129
3.55 Asimple gradientsky sphere. oL 159
3.56 Aredsundescendsintothenight. 161
3.57 Acloudy sky witha settingsun. 162
3.58 Afoggyscene. e 163
3.59 Fog with translucency thresholdadded. 164
3.60 Afilteringfog. 164
3.61 Fog made more interesting with turbulence 165
3.62 Anexampleofgroundfog. 166
3.63 Using multiple layersoffog. 167
3.64 Acolorfulrainbow. 169
3.65 A much more realisticrainbow. 170
3.66 Arainbowarc.. 171
3.67 higherquality 181
3.68 Some spheres raytraced by the SDL at 160x120 199
3.69 The basic raytracing algorithm 204
3.70 Triangle arrangementfora4x3image 217
4.1 Sometimes odd shadow lines appear on certain objects 257
4.2 Theimageonewouldexpect. 258
4.3 Shadow line test with modifiednormals 258
4.4 Shadowtestofatrianglemesh 259
4.5 The shadow line corresponds to the non-smooth mesh. 260
4.6 Lighting and slope pattern artifacts in a smooth triangle 262

Tables

1.1 Basicnotation 23
5.1 Current POV-Team Members 281
5.2 Past POV-Team Members and other contributors 282
5.3 Technical Assistance Groupmembers 283
5.4 Contributors of patchesin POV-Ray3.5 284
5.5 POV-Ray 3.5 Alpha testers, scene files and documentation 284
5.6 POV-Ray 3.5 Pre-Beta testers, scene files and documentation 285

5.7 OtherContributors 285

12

TABLES

Chapter 1

Introduction

The rest of this document details the use of the Persistence of Vision Ray-Tracer (POV-
Ray). The documentation applies to all platforms to which this version of POV-Ray is
ported. See section 1.0 for platform-specific documentation.

The following information is divided into nine main parts:

1.

This introduction which explains what POV-Ray is and what ray-tracing is. It
gives a brief overview of how to create ray-traced images.

. A “Beginning Tutorial” which explains step by step how to use th@edent

features of POV-Ray.

. An “Advanced Tutorial” which contains more advanced tutorial topics.

. A complete reference on “POV-Ray Options” which explains options (set either

by command line switches or by INI file keywords) that tell POV-Ray how to
render the scenes.

. A complete reference on “Scene Description Language” in which you describe

the scene.

. A complete reference on the “Standard Include Files” that come with the POV-

Ray package, to be used in your scenes.

. In our “Appendices” you will find some tips and hints, where to get the latest

version and versions for other platforms, the POV-Ray licence, information on
compiling custom versions of POV-Ray, suggested reading, contact addresses
and legal information.

. “POV-Ray questions and tips” gives answers to many frequently-asked questions

about POV-Ray.

. Finally, a consolidation of the POV-Ray Scene Description Language in the

“Quick References”.

POV-Ray runs on Windows 9ME/NT/200Q0XP, Macintosh Mac OS and Mac OS X,
x86 Linux, UNIX, and other platforms.

14 Introduction

We assume that if you are reading this document then you already have POV-Ray in-
stalled and running. However the POV-Team does distribute this file by itself in various
formats including online on the Internet. If you don’t have POV-Ray or aren’t sure you
have the éicial version or the latest version, see appendix “What to do if you don't
have POV-Ray".

This document covers only the generic parts of the program which are common to each
version.Each version has platform-specific documentation not included heréie
recommend you finish reading this introductory section then read the platform-specific
information before trying the tutorial here.

The platform-specific docs will show you how to render a sample scene and will give
you detailed description of the platform-specific features.

The Windows version documentation is available on the POV-Ray program’s Help
menu or by pressing the F1 key while in the program.

The Mac platform documentation is available via the “Help” menu as well as for view-
ing using a regular web browser. Details may be found in Ho@-Ray MacOS Read

Me” which contains information specific to the Mac version of POV-Ray. It is best to
read this document first.

The Unix/ Linux version documentation can be found at the same place as the platform
independent part. Usually that/i8sr/local/share/povray-3.?/html

1.1 Program Description

You know you have been raytracing too long when ...
... You wonder which raytracer God used.
— David Kraics

The Persistence of Vision Ray-Tracer creates three-dimensional, photo-realistic images
using a rendering technique called ray-tracing. It reads in a text file containing infor-
mation describing the objects and lighting in a scene and generates an image of that
scene from the view point of a camera also described in the text file. Ray-tracing is
not a fast process by any means, but it produces very high quality images with realistic
reflections, shading, perspective and otHezas.

1.2 Whatis Ray-Tracing?

Ray-tracing is a rendering technique that calculates an image of a scene by simulating
the way rays of light travel in the real world. However it does its job backwards. In
the real world, rays of light are emitted from a light source and illuminate objects. The
light reflects df of the objects or passes through transparent objects. This reflected
light hits our eyes or perhaps a camera lens. Because the vast majority of rays never hit
an observer, it would take forever to trace a scene.

Ray-tracing programs like POV-Ray start with their simulated camera and trace rays
backwards out into the scene. The user specifies the location of the camera, light

1.3 What is POV-Ray? 15

sources, and objects as well as the surface texture properties of objects, their interiors
(if transparent) and any atmospheric media such as fog, haze, or fire.

For every pixel in the final image one or more viewing rays are shot from the camera,
into the scene to see if it intersects with any of the objects in the scene. These “view-
ing rays” originate from the viewer, represented by the camera, and pass through the
viewing window (representing the final image).

Every time an object is hit, the color of the surface at that point is calculated. For this
purpose rays are sent backwards to each light source to determine the amount of light
coming from the source. These “shadow rays” are tested to tell whether the surface
point lies in shadow or not. If the surface is reflective or transparent new rays are set
up and traced in order to determine the contribution of the reflected and refracted light
to the final surface color.

Special features like inter-diuse reflection (radiosity), atmospheriffexts and area
lights make it necessary to shoot a lot of additional rays into the scene for every pixel.

1.3 What is POV-Ray?

The Persistence of Vision Ray-Tracer(tm) was developed from DKBTrace 2.12 (writ-
ten by David K. Buck and Aaron A. Collins) by a bunch of people (called the POV-
Team(tm)) in their spare time. The headquarters of the POV-Team is on the Internet at
http://www.povray.org/ (see “Where to Find POV-Ray Files” for more details).

The POV-Ray package includes detailed instructions on using the ray-tracer and creat-
ing scenes. Many stunning scenes are included with POV-Ray so you can start creating
images immediately when you get the package. These scenes can be modified so you
don't have to start from scratch.

In addition to the pre-defined scenes, a large library of pre-defined shapes and materials
is provided. You can include these shapes and materials in your own scenes by just
including the library file name at the top of your scene file, and by using the shape or
material name in your scene.

1.4 Features

Here are some highlights of POV-Ray’s features:
e Easy to use scene description language.
e Large library of stunning example scene files.
¢ Standard include files that pre-define many shapes, colors and textures.
e Very high quality output image files (up to 48-bit color).

e 16 and 24 bit color display on many computer platforms using appropriate hard-
ware.

e Create landscapes using smoothed height fields.

16

Introduction

Many camera types, including perspective, orthographic, fisheye, etc.
Spotlights, cylindrical lights and area lights for sophisticated lighting.

Photons for realistic, reflected and refracted, caustics. Photons also interact with
media.

Phong and specular highlighting for more realistic-looking surfaces.
Inter-diffuse reflection (radiosity) for more realistic lighting.
Atmospheric &ects like atmosphere, ground-fog and rainbow.
Particle media to modelfkects like clouds, dust, fire and steam.

Several image file output formats including Targa, BMP (Windows only), PNG
and PPM.

Basic shape primitives such as ... spheres, boxes, quadrics, cylinders, cones,
triangle and planes.

Advanced shape primitives such as ... Tori (donuts), bezier patches, height fields
(mountains), blobs, quartics, smooth triangles, text, superquadrics, surfaces of
revolution, prisms, polygons, lathes, fractals, isosurfaces and the parametric ob-
ject.

Shapes can easily be combined to create new complex shapes using Construc-
tive Solid Geometry (CSG). POV-Ray supports unions, merges, intersections and
differences.

Objects are assigned materials called textures (a texture describes the coloring
and surface properties of a shape) and interior properties such as index of refrac-
tion and particle media (formerly known as “halos”).

Built-in color and normal patterns: Agate, Bozo, Bumps, Checker, Crackle,
Dents, Granite, Gradient, Hexagon, Leopard, Mandel, Marble, Onion, Quilted,
Ripples, Spotted, Spiral, Radial, Waves, Wood, Wrinkles and image file map-
ping. Or build your own pattern using functions.

Users can create their own textures or use pre-defined textures such as ... Brass,
Chrome, Copper, Gold, Silver, Stone, Wood.

Combine textures using layering of semi-transparent textures or tiles of textures
or material map files.

Display preview of image while rendering (not available on all platforms).

Halt and save a render part way through, and continue rendering the halted partial
render later.

1.5 The Early History of POV-Ray

You know you have been raytracing too long when ...

... You hear a name beginning with the letter K and wonder if it's David Buck’s middle

name.

1.5 The Early History of POV-Ray 17

— Alex McLeod
OK, here’s a not-so brief history of POV-Ray (from the horse’s mouth, so to speak):

Back in 1986 or so, | had an Amiga. A friend who also has an Amiga downloaded
the C code for a raytracer for Unix from the Internet and brought it over. | thought it
looked interesting and | ported it to the Amiga and wrote the drivers to display it with
Amiga graphics. The program only rendered untextured spheres with a planar floor in
black and white, but | was still impressed by it. | played with it a bit adding support
for color, but | eventually decided that | could do a better job writing a raytracer from
scratch, so | scrapped the C program and started my own - DKBTrace had begun.

| decided to start with general quadric surfaces since they could represent spheres,
ellipsoids, cylinders, planes, and more. | worked out the ray-quadric intersection cal-
culations and used some calculus to work out the surface normal to a quadric surface
at a point. For the program structure, | decided to use an object-oriented style since |
had learned Smalltalk at university and it fit nicely. To make modeling more flexible, |
added CSG and procedural textures. In the end, | had an interesting little raytracer and
| decided to release it as freeware since | was planning to return to university to start
my Master’s degree and didn’t have time to develop a commercial raytracer. Besides,
there were already commercial renders for the Amiga that had user interfaces (not just
text files) and I felt | couldn’t sell it as a commercial product. | called it DKBTrace and
released it to local BBS’es and to the Internet.

DKBTrace was an Amiga-only program, but it attracted quite a lot of interest. | released
several versions of it adding in new features, better primitives, more texturing options,
etc. Eventually | released version 2.01.

Sometime around 1987 or 1988, | was contacted by Aaron Collins. He had found the
C code for DKBTrace and ported it to the PC. He also added a Phong lighting model
and a few more goodies. | was interested in what he had done, so | contacted him to
see if he wanted to help develop a new version of the program. This one would be
portable across more platforms (at university | had access to Unix workstations). We
eventually came up with version 2.12 which was the last version of DKBTrace ever
released (1989).

While Aaron and | were working up to version 2.12, there was a group of people on
CompuServe who were very excited about DKBTrace and were creating all sorts of
neat scenes for it. They were also expressing frustration that Aaron and | weren'’t able
to add new features into DKBTrace fast enough. They started talking about building
a whole new raytracer from scratch that they could control and add the features they
wanted. At that time, | was starting to pursue other areas and was starting to drift away
from raytracing. So, | posted a message on CompuServe with the follofigg @/e

could form a team to develop a new raytracer using DKBTrace as a base. | had three
requirements for this team. The resulting code had to be freeware with the source code
freely available, it had to remain portable betweefiedent platforms, and it had to
have a diferent name than DKBTrace.

The name DKBTrace was, of course, based on my initials: David Kirk Buck (there’s
some little known trivia for you). With a package developed by a team of people, it
was inappropriate to use my initials. |1 was also starting to drift away from raytracing
(as | mentioned) and | didn't want people thinking that | was the head of the team
forever. The name that was proposed was “Persistance Of Vision Raytracer” which

18 Introduction

was shortened to POV-Ray. It worked in three ways. It was the result of a persistent
vision of the developers, it was a reference to the Salvador Dali work which depicted a
distorted but realistic world, and the term “persistance of vision” in biology referred to
the ability to see an image that was presented briefly - almost an after image.

In 1989, then, DKBTrace 2.12 wadfgially released and the POV-Ray project had
begun. | worked with the team for a few years after that. | was responsible for the
Amiga port among other things. Drew Wells was the project leader. Aaron Collins
dropped out of the project around that time as well. Other early members included
Chris Young, Steve Anger, Tim Wegner, Dan Farmer, Bill Pulver (IBM drivers), and
Alexander Enzmann (quartics and cool math3tuChris Cason joined shortly after
(my apologies if | left anyone out - lots of people were involved). The reference to
Robert Skinner in the credits for POV-Ray was because we had a hard time finding
a good noise function. In another raytracer, he had a great noise function written by
Robert Skinner, so we asked for and received permission to use it in POV-Ray.

There was so much demand for us to release a new version that we created POV-Ray
0.5 and released it. It was basically an enhanced DKBTrace with a similar grammar
but many more features. Eventually, we released POV-Ray 1.0 which had the new
grammar and lots of new dtu Drew dropped out later and Chris Young took over as
project leader.

It was around that time that | started to drift away from the POV-Ray team. The project
had momentum and could continue on without me. | was getting irfferdnt areas
(physically based modeling and animation) and no longer had the time to continue with
POV-Ray. Around the release of version 2.0, | left the project and the POV-Ray team
developed it to its current state. Chris Cason is now the project leader.

Even though I'm no longer on the POV-Ray development team, | still like to follow its
progress. | haven't built my own scene by hand for years now (although | occasionally
use Moray). | still enjoy the one thing that drove me back in the DKBTrace days - |
love seeing the works of other people who used my software. Even though | can no
longer call POV-Ray “my software”, | still enjoy admiring the artwork people create
with it. I'm constantly amazed at what people can do. It was always the feedback from
user community that drove me.

David Buck,
david@simberon.com

august 2001

1.5.1 The Original Creation Message

11906 S16/Raytraced Images
07-Mar-91 18:56:37

Sb: DKB Development

Fm: David Buck 70521,1371

To: All

Greetings all. This is my first posting to this group, so you’ll
have to excuse me if I make any mistakes in this post.

1.5 The Early History of POV-Ray

Finally, after several weeks of waiting, I’ve received my CompuServe
account. It’s nice to see that people are enjoying my raytracer
(DKB, of course). I have noticed, however, that you are less than
satisfied at the support I’ve been able to provide <grin>.

True, I'm the first to admit that the support is poor. I have
little time these days to work on graphics - it takes long enough
to answer all the questions I get asked on a daily basis from all
across the world.

My motivation for releasing the raytracer as Freely Distributable
software in the first place was to allow people to have some fun
with a program I'd developed for just that purpose. I don’t
consider it to be a professional package - I know it’s nowhere near
that good. I didn’t make it shareware, however, because I knew I
wouldn’t have much time for support. I didn’t want the hassles of
maintaining user lists, sending updates and notices, etc.

There has recently been a proposal in this forum that you write
your own raytracer to use instead of DKB. Perhaps I can make that
prospect a little bit easier. Suppose we take DKB and use it as a
base for a completely new system (the name "Renderdog" has

been tossed around, but I’'m not fond of that one <g>). I would
like to propose the name "Software Taskforce on Animation and
Rendering” or STAR. I would imagine that there would be

several packages developed such as:

STAR Light - the raytracer
STAR Guider - an animation system
STAR Maker - a user interface for StarLight

If you decide to do this, I would like to place a few rules on the
packages (or at least those developed from DKB):

- they will remain freely distributable

- support and maintenance of this new product will be undertaken
by the STAR team (including but not limited to myself)

- the programs will remain as portable as possible

What do you think of this proposal?

David Buck

1.5.2 The Name

More on how POV-Ray came to its name.

from Chris Young, to whom I asked if POV’s name was related
to the title of a sci-fi book I had just found on a flea market.

dededededededede ke dehdehddehdehddefdehddeddehddefdehddedde e ddehdededde e ddehddddhd

Varley is one of my favorite authors and I’ve owned that book
long before POV-Ray existed. POV-Ray was originally going to be

20 Introduction

called Starlight or StarLite or something similar but somebody
else, I don’t know who, said we’d get in trademark trouble over
some existing product. Drew Wells was team leader and he picked
Persistence of Vision based on the properties of the human visual
system. I also felt there was a double meaning in that POV-Ray
was the continuation (or persistance) of David K. Buck’s DKB-Trace.
I warned Drew about Varley’s book but book titles aren’t as messy
as product names. Note also that Public Broadcasting System has
a documentary series called POV but that stands for Point Of View
which is the filmmaking term for hand-held camera, cinema-verite
style used in many documentaries.

I wanted to take our team name from the Fractint Stone Soup Group
and call us the Crystal Soup Group but I got voted down.

Chris Young, POV-Team Coordinator

TS dededededed

from unknown source

dededededededede e dede e de ke de e de ke de e de ke Sk de e de e de e dehddedde e ddefdehd e ddehddefdhd

After the recent thread on the starting time I POV-Ray I did

a search and found this post to this very news group from
David Buck himself. The message places the birth of the POV-Ray
project to be in May of 1991. A very historic event!

I hope I'm not stepping on toes by re-posting
it :-)

Harold

Sun, 19 Feb 1995 19:14:44 GMT

(STEERPIKE) says:

>I had always presumed that Persistance of Vision was a pun on
>the name of Salvador Dali’s painting "The Persistance of
>Memory". Is this right, and if not, how did POV-Ray come to

> have such a poetic name? :)

The POV-Ray project started in May 1991 when I first proposed the
idea to a group of people on CompuServe. They liked my DKBTrace
raytracer but didn’t like the fact that I was too slow adding new
features to it. They were going to re-write a raytracer from
scratch, but I suggested that after version 2.12 of DKBTrace, they
could take the code as is and develop it from there into a new
raytracer. The first name was STAR - an acronym for something or
other. Then someone in the group came up with "Persistance of
Vision". We liked it because of its reference to Dali (I

believe the painting was actually called Persistance of Vision - am
I mistaken?). Moreover, it seemed to symbolize the team who
"Persisted" to achieve their "Vision". The

third reference was to the phychological effect that seeing an image
flashed on a screen causes you to retain that image in short term
memory. Thus, your memory was a representation of reality but not

1.5 The Early History of POV-Ray 21

really reality. They all seemed to fit together to make a nice name.
Early on, we were abbreviating the name to PVRay, but we were
concerned about a commercial product called PV-Wave. We agreed to
change the abbreviation to POV-Ray and standardize on the spelling.

>David Buck

1.5.3 A Historic 'Version History’

The version history as it was included in PV-Ray 0.5 BETA. Notice the name changes...

Persistence of Vision Raytracer Version History

PV-Ray was originally DKBTrace Ver. 2.12 written by David Buck. He
donated the rights to his source code so the PV-Team could enhance
this raytracer as a group project similar to Fractint. The source
code for PV-Ray will always be freely distributable subject to the
restrictions in the header files. Thanks David, for your generous
gift!

Version 0.02 BETA Release 7/29/91 (as STAR-Light)
First version is still basically DKBTrace 2.12 with a few new
features.

- Materials mapping added by Drew Wells.(see matmap.dat)

- ONION & LEOPARD textures added by Scott Taylor.

- Time to trace display added by Bill Pulver.

- Grayscale display (+g) for IBM-PC’s added by Scott Taylor.
- Small wood texture bug fixed to create true cylinders.

- Verbose now displays more info including file being traced.
- Option +vO added to enable old-style terse verbose.

- Texture.c broken into smaller modules.

- PAINTED1, 2, & 3 added for developers.

- BUMPY1, 2, & 3 added for developers.

PvRay Version 0.5 BETA Release 9/07/91

Many more changes this time around, including...

- Many enhancements from Alexander Enzmann

- Bezier bicubic subpatches

- Polynomial surfaces

- New mapping types (sphere, etc.)

- Sturmian sequences

- Clipping shapes

- (have I forgotten anything??)
- Lots of hard work and enhancements by Aaron Collins
- Height fields by Doug Muir
- Bump Mapping by Doug Muir and Drew Wells
- Interpolation by Girish T. Hagan adapted for mapping by Drew Wells
- # and ; are now ignored.

22 Introduction

- case_sensitive keywords and commandline option added by Drew Wells
> case_sensitive_yes -- All words checked for exact case.
Keywords must be in upper case.
(*01d DKB Style*)
> case_sensitive_no -- Case is ignored for all words.
> case_sensitive_opt -- DEFAULT - All words checked for exact
case except keywords. Keywords will be
accepted in upper and/or lower case.
> command line -- /ty = yes, /tn = no, /to = opt
- cnvdat.c to convert old dat files included with pvsrc.
- C++ style commenting - // ignore to end of line.
and /* ignore between braces */ nesting not allowed.
- New default style verbose trace info (+vl)
- 0ld-new style verbose (+v®)
- Verbose trace info outputs to stderr so that stats can be
redirected to file.
- New stats display outputs to stdout for better redirection.
- New lighting routines by David Buck.
- The declared colors Red, Green, and Blue in colors.dat are now
CRed, CBlue, CGreen.
- The declared quadric Sphere in shapes.dat is now QSphere.
- Textures.dat has been cleaned up and commented.

1.6 How Do | Begin?

POV-Ray scenes are described in a special text language called a “scene description
language”. You will type commands into a plain text file and POV-Ray will read it to
create the image. The process of running POV-Ray is a litfferéint on each platform

or operating system. You should read the platform-specific documentation as suggested
earlier in this introduction. It will tell you how to command POV-Ray to turn your text
scene description into an image. You should try rendering several sample images before
attempting to create your own.

Once you know how to run POV-Ray on your computer and your operating system,
you can proceed with the tutorial which follows. The tutorial explains how to describe
the scene using the POV-Ray language.

1.7 Notation and Basic Assumptions

Throughout the tutorial and reference section of this document, the following notation
is used to mark keywords of the scene description language, command line switches,
INI file keywords and file names.

In the plain ASCII version of the document there is no visibl@edence between the
different notations.

Note: POV-Ray is a command-line program on Unix and other text-based operating
systems and is menu-driven on Windows and Macintosh platforms. Some of these
operating systems use folders to store files while others use directories. Some separate
the folders and sub-folders with a slash charagtgiback-slash charactey)(or others.

1.7 Notation and Basic Assumptions 23

keyword mono-spaced bold POV-Ray keywords and punctua-
tion

+W640 +HA80 mono-spaced bold command-line switches
C\MYFILE.POV mono-spaced file names, directories, paths
SYNTAX_ITEM italics, all caps required syntax item
[SYNTAX_ITEM] italics, all caps, braces optional syntax item
SYNTAX_ITEM... italics, all caps, ellipsis one or more syntax items
[SYNTAX_ITEM.. Jtalics, all caps, braces, ellip- zero or more syntax items

sis
Value 1 italics, mixed case a float value or expression
<Value 1> italics, mixed case, angle a vector value or expression

braces
[ITEM] bold square braces ITEM enclosed in required braces
ITEM1 — vertical bar choice of ITEM1 or ITEM2
ITEM2

Table 1.1: Basic notation

We have tried to make this documentation as generic as possible but sometimes we
have to refer to folders, files, options etc. and there’s no way to escape it. Here are
some assumptions we make...

1) You installed POV-Ray in thec* \POVRAY35” directory. For MS-Dos this is probably
true but for Unix it might be /usr/povray3”, or for Windows it might be €:\Program
Files\POV-Ray for Windows v3.5", for Mac it might be ‘MyHD: Apps:POV-Ray 35:”,

or you may have used some other drive or directory. So if we tell you that “Include files
are stored in thepovray35\include directory,” we assume you can translate that to
something like * :POVRAY35: INCLUDE” Of “C:\Program Files\POV-Ray for Windows
v3.5\include” or whatever is appropriate for your platform, operating system and in-
stallation.

2) POV-Ray uses INI files arior command-line switches (if available) to choose op-
tions in all versions, but Windows and Mac also use dialog boxes or menu choices
to set options. We will describe options assuming you are using switches or INI files
when describing what the options do. We have taken care to use the same terminology
in designing menus and dialogs as we use in describing switches or INI keywords. See
your version-specific documentation on menu and dialogs.

3) Some of you are reading this using a help-reader, built-in help, web-browser, for-
matted printout, or plain text file. We assume you know how to get around in which
ever medium you're using. We'll say “See the chapter on "Setting POV-Ray Options*
we assume you can click, scroll, browse, flip pages or whatever to get there.

24

Introduction

Chapter 2

Getting Started

You know you have been raytracing too long when ...
... You actually read all the documentation that comes with programs.
— AmaltheaJ5

The beginning tutorial explains step by step how to use POV-Ray’s scene description
language to create your own scenes. The use of almost every feature of POV-Ray’s
language is explained in detail. We will learn basic things like placing cameras and
light sources. We will also learn how to create a large variety of objects and how
to assign dterent textures to them. The more sophisticated features like radiosity,
interior, media and atmospheriffects will be explained in detail.

2.1 Our First Image

You know you have been raytracing too long when ...

... You have gone full circle and find your self writing a scene that contains only a
shiny sphere hovering over a green and yellow checkered plane ...

— Ken Tyler

We will create the scene file for a simple picture. Since ray-tracers thrive on spheres,
that is what we will render first.

2.1.1 Understanding POV-Ray’s Coordinate System

First, we have to tell POV-Ray where our camera is and where it is looking. To do this,
we use 3D coordinates. The usual coordinate system for POV-Ray has the positive
y-axis pointing up, the positive x-axis pointing to the right, and the positive z-axis
pointing into the screen as follows:

This kind of coordinate system is called a left-handed coordinate system. If we use
our left hand’s fingers we can easily see why it is called left-handed. We just point

26 Getting Started

Figure 2.1: The left-handed coordinate system

our thumb in the direction of the positive x-axis (to the right), the index finger in the
direction of the positive y-axis (straight up) and the middle finger in the positive z-axis
direction (forward). We can only do this with our left hand. If we had used our right
hand we would not have been able to point the middle finger in the correct direction.

The left hand can also be used to determine rotation directions. To do this we must
perform the famousComputer Graphics Aerobitgxercise. We hold up our left hand

and point our thumb in the positive direction of the axis of rotation. Our fingers will
curl in the positive direction of rotation. Similarly if we point our thumb in the negative
direction of the axis our fingers will curl in the negative direction of rotation.

Figure 2.2: Computer Graphics Aerobics

In the above illustration, the left hand is curling around the x-axis. The thumb points
in the positive x direction and the fingers curl over in the positive rotation direction.

If we want to use a right-handed system, as some CAD systems and modelers do,
the right vector in the camera specification needs to be changed. See the detailed
description in "Handedness". In a right-handed system we use our right hand for the
"Aerobics".

There is some controversy over whether POV-Ray’s method of doing a right-handed
system is really proper. To avoid problems we stick with the left-handed system which
is not in dispute.

2.1 Our First Image 27

2.1.2 Adding Standard Include Files

You know you have been raytracing too long when ...

... you've just seen Monsters.Inc at the movies, and you are wondering when they will
release Monsters.Pov.

— Fabien Mosen

Using our personal favorite text editor, we create a file called .pov. Some versions

of POV-Ray come with their own built-in text editor which may be easier to use. We
then type in the following text. The input is case sensitive, so we have to be sure to get
capital and lowercase letters correct.

#include "colors.inc" // The include files contain
#include "stones.inc" // pre-defined scene elements

The first include statement reads in definitions for various useful colors. The second
include statement reads in a collection of stone textures. POV-Ray comes with many
standard include files. Others of interest are:

#include "textures.inc" // pre-defined scene elements
#include "shapes.inc"
#include "glass.inc"
#include "metals.inc"
#include "woods.inc"

They read pre-defined textures, shapes, glass, metal, and wood textures. It is a good
idea to have a look through them to see a few of the many possible shapes and textures
available.

We should only include files we really need in our scene. Some of the include files com-
ing with POV-Ray are quite large and we should better save the parsing time and mem-
ory if we don’t need them. In the following examples we will only usedb¥ors. inc,
andstones. inc include files.

We may have as many include files as needed in a scene file. Include files may them-
selves contain include files, but we are limited to declaring includes nested only ten
levels deep.

Filenames specified in the include statements will be searched for in the current direc-
tory first. If it fails to find your .Inc files in the current directory, POV-Ray searches
any “library paths” that you have specified. Library paths are options set byLthe
command-line switch oribrary Path option. See the chapter “Setting POV-Ray Op-
tions” for more information on library paths.

Because it is more useful to keep include files in a separate directory, standard in-
stallations of POV-Ray place these files in thgpovray3include directory (replace
‘c:\povray3’ with the actual directory that you installed POV-Ray in). If you get an
error message saying that POV-Ray cannot opefots.inc” or other include files,
make sure that you specify the library path properly.

28 Getting Started

2.1.3 Adding a Camera

Thecamera statement describes where and how the camera sees the scene. It gives x-,
y- and z-coordinates to indicate the position of the camera and what part of the scene it
is pointing at. We describe the coordinates using a threevpatbr. A vector is spec-

ified by putting three numeric values between a pair of angle brackets and separating
the values with commas. We add the following camera statement to the scene.

camera {
location <0, 2, -3>
look_at <0, 1, 2>
}

Briefly, location <@,2,-3> places the camera up two units and back three units from
the center of the ray-tracing universe which is<&0,0>. By default+z is into the
screen and -z is back out of the screen.

Also look_at <0,1,2> rotates the camera to point at the coordinated,2-. A point

1 unit up from the origin and 2 units away from the origin. This makes it 5 units in
front of and 1 unit lower than the camera. Thak_at point should be the center of
attention of our image.

2.1.4 Describing an Object

Now that the camera is set up to record the scene, let’s place a yellow sphere into the
scene. We add the following to our scene file:

sphere {
<0, 1, 2>, 2
texture {
pigment { color Yellow }
}
}

The first vector specifies the center of the sphere. In this example the x coordinate is
zero so it is centered left and right. It is also atlyor one unit up from the origin. The

z coordinate is 2 which is five units in front of the camera, which is=aBz After the
center vector is a comma followed by the radius which in this case is two units. Since
the radius is half the width of a sphere, the sphere is four units wide.

2.1.5 Adding Texture to an Object

After we have defined the location and size of the sphere, we need to describe the
appearance of the surface. Ttexture statement specifies these parameters. Texture
blocks describe the color, bumpiness and finish properties of an object. In this example
we will specify the color only. This is the minimum we must do. All other texture
options except color will use default values.

The color we define is the way we want an object to look if fully illuminated. If we
were painting a picture of a sphere we would use dark shades of a color to indicate
the shadowed side and bright shades on the illuminated side. However ray-tracing

2.1 Our First Image 29

takes care of that for you. We only need to pick the basic color inherent in the object
and POV-Ray brightens or darkens it depending on the lighting in the scene. Because
we are defining the basic color the object actualigs rather than how itooks the
parameter is callepligment.

Many types of color patterns are available for use in a pigment statement. The keyword
color specifies that the whole object is to be one solid color rather than some pattern
of colors. We can use one of the color identifiers previously defined in the standard
include file colors.inc.

If no standard color is available for our needs, we may define our own color by using
the color keyword followed byed, green, and blue keywords specifying the amount

of red, green and blue to be mixed. For example a nice shade of pink can be specified
by:

color red 1.0 green 0.8 blue 0.8

Note: the international - rather than American - form “colour” is also acceptable and
may be used anywhere that “color” may be used.

The values after each keyword should be in the range from 0.0 to 1.0. Any of the three
components not specified will default to 0. A shortcut notation may also be used. The
following produces the same shade of pink:

color rgb <1.0, 0.8, 0.8>

In many cases thelor keyword is superfluous, so the shortest way to specify the pink
coloris:

rgb <1.0, 0.8, 0.8>

Colors are explained in more detail in section “Specifying Colors”.

2.1.6 Defining a Light Source

One more detail is needed for our scene. We need a light source. Until we create one,
there is no light in this virtual world. Thus we add the line

light_source { <2, 4, -3> color White}
to the scene file to get our first complete POV-Ray scene file as shown below.

#include "colors.inc"
background { color Cyan }
camera {
location <0, 2, -3>
look_at <0, 1, 2>
}
sphere {
<0, 1, 2>, 2
texture {
pigment { color Yellow }
}
}
light_source { <2, 4, -3> color White}

30 Getting Started

The vector in thaight_source statement specifies the location of the light as two units
to our right, four units above the origin and three units back from the origin. The light
source is an invisible tiny point that emits light. It has no physical shape, so no texture
is needed.

That's it! We close the file and render a small picture of it using whatever methods you
used for your particular platform. If you specified a preview display it will appear on
your screen. If you specified an output file (the default is file output on), then POV-Ray
also created a file.

Note: if you do not have high color or true color display hardware then the preview
image may look poor but the full detail is written to the image file regardless of the
type of display.

The scene we just traced isn't quite state of the art but we will have to start with the
basics before we soon get to much more fascinating features and scenes.

2.2 Basic Shapes

So far we have just used the sphere shape. There are many other types of shapes that
can be rendered by POV-Ray. The following sections will describe how to use some of
the more simple objects as a replacement for the sphere used above.

2.2.1 Box Object

Thebox is one of the most common objects used. We try this example in place of the
sphere:

box {
<-1, 0, -1>, // Near lower left corner
<1, 0.5, 3> // Far upper right corner
texture {
T_Stone25 // Pre-defined from stones.inc
scale 4 // Scale by the same amount in all
// directions
}
rotate y*20 // Equivalent to "rotate <0,20,0>"
}

In the example we can see that a box is defined by specifying the 3D coordinates of its
opposite corners. The first vector is generally the minimum x-, y- and z-coordinates and
the 2nd vector should be the maximum x-, y- and z-values however any two opposite
corners may be used. Box objects can only be defined parallel to the axes of the world
coordinate system. We can later rotate them to any angle.

Note: we can perform simple math on values and vectors. In the rotate parameter we
multiplied the vector identifiey by 20. This is the same a©,1,0-*20 or <0,20,0-.

2.2 Basic Shapes 31

2.2.2 Cone Object

Here’s another example showing how to usmie:

cone {
<0, 1, 0, 0.3 // Center and radius of one end
<1, 2, 3>, 1.0 // Center and radius of other end
texture { T_Stone25 scale 4 }

}

The cone shape is defined by the center and radius of each end. In this example one
end is at locatiork0,1,8> and has a radius of 0.3 while the other end is centered at
<1,2,3> with a radius of 1. If we want the cone to come to a sharp point we must use
radius=0. The solid end caps are parallel to each other and perpendicular to the cone
axis. If we want an open cone with no end caps we have to add the keywardfter

the 2nd radius like this:

cone {
<0, 1, 0>, 0.3 // Center and radius of one end
<1, 2, 3>, 1.0 // Center and radius of other end
open // Removes end caps
texture { T_Stone25 scale 4 }

}

2.2.3 Cylinder Object

We may also define @ylinder like this:

cylinder {
<0, 1, 0>, // Center of one end
<1, 2, 3>, // Center of other end
0.5 // Radius
open // Remove end caps
texture { T_Stone25 scale 4 }

}

2.2.4 Plane Object

Let's try out a computer graphics standdithe Checkered Floor”. We add the fol-
lowing object to the first version of thizmo . pov file, the one including the sphere.

plane { <0, 1, 6>, -1
pigment {
checker color Red, color Blue
}
}

The object defined here is an infinite plane. The veet®,0> is the surface normal

of the plane (i.e. if we were standing on the surface, the normal points straight up).
The number afterward is the distance that the plane is displaced along the normal from
the origin — in this case, the floor is placed at+¥ so that the sphere at{, radius-2,

is resting on it.

32 Getting Started

Note: even though there is neexture statement there is an implied texture here. We
might find that continually typing statements that are nesteddésgure {pigment}

can get to be tiresome so POV-Ray let’s us leave out theture statement under
many circumstances. In general we only need the texture block surrounding a tex-
ture identifier (like the T_Stone25 example above), or when creating layered textures
(which are covered later).

This pigment uses the checker color pattern and specifies that the two colors red and
blue should be used.

Because the vectorsl,0,0>, <0,1,0> and<0,0,2> are used frequently, POV-Ray has
three built-in vector identifiersx, y andz respectively that can be used as a shorthand.
Thus the plane could be defined as:

plane { y, -1
pigment { ... }
}

Note: that we do not use angle brackets around vector identifiers.

Looking at the floor, we notice that the ball casts a shadow on the floor. Shadows are
calculated very accurately by the ray-tracer, which creates precise, sharp shadows. In
the real world, penumbral or “soft” shadows are often seen. Later we will learn how to
use extended light sources to soften the shadows.

2.2.5 Torus Object

A torus can be thought of as a donut or an inner-tube. It is a shape that is vastly useful
in many kinds of CSG so POV-Ray has adopted this 4th order quartic polynomial as a
primitive shape. The syntax for a torus is so simple that it makes it a very easy shape
to work with once we learn what the two float values mean. Instead of a lecture on the
subject, let’s create one and do some experiments with it.

We create a file callegordemo.pov and edit it as follows:

#include "colors.inc"
camera {
location <0, .1, -25>
look_at O
angle 30
}
background { color Gray5® } // to make the torus easy to see
light_source { <300, 300, -1000> White }

torus {
4, 1 // major and minor radius
rotate -90%x // so we can see it from the top
pigment { Green }

}

We trace the scene. Well, it's a donut alright. Let's try changing the major and minor
radius values and see what happens. We change them as follows:

torus { 5, .25 // major and minor radius

That looks more like a hula-hoop! Let’s try this:

2.2 Basic Shapes 33

torus { 3.5, 2.5 // major and minor radius
Whoa! A donut with a serious weight problem!

With such a simple syntax, there isn't much else we can do to a torus besides change
its texture... or is there? Let’s see...

Tori are very useful objects in CSG. Let's try a little experiment. We makéardnce
of a torus and a box:

difference {
torus {
4, 1
rotate x*-90 // so we can see it from the top
}
box { <-5, -5, -1>, <5, 0, 1>}
pigment { Green }

}

Interesting... a half-torus. Now we add another one flipped the other way. Only, let’s
declare the original half-torus and the necessary transformations so we can use them
again:

#declare Half_Torus = difference {
torus {
4, 1
rotate -90*x // so we can see it from the top
}
box { <-5, -5, -1>, <5, 0, 1>}
pigment { Green }
}
#declare Flip_It_Over = 180%x;
#declare Torus_Translate = 8; // twice the major radius

Now we create a union of twialf_Torus objects:

union {
object { Half _Torus }
object { Half Torus
rotate Flip_It_Over
translate Torus_Translate*x
}
}

This makes an S-shaped object, but we can’'t see the whole thing from our present
camera. Let’s add a few more links, three in each direction, move the object along the
+z-direction and rotate it about they-axis so we can see more of it. We also notice
that there appears to be a small gap where the half Tori meet. This is due to the fact that
we are viewing this scene from directly on the x-z-plane. We will change the camera’s
y-coordinate from 0 to 0.1 to eliminate this.

union {
object { Half Torus }
object { Half_Torus
rotate Flip_It_Over
translate x*Torus_Translate

}

34 Getting Started

object { Half _Torus

translate x*Torus_Translate*2
}
object { Half _Torus

rotate Flip_It_Over

translate x*Torus_Translate*3
}
object { Half Torus

rotate Flip_It_Over

translate -x*Torus_Translate
}
object { Half Torus

translate -x*Torus_Translate*2
}
object { Half Torus

rotate Flip_It_Over

translate -x*Torus_Translate*3
}
object { Half_Torus

translate -x*Torus_Translate*4
}
rotate y*45
translate z*20

}

Rendering this we see a cool, undulating, snake-like something-or-other. Neato. But
we want to model something useful, something that we might see in real life. How
about a chain?

Thinking about it for a moment, we realize that a single link of a chain can be easily
modeled using two half tori and two cylinders. We create a new file. We can use the
same camera, background, light source and declared objects and transformations as we
used in tordemo.pov:

#include "colors.inc"
camera {
location <0, .1, -25>
look_at O
angle 30
}
background { color Gray50 }
light_source{ <300, 300, -1000> White }
#declare Half Torus = difference {
torus {
4,1
sturm
rotate x*-90 // so we can see it from the top
}
box { <-5, -5, -1>, <5, 0, 1>}
pigment { Green }
}
#declare Flip_It_Over = x*180;
#declare Torus_Translate = 8;

Now, we make a complete torus of two half tori:

2.2 Basic Shapes 35

union {

object { Half_Torus }

object { Half Torus rotate Flip_It_Over }
}

This may seem like a wasteful way to make a complete torus, but we are really going
to move each half apart to make room for the cylinders. First, we add the declared
cylinder before the union:

#declare Chain_Segment = cylinder {
<0, 4, 0>, <0, -4, 0, 1
pigment { Green }

}

We then add twahain_Segments to the union and translate them so that they line up
with the minor radius of the torus on each side:

union {
object { Half_Torus }
object { Half Torus rotate Flip_It_Over }
object { Chain_Segment translate x*Torus_Translate/2 }
object { Chain_Segment translate -x*Torus_Translate/2 }

}

Now we translate the two half to#ly and -y so that the clipped ends meet the ends of
the cylinders. This distance is equal to half of the previously decleugd _Translate:

union {
object {
Half_Torus
translate y*Torus_Translate/2
}
object {
Half_Torus
rotate Flip_It_Over
translate -y*Torus_Translate/2
}
object {
Chain_Segment
translate x*Torus_Translate/2
}
object {
Chain_Segment
translate -x*Torus_Translate/2
}
}

We render this and voila! A single link of a chain. But we aren’t done yet! Whoever
heard of a green chain? We would rather use a nice metallic color instead. First,
we remove any pigment blocks in the declared tori and cylinders. Then we add a
declaration for a golden texture just before the union that creates the link. Finally, we
add the texture to the union and declare it as a single link:

#declare Half _Torus = difference {
torus {
4,1
sturm

36 Getting Started

rotate x*-90 // so we can see it from the top
}
box { <-5, -5, -1>, <5, 0, 1>}
}

#declare Chain_Segment = cylinder {
<0, 4, 0>, <0, -4, 0>, 1
}

#declare Chain_Gold = texture {
pigment { BrightGold }

finish {
ambient .1
diffuse .4

reflection .25
specular 1
metallic
}
}

#declare Link = union {
object {
Half_Torus
translate y*Torus_Translate/2
}
object {
Half_Torus
rotate Flip_It_Over
translate -y*Torus_Translate/2
}
object {
Chain_Segment
translate x*Torus_Translate/2
}
object {
Chain_Segment
translate -x*Torus_Translate/2
} texture { Chain_Gold }
}

Now we make a union of two links. The second one will have to be translatesb
that its inner wall just meets the inner wall of the other link, just like the links of a
chain. This distance turns out to be double the previously deciaied Translate
minus 2 (twice the minor radius). This can be described by the expression:

Torus_Translate®2-2*y
We declare this expression as follows:
#declare Link Translate = Torus_Translate*2-2%*y;

In the object block, we will use this declared value so that we can multiply it to create
other links. Now, we rotate the second lind®*y so that it is perpendicular to the first,
just like links of a chain. Finally, we scale the union by ko that we can see the

2.2 Basic Shapes 37

whole thing:

union {
object { Link }
object { Link translate y*Link_Translate rotate y*90 }
scale .25

}

We render this and we will see a very realistic pair of links. If we want to make an
entire chain, we must declare the above union and then create another union of this
declared object. We must be sure to remove the scaling from the declared object:

#declare Link_Pair =
union {

object { Link }

object { Link translate y*Link Translate rotate y*90 }
}

Now we declare our chain:

#declare Chain = union {

object { Link Pair}

object { Link _Pair translate y*Link_Translate*2 }

object { Link Pair translate y*Link_Translate*4 }

object { Link_Pair translate y*Link Translate*6 }

object { Link Pair translate -y*Link_Translate*2 }

object { Link Pair translate -y*Link_Translate®4 }
{ }

object Link_Pair translate -y*Link_Translate*6

}

And finally we create our chain with a couple of transformations to make it easier to
see. These include scaling it down by a factor @f01 and rotating it so that we can
clearly see each link:

object { Chain scale .1 rotate <0, 45, -45> }

Figure 2.3: The torus object can be used to create chains.

We render this and we should see a very realistic gold chain stretched diagonally across
the screen.

38 Getting Started

2.3 CSG Objects

You know you have been raytracing too long when ...

... Your friends are used to the fact that you will suddenly stop walking in order to
look at objects and figure out how to do them as CSGs.

—JefLee

Constructive Solid Geometry, or CSG, is a powerful tool to combine primitive objects
to create more complex objects as shown in the following sections.

2.3.1 Whatis CSG?

CSGstands folConstructive Solid Geometri?POV-Ray allows us to construct complex
solids by combining primitive shapes in fourfdirent ways. In thenion statement,

two or more shapes are added together. Withithersection statement, two or

more shapes are combined to make a new shape that consists of the area common to
both shapes. Theifference statement, an initial shape has all subsequent shapes
subtracted from it.

And last but not leasierge, which is like a union where the surfaces inside the union
are removed (useful in transparent CSG objects). We will deal with each of these in
detail in the next few sections.

CSG objects can be extremely complex. They can be deeply nested. In other words
there can be unions of fiérences or intersections of merges dfatences of inter-
sections or even unions of intersections dfatiences of merges... ad infinitum. CSG
objects are (almost always) finite objects and thus respond to auto-bounding and can
be transformed like any other POV primitive shape.

2.3.2 CSG Union

Let’s try making a simple union. Create a file calletsgdemo.pov and edit it as fol-
lows:

#include "colors.inc"
camera {
location <0, 1, -10>
look_at O
angle 36
}
light_source { <500, 500, -1000> White }
plane { y, -1.5
pigment { checker Green White }
}

Let’'s add two spheres each translated 0.5 units along the x-axis in each direction. We
color one blue and the other red.

sphere { <0, 0, 0>, 1
pigment { Blue }

2.3 CSG Objects 39

translate -0.5%x

}

sphere { <0, 0, 0>, 1
pigment { Red }
translate 0.5%x

}

We trace this file and note the results. Now we place a union block around the two
spheres. This will create a single CSG union out of the two objects.

union{
sphere { <0, 0, 0>, 1
pigment { Blue }
translate -0.5%x
}
sphere { <0, 0, 0>, 1
pigment { Red }
translate 0.5%x
}
}

We trace the file again. The union will appear néatient from what each sphere
looked like on its own, but now we can give the entire union a single texture and
transform it as a whole. Let’s do that now.

union{
sphere { <0, 0, 0>, 1
translate -0.5%x

}
sphere { <0, 0, 0>, 1
translate 0.5%x

}

pigment { Red }

scale <1, .25, 1>

rotate <30, 0, 45>
}

We trace the file again. As we can see, the object has changed dramatically. We
experiment with dferent values of scale and rotate and try sonfieint textures.

There are many advantages of assigning only one texture to a CSG object instead of
assigning the texture to each individual component. First, it is much easier to use one
texture if our CSG object has a lot of components because changing the objects appear-
ance involves changing only one single texture. Second, the file parses faster because
the texture has to be parsed only once. This may be a great factor when doing large
scenes or animations. Third, using only one texture saves memory because the texture
is only stored once and referenced by all components of the CSG object. Assigning the
texture to all n components means that it is stored n times.

2.3.3 CSG Intersection

Now let's use these same spheres to illustrate the next kind of CSG objeiatt #rgection.
We change the wordnion to intersection and delete thecale and rotate State-
ments:

40 Getting Started

intersection {
sphere { <0, 0, 0>, 1
translate -0.5%x
}
sphere { <0, 0, 0>, 1
translate 0.5%x

}
pigment { Red }
}

We trace the file and will see a lens-shaped object instead of the two spheres. This
is because an intersection consists of the area shared by both shapes, in this case the
lens-shaped area where the two spheres overlap. We like this lens-shaped object so we
will use it to demonstrate fferences.

2.3.4 CSG Dfference

We rotate the lens-shaped intersection about the y-axis so that the broad side is facing
the camera.

intersection{
sphere { <0, 0, 0>, 1
translate -0.5%x
}
sphere { <0, 0, 0>, 1
translate 0.5%x
}
pigment { Red }
rotate 90*y
}

Let’s create a cylinder and stick it right in the middle of the lens.

cylinder { <0, 0, -1> <0, 0, 1>, .35
pigment { Blue }
}

We render the scene to see the position of the cylinder. We will plati€ ference
block around both the lens-shaped intersection and the cylinder like this:

difference {
intersection {
sphere { <0, 0, 0>, 1
translate -0.5%x
}
sphere { <0, 0, 0>, 1
translate 0.5%x
}
pigment { Red }
rotate 90*y
}
cylinder { <0, 0, -1> <0, 0, 1>, .35
pigment { Blue }
}

2.3 CSG Objects 41

We render the file again and see the lens-shaped intersection with a neat hole in the
middle of it where the cylinder was. The cylinder has beétracted from the in-
tersection. Note that the pigment of the cylinder causes the surface of the hole to be
colored blue. If we eliminate this pigment the surface of the hole will be black, as this
is the default color if no color is specified.

OK, let's get a little wilder now. Let's declare our perforated lens object to give it a
name. Let's also eliminate all textures in the declared object because we will want
them to be in the final union instead.

#declare Lens_With_Hole = difference {
intersection {
sphere { <0, 0, 0>, 1
translate -0.5%x
}
sphere { <0, 0, 0>, 1
translate 0.5%x
}
rotate 90*y
}
cylinder { <0, 0, -1> <0, 0, 1>, .35 }
}

Let’s use a union to build a complex shape composed of copies of this object.

union {
object { Lens_With_Hole translate <-.65, .65, 0> }
object { Lens_With_Hole translate <.65, .65, 0> }
object { Lens_With_Hole translate <-.65, -.65, 0> }
object { Lens_With_Hole translate <.65, -.65, 0> }
pigment { Red }

}

We render the scene. An interesting object to be sure. But let’s try something more.
Let's make it a partially-transparent object by adding some filter to the pigment block.

union {
object { Lens_With_Hole translate <-.65, .65, 0> }
object { Lens_With_Hole translate <.65, .65, 0> }
object { Lens_With_Hole translate <-.65, -.65, 0> }
object { Lens_With_Hole translate <.65, -.65, 0> }
pigment { Red filter .5 }

}

We render the file again. This looks pretty good... only... we can see parts of each of
the lens objects inside the union! This is not good.

2.3.5 CSG Merge

This brings us to the fourth kind of CSG object, therge. Merges are the same as
unions, but the geometry of the objects in the CSG that is inside the merge is not
traced. This should eliminate the problem with our object. Let's try it.

merge {
object { Lens_With_Hole translate <-.65, .65, 0> }

42 Getting Started

object { Lens_With_Hole translate <.65, .65, 0> }
object { Lens_With_Hole translate <-.65, -.65, 0> }
object { Lens_With_Hole translate <.65, -.65, 0> }
pigment { Red filter .5 }

}

Sure enough, it does!

2.3.6 CSG Pitfalls

There is a severe pitfall in the CSG code that we have to be aware of.

Co-incident Surfaces

POV-Ray uses insideutside tests to determine the points at which a ray intersects
a CSG object. A problem arises when the surfaces of t#Wiergint shapes coincide
because there is no way (due to the computer’s floating-point accuracy) to tell whether
a point on the coincident surface belongs to one shape or the other.

Look at the following example where a cylinder is used to cut a hole in a larger box.

difference {

box { -1, 1 pigment { Red } }

cylinder { -z, z, 0.5 pigment { Green } }
}

Note: that the vectors -1 and 1 in the box definition expaneb,-1,-1> and<1,1,1>
respectively.

If we trace this object we see red speckles where the hole is supposed to be. This is
caused by the coincident surfaces of the cylinder and the box. One time the cylinder’s
surface is hit first by a viewing ray, resulting in the correct rendering of the hole, and
another time the box is hit first, leading to a wrong result where the hole vanishes and
red speckles appear. This problem can be avoided by increasing the size of the cylinder
to get rid of the coincidence surfaces. This is done by:

difference {

box { -1, 1 pigment { Red } }

cylinder { -1.001*z, 1.001%z, 0.5 pigment { Green } }
}

In general we have to make the subtracted object a little bit larger in a C&&3-di
ence. We just have to look for coincident surfaces and increase the subtracted object
appropriately to get rid of those surfaces.

The same problem occurs in CSG intersections and is also avoided by scaling some of
the involved objects.

2.4 The Light Source

You know you have been raytracing too long when ...

2.4 The Light Source 43

... You take a photo course just to learn how to get the lighting right.
— Christoph Rieder

In any ray-traced scene, the light needed to illuminate our objects and their surfaces
must come from a light source. There are many kinds of light sources available in
POV-Ray and careful use of the correct kind can yield very impressive results. Let'’s
take a moment to explore some of théelient kinds of light sources and their various
parameters.

2.4.1 The Pointlight Source

Pointlights are exactly what the name indicates. A pointlight has no size, is invisible
and illuminates everything in the scene equally no matter how far away from the light
source it may be (this behavior can be changed). This is the simplest and most basic
light source. There are only two important parameters, location and color. Let's design
a simple scene and place a pointlight source in it.

We create a new file and namé@ iftedemo.pov. We edit it as follows:

#include "colors.inc"
#include "textures.inc"
camera {
location <-4, 3, -9>
look_at <0, 0, 0>
angle 48
}

We add the following simple objects:

plane {
y, -1
texture {
pigment {
checker
color rgb<0.5, 0, 0>
color rgb<®, 0.5, 0.5>
}
finish {
diffuse 0.4
ambient 0.2
phong 1
phong_size 100
reflection 0.25
}
}
}
torus {
1.5, 0.5
texture { Brown_Agate }
rotate <90, 160, 0>
translate <-1, 1, 3>
}
box {

44 Getting Started

<-1, -1, -1>, <1, 1, 1>
texture { DMFLightOak }
translate <2, 0, 2.3>

}

cone {
<0,1,0>, 0, <0,0,0>, 1
texture { PinkAlabaster }
scale <1, 3, 1>
translate <-2, -1, -1>

}

sphere {
<0,0,0>,1
texture { Sapphire_Agate }
translate <1.5, 0, -2>

}
Now we add a pointlight:

light_source {
<2, 10, -3>
color White

}

We render this at 200x15@ and see that the objects are clearly visible with sharp
shadows. The sides of curved objects nearest the light source are brightest in color
with the areas that are facing away from the light source being darkest. We also note
that the checkered plane is illuminated evenly all the way to the horizon. This allows
us to see the plane, but it is not very realistic.

2.4.2 The Spotlight Source

Spotlights are a very useful type of light source. They can be used to add highlights and
illuminate features much as a photographer uses spots to do the same thing. To create
a spotlight simply add thepotlight keyword to a regular point light. There are a

few more parameters with spotlights than with pointlights. Thesearius, falloff,
tightness andpoint_at. Theradius parameter is the angle of the fully illuminated
cone. Thefalloff parameter is the angle of thenbracone where the light fallsfb

to darkness. Theightness is a parameter that determines the rate of the lightffallo
Thepoint_at parameter is just what it says, the location where the spotlight is pointing
to. Let’s change the light in our scene as follows:

light_source {
<0, 10, -3>
color White
spotlight
radius 15
falloff 20
tightness 10
point_at <0, 0, 0>
}

We render this at 200x15@ and see that only the objects are illuminated. The rest of
the plane and the outer portions of the objects are now unlit. There is a brodbidedio

2.4 The Light Source 45

but the shadows are still razor sharp. Let’s try fiddling with some of these parameters
to see what they do. We change the fillalue to 16 (it must always be larger than

the radius value) and render again. Now the féli® very narrow and the objects are
either brightly lit or in total darkness. Now we change félloack to 20 and change

the tightness value to 100 (higher is tighter) and render again. The spotlight appears to
have gotten much smaller but what has really happened is that thff fedlbbbecome

so steep that the radius actually appears smaller.

We decide that a tightness value of 10 (the default) and affalidue of 18 are best

for this spotlight and we now want to put a few spots around the scené&éat.eLet’s

place a slightly narrower blue and a red one in addition to the white one we already
have:

light_source {
<10, 10, -1>
color Red
spotlight
radius 12
falloff 14
tightness 10
point_at <2, 0, 0>
}
light_source {
<-12, 10, -1>
color Blue
spotlight
radius 12
falloff 14
tightness 10
point_at <-2, 0, 0>
}

Rendering this we see that the scene now has a wonderfully mysterious air to it. The
three spotlights all converge on the objects making them blue on one side and red on
the other with enough white in the middle to provide a balance.

2.4.3 The Cylindrical Light Source

Spotlights are cone shaped, meaning that th@&ce will change with distance. The
farther away from the spotlight an object is, the larger the apparent radius will be. But
we may want the radius and faffdo be a particular size no matter how far away the
spotlight is. For this reason, cylindrical light sources are needed. A cylindrical light
source is just like a spotlight, except that the radius andffakgions are the same no
matter how far from the light source our object is. The shape is therefore a cylinder
rather than a cone. We can specify a cylindrical light source by replacingdh#ight
keyword with thecylinder keyword. We try this now with our scene by replacing all
three spotlights with cylinder lights and rendering again. We see that the scene is much
dimmer. This is because the cylindrical constraints do not let the light spread out like
in a spotlight. Larger radius and faffovalues are needed to do the job. We try a radius
of 20 and a falld of 30 for all three lights. That'’s the ticket!

46 Getting Started

2.4.4 The Area Light Source

You know you have been raytracing too long when ...
... You wear fuzzy clothing to soften your shadow.
— Mark Kadela

So far all of our light sources have one thing in common. They produce sharp shadows.
This is because the actual light source is a point that is infinitely small. Objects are
either in direct sight of the light, in which case they are fully illuminated, or they
are not, in which case they are fully shaded. In real life, this kind of stark light and
shadow situation exists only in outer space where the direct light of the sun pierces the
total blackness of space. But here on Earth, light bends around objects, botihces o
objects, and usually the source has some dimension, meaning that it can be partially
hidden from sight (shadows are not sharp anymore). They have what is known as an
umbra or an area of fuzziness where there is neither total light or shade. In order to
simulate thesesoftshadows, a ray-tracer must give its light sources dimension. POV-
Ray accomplishes this with a feature known as an area light.

Area lights have dimension in two axis’. These are specified by the first two vectors
in the area light syntax. We must also specify how many lights are to be in the array.
More will give us cleaner soft shadows but will take longer to render. Usually a 3*3 or
a 5*5 array will sufice. We also have the option of specifying an adaptive value. The
adaptive keyword tells the ray-tracer that it can adapt to the situation and send only
the needed rays to determine the value of the pixel. If adaptive is not used, a separate
ray will be sent for every light in the area light. This can really slow things down. The
higher the adaptive value the cleaner the umbra will be but the longer the trace will
take. Usually an adaptive value of 1 isfiscient. Finally, we probably should use the
jitter keyword. This tells the ray-tracer to slightly move the position of each light
in the area light so that the shadows appear truly soft instead of giving us an umbra
consisting of closely banded shadows.

OK, let’s try one. We comment out the cylinder lights and add the following:

light_source {
<2, 10, -3>
color White
area_light <5, 0, 0, <0, 0, 5>, 5, 5
adaptive 1
jitter

}

This is a white area light centered @2,10,-3>. It is 5 units (along the x-axis) by 5

units (along the z-axis) in size and has 25 (5*5) lights in it. We have specified adaptive
1 and jitter. We render this at 200x158.

Right away we notice two things. The trace takes quite a bit longer than it did with
a point or a spotlight and the shadows are no longer sharp! They all have nice soft
umbrae around them. Wait, it gets better.

Spotlights and cylinder lights can be area lights too! Remember those sharp shadows
from the spotlights in our scene? It would not make much sense to use a 5*5 array for
a spotlight, but a smaller array might do a good job of giving us just the right amount

2.4 The Light Source 47

of umbra for a spotlight. Let’s try it. We comment out the area light and change the
cylinder lights so that they read as follows:

light_source {

}

<2, 10, -3>

color White

spotlight

radius 15

falloff 18

tightness 10

area_light <1, 0, 0>, <0, 0, 1>, 2, 2
adaptive 1

jitter

point_at <0, 0, 0>

light_source {

}

<10, 10, -1>

color Red

spotlight

radius 12

falloff 14

tightness 10

area_light <1, 0, 0>, <0, 0, 1>, 2, 2
adaptive 1

jitter

point_at <2, 0, 0>

light_source {

}

<-12, 10, -1>

color Blue

spotlight

radius 12

falloff 14

tightness 10

area_light <1, 0, 0>, <0, 0, 1>, 2, 2
adaptive 1

jitter

point_at <-2, 0, 0>

We now have three area-spotlights, one unit square consisting of an array of four (2*2)
lights, three diferent colors, all shining on our scene. We render this at 200x4.50
appears to work perfectly. All our shadows have small, tight umbrae, just the sort we
would expect to find on an object under a real spotlight.

2.4.5 The Ambient Light Source

The ambient light sourcaes used to simulate theffect of inter-difuse reflection. If
there wasn't inter-dfuse reflection all areas not directly lit by a light source would be
completely dark. POV-Ray uses th@bient keyword to determine how much light
coming from the ambient light source is reflected by a surface.

By default the ambient light source, which emits its light everywhere and in all direc-

48 Getting Started

tions, is pure whitefgb <1,1,1>). Changing its color can be used to create interesting
effects. First of all the overall light level of the scene can be adjusted easily. Instead of
changing all ambient values in every finish only the ambient light source is modified.
By assigning dferent colors we can create nicgeets like a moody reddish ambient
lighting. For more details about the ambient light source see “Ambient Light”.

Below is an example of a red ambient light source.

global_settings { ambient_light rgb<1l, 0, 0> }

2.4.6 Light Source Specials
Using Shadowless Lights

Light sources can be assigned #hadowless keyword and no shadows will be cast due

to its presence in a scene. Sometimes, scenesfii@ildito illuminate properly using

the lights we have chosen to illuminate our objects. It is impractical and unrealistic to
apply a higher ambient value to the texture of every object in the scene. So instead,
we would place a couple dill lights around the scene. Fill lights are simply dimmer
lights with theshadowless keyword that act to boost the illumination of other areas of
the scene that may not be lit well. Let’s try using one in our scene.

Remember the three colored area spotlights? We go back and un-comment them and
comment out any other lights we have made. Now we add the following:

light_source {
<0, 20, 0>
color Gray50
shadowless

}

This is a fairly dim light 20 units over the center of the scene. It will give a dim
illumination to all objects including the plane in the background. We render it and see.

Assigning an Object to a Light Source

Light sources are invisible. They are just a location where the light appears to be
coming from. They have no true size or shape. If we want our light source to be
a visible shape, we can use theéoks_1ike keyword. We can specify that our light
source can look like any object we choose. When weldsks_1ike, thenno_shadow

is applied to the object automatically. This is done so that the object will not block any
illumination from the light source. If we want some blocking to occur (as in a lamp
shade), it is better to simply use a union to do the same thing. Let’s add such an object
to our scene. Here is a light bulb we have made just for this purpose:

#declare Lightbulb = union {
merge {
sphere { <0,0,0>,1 }
cylinder {
<0,0,1>, <0,0,0>, 1
scale <0.35, 0.35, 1.0>
translate 0.5*z

2.4 The Light Source 49

}
texture {
pigment {color rgb <1, 1, 1>}
finish {ambient .8 diffuse .6}
}
}
cylinder {
<0,0,1>, <0,0,0>, 1
scale <0.4, 0.4, 0.5>
texture { Brass_Texture }
translate 1.5%z

}
rotate -90%*x
scale .5

}
Now we add the light source:

light_source {

<0, 2, 0>

color White

looks_like { Lightbulb }
}

Rendering this we see that a fairly believable light bulb now illuminates the scene.
However, if we do not specify a high ambient value, the light bulb is not lit by the light

source. On the plus side, all of the shadows fall away from the light bulb, just as they
would in a real situation. The shadows are sharp, so let’s make our bulb an area light:

light_source {
<0, 2, 0>
color White
area_light <1, 0, 0>, <0, 1, 0>, 2, 2
adaptive 1
jitter
looks_like { Lightbulb }
}

We note that we have placed this area light in the x-y-plane instead of the x-z-plane.
We also note that the actual appearance of the light bulb isffesttad in any way by

the light source. The bulb must be illuminated by some other light source or by, as in
this case, a high ambient value.

Using Light Fading

If it is realism we want, it is not realistic for the plane to be evenly illuminat&dmo

the distance. In real life, light gets scattered as it travels so it diminishes its ability to
illuminate objects the farther it gets from its source. To simulate this, POV-Ray allows
us to use two keywordsfade_distance, which specifies the distance at which full
illumination is achieved, andlade_power, an exponential value which determines the
actual rate of attenuation. Let's apply these keywords to our fill light.

First, we make the fill light a little brighter by changingray50 to Gray75. Now we
change that fill light as follows:

50 Getting Started

light_source {
<0, 20, 0>
color Gray75
fade_distance 5
fade_power 1
shadowless

}

This means that the full value of the fill light will be achieved at a distance of 5 units
away from the light source. The fade power of 1 means that thefffa¥it be linear
(the light falls df at a constant rate). We render this to see the result.

That definitely worked! Now let’s try a fade power of 2 and a fade distance of 10.
Again, this works well. The fallff is much faster with a fade power of 2 so we had to
raise the fade distance to 10.

2.5 Simple Texture Options

The pictures rendered so far where somewhat boring regarding the appearance of the
objects. Let's add some fancy features to the texture.

2.5.1 Surface Finishes

One of the main features of a ray-tracer is its ability to do interesting things with surface
finishes such as highlights and reflection. Let’s add a nice little Phong highlight (shiny
spot) to a sphere. To do this we need to addle sh keyword followed by a parameter.

We change the definition of the sphere to this:

sphere {
<0, 1, 2>, 2
texture {
pigment { color Yellow } //Yellow is pre-defined in COLORS.INC
finish { phong 1 }
}
}

We render the scene. Thiong keyword adds a highlight the same color of the light
shining on the object. It adds a lot of credibility to the picture and makes the object look
smooth and shiny. Lower values of phong will make the highlight less bright (values
should be between 0 and 1).

2.5.2 Adding Bumpiness

The highlight we have added illustrates how much of our perception depends on the
reflective properties of an object. Ray-tracing can exploit this by playing tricks on our
perception to make us see complex details that aren't really there.

Suppose we wanted a very bumpy surface on the object. It would be \faouidito
mathematically model lots of bumps. We can however simulate the way bumps look
by altering the way light reflectsfibof the surface. Reflection calculations depend on

2.5 Simple Texture Options 51

a vector called aurface normal This is a vector which points away from the surface
and is perpendicular to it. By artificially modifying (or perturbing) this normal vector
we can simulate bumps. We change the scene to read as follows and render it:

sphere {
<0, 1, 2>, 2
texture {
pigment { color Yellow }
normal { bumps 0.4 scale 0.2 }
finish { phong 1 }
}
}

This tells POV-Ray to use thamps pattern to modify the surface normal. The value
0.4 controls the apparent depth of the bumps. Usually the bumps are about 1 unit wide
which doesn’t work very well with a sphere of radius 2. The scale makes the bumps
1/5th as wide but does noftact their depth.

2.5.3 Creating Color Patterns

We can do more than assigning a solid color to an object. We can create complex
patterns in the pigment block like in these examples:

sphere {
<0, 1, 2>, 2
texture {
pigment {
wood
color_map {
[0.0 color DarkTan]
[0.9 color DarkBrown]
[1.0 color VeryDarkBrown]
}
turbulence 0.05
scale <0.2, 0.3, 1>
}
finish { phong 1 }
}
}

sphere {
<0, 1, 2>, 2
texture {
pigment {
wood
color_map {
[0.0 color Red]
[0.5 color Red]
[0.5 color Blue]
[1.0 color Blue]
}
scale <0.2, 0.3, 1>
}

52 Getting Started

finish { phong 1 }
}
}

The keywordwood specifies a pigment pattern of concentric rings like rings in wood.
For every position in POV-space, a pattern returns a float value in the range from zero
to one. Values outside the zero to one range are ignoredcodlllbe map specifies what

color vector is assigned to that float value. In the first example the color of the wood
blends fronbarkTan to DarkBrown over the first 90% of the vein and frobarkBrown

to VeryDarkBrown over the remaining 10%. In the second example the colors do not
blend from one to an other, but change abrupt. Tih®ulence keyword slightly stirs

up the pattern so the veins aren'’t perfect circles andt¢hee keyword adjusts the size

of the pattern.

Most patterns are set up by default to give us éestureacross a sphere of radius

1.0. A feature is very roughly defined as a color transition. For example, a wood
texture would have one band on a sphere of radius 1.0. In this example we scale the
pattern using thecale keyword followed by a vector. In this case we scaled 0.2 in

the x direction, 0.3 in the y direction and the z direction is scaled by 1, which leaves it
unchanged. Scale values larger than one will stretch an element. Scale values smaller
than one will squish an element. A scale value of one will leave an element unchanged.

2.5.4 Pre-defined Textures

POV-Ray has some very sophisticated textures pre-defined in the standard include files
glass.inc, metals.inc, stones.inc andwoods.inc. Some are entire textures with
pigment, normal andr finish parameters already defined. Some are just pigments or
just finishes.

We change the definition of our sphere to the following and then re-render it:

sphere {
<0, 1, 2>, 2
texture {
pigment {
DMFWood4 // pre-defined in textures.inc
scale 4 // scale by the same amount in all
// directions
}
finish { Shiny } // pre-defined in finish.inc
}
}

The pigment identifiebMFWiood4 has already been scaled down quite small when it was
defined. For this example we want to scale the pattern larger. Because we want to scale
it uniformly we can put a single value after the scale keyword rather than a vector of x,
y, z scale factors.

We look through the fileextures.inc to see what pigments and finishes are defined
and try them out. We just insert the name of the new pigment wihgod4 is now
or try a diferent finish in place ofhiny and re-render our file.

Here is an example of using a complete texture identifier rather than just the pieces.

2.6 Using the Camera 53

sphere {

<0, 1, 2>, 2

texture { PinkAlabaster }
}

2.6 Using the Camera

2.6.1 Using Focal Blur

Let’s construct a simple scene to illustrate the use of focal blur. For this example we

will use a pink sphere, a green box and a blue cylinder with the sphere placed in the
foreground, the box in the center and the cylinder in the background. A checkered floor
for perspective and a couple of light sources will complete the scene. We create a new
file called focaldem.pov and enter the following text

#include "colors.inc"
#include "shapes.inc"
#include "textures.inc"
sphere {
<1, 0, -6>, 0.5
finish {
ambient 0.1
diffuse 0.6
}
pigment { NeonPink }
}
box {
<-1, -1, -1>, <1, 1, 1>
rotate <0, -20, 0>
finish {
ambient 0.1
diffuse 0.6
}
pigment { Green }
}
cylinder {
<-6, 6, 30>, <-6, -1, 30>, 3
finish {
ambient 0.1
diffuse 0.6
}
pigment {NeonBlue}
}
plane {
y, -1.0
pigment {
checker color Gray65 color Gray30
}
}
light_source { <5, 30, -30> color White }
light_source { <-5, 30, -30> color White }

54 Getting Started

Now we can proceed to place our focal blur camera to an appropriate viewing position.
Straight back from our three objects will yield a nice view. Adjusting the focal point
will move the point of focus anywhere in the scene. We just add the following lines to
the file:

camera {
location <0.0, 1.0, -10.0>
look_at <0.0, 1.0, 0.0>
// focal_point <-6, 1, 30> // blue cylinder in focus

// focal_point < 0, 1, 0> // green box in focus
focal_point < 1, 1, -6> // pink sphere in focus
aperture 0.4 // a nice compromise

// aperture 0.05 // almost everything is in focus

// aperture 1.5 // much blurring

// blur_samples 4 // fewer samples, faster to render
blur_samples 20 // more samples, higher quality image

}

The focal point is simply the point at which the focus of the camera is at its sharpest.
We position this point in our scene and assign a value to the aperture to adjust how
close or how far away we want the focal blur to occur from the focused area.

The aperture setting can be consideredisea of focus Opening up the aperture has
the dfect of making the area of focus smaller while giving the aperture a smaller value
makes the area of focus larger. This is how we control where focal blur begins to occur
around the focal point.

The blur samples setting determines how many rays are used to sample each pixel.
Basically, the more rays that are used the higher the quality of the resultant image,
but consequently the longer it takes to render. Each scendésatit so we have to
experiment. This tutorial has examples of 4 and 20 samples but we can use more
for high resolution images. We should not use more samples than is necessary to
achieve the desired quality - more samples take more time to render. The confidence
and variance settings are covered in section “Focal Blur”.

We experiment with the focal point, aperture, and blur sample settings. The scene has
lines with other values that we can try by commenting out the default line with double
slash marks and un-commenting the line we wish to try out. We make only one change
at a time to see thdiect on the scene.

Two final points when tracing a scene using a focal blur camera. We needn't specify
anti-aliasing because the focal blur code uses its own sampling method that automat-
ically takes care of anti-aliasing. Focal blur can only be used with the perspective
camera.

2.7 POV-Ray Coordinate System

Objects, lights and the camera are positioned using a typical 3D coordinate system.
The usual coordinate system for POV-Ray has the positive y-axis pointing up, the pos-
itive x-axis pointing to the right and the positive z-axis pointing into the screen. The
negative values of the axes point the other direction as shown in the images in section
“Understanding POV-Ray’s Coordinate System”.

2.7 POV-Ray Coordinate System 55

Locations within that coordinate system are usually specified by a three component
vector. The three values correspond to the x, y and z directions respectively. For
example, the vectot1,2,3> means the point that’s one unit to the right, two units up
and three units in front of the center of the universe@®, 0>.

Vectors are not always points though. They can also refer to an amount to size, move
or rotate a scene element or to modify the texture pattern applied to an object.

The size, location, orientation, and deformation of items within the coordinate system
is controlled by modifiers callelansformations The follow sub-sections describe the
transformations and their usage.

2.7.1 Transformations

The supported transformations afetate, scale, andtranslate. They are used to
turn, size and move an object or texture. A transformation matrix may also be used to
specify complex transformations directly. Groups of transformations may be merged
together and stored in a transformation identifier. The syntax for transformations is as
follows.

TRANSFORMATION:
rotate <Rotate_Amt> | scale <Scale_Amt> |
translate <Translate_Amt> | transform TRANSFORM_IDENTIFIER |
transform { TRANSFORMATION_BLOCK...} |
matrix <Val®®, Val®l, Val®2,
Vall®, Valll, Vallz,
Valz®, Val21l, Val22,
Val3®, Val31l, Val32>
TRANSFORMATION_BLOCK:
TRANSFORM_IDENTIFIER | TRANSFORMATION | inverse
TRANSFORM_DECLARATION:
#declare IDENTIFIER = transform { TRANSFORMATION_BLOCK...} |
#local IDENTIFIER = transform { TRANSFORMATION_BLOCK...}

Translate

Iltems may be moved by addingtaanslate modifier. It consists of the keyword
translate followed by a vector expression. The three terms of the vector specify
the number of units to move in each of the x, y and z directions. Translate moves the
element relative to it's current position. For example

sphere { <10, 10, 10>, 1
pigment { Green }
translate <-5, 2, 1>

}

will move the sphere from the locatione, 10, 10> to <5,12,11>. It does not move

it to the absolute locatior-5,2,1>. Translations are always relative to the item’s
location before the move. Translating by zero will leave the element unchanged on that
axis. For example:

sphere { <10, 10, 10>, 1

56 Getting Started

pigment { Green }
translate 3*x // evaluates to <3,0,0> so move 3 units
// in the x direction and none along y or z

Scale

You may change the size of an object or texture pattern by addiagsae modifier. It
consists of the keyworgcale followed by a vector expression. The three terms of the
vector specify the amount of scaling in each of the x, y and z directions.

Uneven scaling is used tetretchor squishan element. Values larger than one stretch
the element on that axis while values smaller than one are used to squish it. Scale is
relative to the current element size. If the element has been previously re-sized using
scale then scale will size relative to the new size. Multiple scale values may used.

For example

sphere { <0,0,0>, 1
scale <2,1,0.5>

}

will stretch and smash the sphere into an ellipsoid shape that is twice the original size
along the x-direction, remains the same size in the y-direction and is half the original
size in the z-direction.

If a lone float expression is specified it is promoted to a three component vector whose
terms are all the same. Thus the item is uniformly scaled by the same amount in all
directions. For example:

object {
MyObject
scale 5 // Evaluates as <5,5,5> so uniformly scale
// by 5 in every direction.

3

When one of the scaling components is zero, POV-Ray changes this component to 1
since it assumes that 0 means no scaling in this direction. A warning “lllegal Value:
Scale X, Y or Z by 0.0. Changed to 1.0.” is printed then.

Rotate

You may change the orientation of an object or texture pattern by addigade
modifier. It consists of the keywordrotate followed by a vector expression. The
three terms of the vector specify the number of degrees to rotate about each of the x-,
y- and z-axes.

Note: that the order of the rotations does matter. Rotations occur about the x-axis first,
then the y-axis, then the z-axis. If you are not sure if this is what you want then you

should only rotate on one axis at a time using multiple rotation statements to get a
correct rotation.

rotate <0, 30, 0> // 30 degrees around Y axis then,
rotate <-20, 0, 0> // -20 degrees around X axis then,

2.7 POV-Ray Coordinate System 57

rotate <0, 0, 10> // 10 degrees around Z axis.

Rotation is always performed relative to the axis. Thus if an object is some distance
from the axis of rotation it will not only rotate but it wibrbit about the axis as though
it was swinging around on an invisible string.

POV-Ray uses a left-handed rotation system. Using the fanm@amputer Graphics
Aerobic$ exercise, you hold up your left hand and point your thumb in the positive
direction of the axis of rotation. Your fingers will curl in the positive direction of
rotation. Similarly if you point your thumb in the negative direction of the axis your
fingers will curl in the negative direction of rotation. See “Understanding POV-Ray’s
Coordinate System” for an illustration.

Matrix

Thematrix keyword can be used to explicitly specify the transformation matrix to be
used for objects or textures. Its syntax is:

MATRIX:
matrix <Val®®, Val®l, Val®2,
Vall®, Valll, Vali2,
Val2®, Val21l, Val22,
Val3®, Val31l, Val32>

Wherevaloo throughval3z2 are float expressions enclosed in angle brackets and sepa-
rated by commas.

Note: this is not a vector. Itis a set of 12 float expressions.

These floats specify the elements of a 4 by 4 matrix with the fourth column implicitly
set t0<0,0,0,1>. At any given pointP, P=<px, py, pz, is transformed into the point

Q, Q=<ax, qy, gz by

gx = Val00 * px + Val10 * py + Val20 * pz + Val30
gy = Valol * px + Valll * py + Val21 * pz + Val31
gz=Val02 * px + Vall2 * py + Val22 * pz + Val32

Normally you won't use the matrix keyword because it's less descriptive than the trans-
formation commands and harder to visualize. However the matrix command allows
more general transformatiorffects like shearing The following matrix causes an
object to be sheared along the y-axis.

object {
MyObject
matrix < 1, 1, O,
0, 1, 0
0, 0, 1,
0, 0, 0

58 Getting Started

2.7.2 Transformation Order

Because rotations are always relative to the axis and scaling is relative to the origin,
you will generally want to create an object at the origin and scale and rotate it first.
Then you may translate it into its proper position. It is a common mistake to carefully
position an object and then to decide to rotate it. However because a rotation of an
object causes it to orbit about the axis, the position of the object may change so much
that it orbits out of the field of view of the camera!

Similarly scaling after translation also moves an object unexpectedly. If you scale after
you translate the scale will multiply the translate amount.
For example

translate <5, 6, 7>
scale 4

will translate to<20, 24, 28> instead of <5,6,7>. Be careful when transforming to get
the order correct for your purposes.

2.7.3 Inverse Transform

transform { scale <20,24,28> translate y*3 inverse }

An inverse transform does the opposite of what the transform would normally do, and
can be used to “undo” transforms without messing around with huge numbers of trans-
formations. To do the same without thisverse, you would have to duplicate each
transform, change them to do the opposite of what they would normally do (for exam-
ple translate -y*3 instead oftranslate y*3)and reverse their order.

2.7.4 Transform ldentifiers

Attimes itis useful to combine together several transformations and apply them in mul-
tiple places. A transform identifier may be used for this purpose. Transform identifiers
are declared as follows:

TRANSFORM_DECLARATION:
#declare IDENTIFIER = transform{ TRANSFORMATION... } |
#local IDENTIFIER = transform{ TRANSFORMATION... }

WherelDENTIFIERIs the name of the identifier up to 40 characters long BRANS-
FORMATIONIs any valid transformation modifier. See “#declare vs. #local” for in-
formation on identifier scope. Here is an example...

#declare MyTrans =
transform {

rotate THISWAY
scale SOMUCH
rotate -THISWAY
scale BIGGER
translate OVERTHERE
rotate WAYAROUND

2.7 POV-Ray Coordinate System 59

A transform identifier is invoked by theransform keyword with or without brackets
as shown here:

object {
MyObject // Get a copy of MyObject
transform MyTrans // Apply the transformation
translate -x*5 // Then move it 5 units left
}
object {
MyObject // Get another copy of MyObject
transform { MyTrans } // Apply the same transformation
translate x*5 // Then move this one 5 units right
}

On extremely complex CSG objects with lots of components it may speed up parsing
if you apply a declared transformation rather than the individttahslate, rotate,

scale, Or matrix modifiers. Thetransform is attached just once to each component.
Applying each individuatranslate, rotate,scale, Ormatrix modifierstakes longer.

This only dfects parsing - rendering works the same either way.

2.7.5 Transforming Textures and Objects

When an object is transformed all textures attached to the chjéicat timeare trans-
formed as well. This means that if you havetanslate, rotate, scale, O matrix
modifier in an objecbeforea texture, then the texture will not be transformed. If the
transformation isfter the texture then the texture will be transformed with the object.
If the transformation isnsidethe texture statement theonly the texturds afected.
The shape remains the same. For example:

sphere { 0, 1
texture { Jade } // texture identifier from TEXTURES.INC
scale 3 // this scale affects both the
// shape and texture

}
sphere { 0, 1

scale 3 // this scale affects the shape only
texture { Jade }
}
sphere { 0, 1
texture {

Jade

scale 3 // this scale affects the texture only
}
}

Transformations may also be independently applied to pigment patterns and surface
normal patterns.

Note: scaling a normal pattern not onlyfacts the width and spacing. It does also
affect the apparent height or depth of the bumps, for how to avoid this see Scaling
normals.

For example:

60 Getting Started

box { <0, 0, 0>, <1, 1, 1>
texture {
pigment {
checker Red, White
scale 0.25 // This affects only the color pattern
}
normal {
bumps 0.3 // This specifies apparent height of bumps
scale 0.2 // Scales diameter and space between bumps
// and also the height. Has no effect on
// color pattern.

}
rotate y*45 // This affects the entire texture but

} // not the object.
}

2.8 POV-Ray Options

POV-Ray was originally created as a command-line program for operating systems
without graphical interfaces, dialog boxes and pull-down menus. Most versions of
POV-Ray still use command-line switches to tell it what to do. This documentation
assumes you are using the command-line version. If you are using Macintosh, MS-
Windows or other GUI versions, there will be dialog boxes or menus which do the
same thing. There is system-specific documentation for each system describing the
specific commands.

There are two distinct ways of setting POV-Ray options (other than through the GUI
interface, if applicable) : command line switches and INI file keywords. Both are
explained in detail in the following sections.

2.8.1 Command Line Switches

Command line switches consist ofrgplus) or - (minus) sign, followed by one or
more alphabetic characters and possibly a numeric value. Here is a typical command
line with switches.

POVRAY +Isimple.pov +V +W80 +H60

povray is the name of the program and it is followed by several switches. Each switch
begins with a plus or minus sign. Thel switch with the filename tells POV-Ray what
scene file it should use as input andtells the program to output its status to the text
screen as it's working. Thew and +H switches set the width and height of the image
in pixels. This image will be 80 pixels wide by 60 pixels high.

In switches which toggle a feature, the plus turns it on and minus turn. itFmr
example +P turns on thepause for keypress when finishgation while-p turns it of.

Other switches are used to specify values and do not toggle a feature. Either plus or
minus may be used in that instance. For examphk2e sets the width to 320 pixels.

You could also use-w320 and get the same results.

2.8 POV-Ray Options 61

Switches may be specified in upper or lower case. They are read left to right but in
general may be specified in any order. If you specify a switch more than once, the
previous value is generally overwritten with the last specification. The only exception
is the+L switch for setting library paths. Up to ten unique paths may be specified.

Almost all + or - switches have an equivalent option which can be used in an INI file
which is described in the next section. A detailed description of each switch is given in
the option reference section.

2.8.2 Using INI Files

Note: although the term 'INI file’ is used by POV-Ray, this was implemented before
the widespread acceptance of Microsoft Windows, and while POV-Ray’s INI files are
almost identical to those of Windows, there are some minerdinces (the foremost
being that it is legal to have multiple instances of the same item in a section). INI files
are used on all platform versions of POV-Ray, not just on the Windows platform.

Because it is diicult to set more than a few options on a command line, you have the
ability to put multiple options in one or more text files. These initialization files or INI
files have .ini as their default extension. Previous versions of POV-Ray called them
default files or DEF files. You may still use existing DEF files with this version of
POV-Ray.

The majority of options you use will be stored in INI files. The command line switches
are recommended for options which you will turfi or on frequently as you perform
test renderings of a scene you are developing. The fideray.ini is automatically
read if present. You may specify additional INI files on the command-line by simply
typing the file name on the command line. For example:

POVRAY MYOPTS.INI

If no extension is given, thenini is assumed. POV-Ray knows this is not a switch
because it is not preceded by a plus or minus.

You may have multiple INI files on the command line along with switches. For exam-
ple:

POVRAY MYOPTS +V OTHER

This reads options fromyopts.ini, then sets the+v switch, then reads options from
other.ini.

An INI file is a plain ASCII text file with options of the form...
Option_keyword=VALUE ; Text after semicolon is a comment

For example the INI equivalent of the switehsimple.pov is...
Input_File_Name=simple.pov

Options are read top to bottom in the file but in general may be specified in any order.
If you specify an option more than once, the previous values are generally overwritten
with the last specification. The only exception is thérary Path=path options. Up

to 25 unique paths may be specified.

62 Getting Started

Almost all INI-style options have equivalentor - switches. The option reference
section gives a detailed description of all POV-Ray options. It includes both the INI-
style settings and theg/- switches.

The INI keywords are not case sensitive. Only one INI option is permitted per line of
text. You may also include switches in your INI file if they are easier for you. You may

have multiple switches per line but you should not mix switches and INI options on the
same line. You may nest INI files by simply putting the file name on a line by itself

with no equals sign after it. Nesting may occur up to ten levels deep. For example:

; This is a sample INI file. This entire line is a comment.
; Blank lines are permitted.

Input_File_Name=simple.pov ;This sets the input file name
+W80® +H60 ; Traditional +/- switches are permitted too
MOREOPT ; Read MOREOPT.INI and continue with next line
+V ; Another switch

; That’s all folks!

INI files may have labeled sections so that more than one set of options may be stored
in a single file. Each section begins with a label in [] brackets. For example:

; RES.INI
; This sample INI file is used to set resolution.
+W120 +H100 ; This section has no label.

; Select it with "RES"

[Low]

+W80 +H60 ; This section has a label.
; Select it with "RES[Low]"

[Med]

+W320 +H200 ; This section has a label.
; Select it with "RES[Med]"
[High]
+W640 +H480 ; Labels are not case sensitive.
; "RES[high]" works
[Really High]
+W800 +H600 ; Labels may contain blanks

When you specify the INI file you should follow it with the section label in brackets.
For example...

POVRAY RES[Med] +Imyfile.pov

POV-Ray readses.ini and skips all options until it finds the lab®dd. It processes
options after that label until it finds another label and then it skips. If no label is
specified on the command line then only the unlabeled area at the top of the file is read.
If a label is specified, the unlabeled area is ignored.

If a file or path contains blanks the whole file and path specification has to be put in
guotes. You may either use a double-quote oir a single-quote, but you have to use the
same at the beginning and end. For example:

+I"my file.pov"
+I'my file.pov’
Input_File="my file.pov"
Input_File="my file.pov’

2.8 POV-Ray Options 63

By using either single or double quotes it is possible to specify files whose name or
path contains either as part of the name. For example:

+I"file’s.pov"

+I’my "big" file.pov’

Input_File="file’s.pov"

Input_File="my "big" file.pov’

2.8.3 Using the POVINI Environment Variable

The environment variable POVINI is used to specify the location and name of a default
INI file that is read every time POV-Ray is executed. If POVINI is not specified, or

if your computer platform does not use environment variables, a default INI file may
be read. If the specified file does not exist, a warning message is printed. To set
the environment variable under MS-DOS you might put the following line in your
autoexec.bat file...

set POVINI=c:\povray3\default.ini
On most operating systems the sequence of reading options is as follows:

1. Read options from default INI file specified by the POVINI environment variable
or platform specific INI file.

2. Read switches from command line (this includes reading any specifigaERI
files).

The POVRAYOPT environment variable supported by previous POV-Ray versions is
no longer available.

64

Getting Started

Chapter 3

Advanced Features

3.1 Spline Based Shapes

After we have gained some experience with the simpler shapes available in POV-Ray
it is time to go on to the more advanced, thrilling shapes.

We should be aware that the shapes described in this and the following two chapters are
not trivial to understand. We needn’t be worried though if we do not know how to use
them or how they work. We just try the examples and play with the features described
in the reference chapter. There is nothing better than learning by doing.

You may wish to skip to the chapter “Simple Texture Options” before proceeding with
these advanced shapes.

3.1.1 Lathe Object

In the real world,1athe refers to a process of making patterned rounded shapes by
spinning the source material in place and carving pieces out as it turns. The results can
be elaborate, smoothly rounded, elegant looking artefacts such as table legs, pottery,
etc. In POV-Ray, a lathe object is used for creating much the same kind of items,
although we are referring to the object itself rather than the means of production.

Here is some source for a really basic lathe.

#include "colors.inc"
background{White}
camera {
angle 10
location <1, 9, -50>
look_at <@, 2, 0>
}
light_source {
<20, 20, -20> color White
}
lathe {

66 Advanced Features

linear_spline
6,
<0,0>, <1,1>, <3,2>, <2,3>, <2,4>, <0,4>
pigment { Blue }
finish {
ambient .3
phong .75
}
}

Figure 3.1: A simple lathe object.

We render this, and what we see is a fairly simply type of lathe, which looks like a
child’s top. Let’s take a look at how this code produced tliec.

First, a set of six points is declared which the raytracer connects with lines. We note
that there are only two components in the vectors which describe these points. The
lines that are drawn are assumed to be in the x-y-plane, therefore it is as if all the z-
components were assumed to be zero. The use of a two-dimensional vector is manda-
tory (Attempting to use a 3D vector would trigger an error... with one exception, which
we will explore later in the discussion of splines).

Once the lines are determined, the ray-tracer rotates this line around the y-axis, and
we can imagine a trail being left through space as it goes, with the surface of that trail
being the surface of our object.

The specified points are connected with straight lines because we useddhe spline
keyword. There are other types of splines available with the lathe, which will result in
smooth curving lines, and even rounded curving points of transition, but we will get
back to that in a moment.

First, we would like to digress a moment to talk about thedénce between a lathe

and a surface of revolution object (SOR). The SOR object, described in a separate
tutorial, may seem terribly similar to the lathe at first glance. It too declares a series of
points and connects them with curving lines and then rotates them around the y-axis.
The lathe has certain advantages, such fierént kinds of splines, linear, quadratic
and cubic, and one more thing:

The simpler mathematics used by a SOR doesn't allow the curve to double back over
the same y-coordinates, thus, if using a SOR, any sudden twist which cuts back down

3.1 Spline Based Shapes 67

over the same heights that the curve previously covered will trigger an error. For exam-
ple, suppose we wanted a lathe to arc up fradi0> to <2,2>, then to dip back down

to <4,0>. Rotated around the y-axis, this would produce something like a gelatin mold
- a rounded semi torus, hollow in the middle. But with the SOR, as soon as the curve
doubled back on itself in the y-direction, it would become an illegal declaration.

Still, the SOR has one powerful strong point: because it uses simpler order mathemat-
ics, it generally tends to render faster than an equivalent lathe. So in the end, it's a
matter of: we use a SOR if its limitations will allow, but when we need a more flexible
shape, we go with the lathe instead.

Understanding The Concept of Splines

It would be helpful, in order to understand splines, if we had a sd8ptihe Workshop
where we could practice manipulating types and points of splines and see what the
effects were like. So let's make one! Now that we know how to create a basic lathe, it
will be easy:

#include "colors.inc"
camera {
orthographic
up <0, 5, 0>
right <5, 0, 0>
location <2.5, 2.5, -100>
look_at <2.5, 2.5, 0>

}
/* set the control points to be used */
#declare Red_Point = <1.00, 0.00>;

#declare Orange_Point = <1.75, 1.00>;

#declare Yellow_Point = <2.50, 2.00>;

#declare Green_Point = <2.00, 3.00>;

#declare Blue_Point = <1.50, 4.00>;

/* make the control points visible */

cylinder { Red_Point, Red_Point - <0,0,20>, .1
pigment { Red }
finish { ambient 1 }

}

cylinder { Orange_Point, Orange_Point - <0,0,20>, .1
pigment { Orange }
finish { ambient 1 }

}

cylinder { Yellow_Point, Yellow_Point - <0,0,20>, .1
pigment { Yellow }
finish { ambient 1 }

}

cylinder { Green_Point, Green_Point - <0,0,20>, .1
pigment { Green }
finish { ambient 1 }

}

cylinder { Blue_Point, Blue_Point- <0,0,20>, .1
pigment { Blue }
finish { ambient 1 }

}

68 Advanced Features

/* something to make the curve show up */
lathe {
linear_spline
5,
Red_Point,
Orange_Point,
Yellow_Point,
Green_Point,
Blue_Point
pigment { White }
finish { ambient 1 }

Figure 3.2: A simple

Now, we take a deep breath. We know that all looks a bit weird, but with some simple
explanations, we can easily see what all this does.

First, we are using the orthographic camera. If we haven't read up on that yet, a quick
summary is: it renders the sceftett, eliminating perspective distortion so that in a side
view, the objects look like they were drawn on a piece of graph paper (like in the side
view of a modeler or CAD package). There are several uses for this practical new type
of camera, but here it is allowing us to see our lathe and cylireige onso that what

we see is almost like a cross section of the curve which makes the lathe, rather than
the lathe itself. To further thatfiect, we eliminated shadowing with theébient 1

finish, which of course also eliminates the need for lighting. We have also positioned
this particular side view so that),0> appears at the lower left of our scene.

Next, we declared a set of points. We note that we used 3D vectors for these points
rather than the 2D vectors we expect in a lathe. That's the exception we mentioned
earlier. When we declare a 3D point, then use it in a lathe, the lathe only uses the
first two components of the vector, and whatever is in the third component is simply
ignored. This is handy here, since it makes this example possible.

Next we do two things with the declared points. First we use them to place small di-
ameter cylinders at the locations of the points with the circular caps facing the camera.
Then we re-use those same vectors to determine the lathe.

Since trying to declare a 2D vector can have some odd results, and isn’t really what our
cylinder declarations need anyway, we can take advantage of the lathe’s tendency to

3.1 Spline Based Shapes 69

ignore the third component by just setting the z-coordinate in these 3D vectors to zero.

The end result is: when we render this code, we see a white lathe against a black
background showing us how the curve we've declared looks, and the circular ends of
the cylinders show us where along the x-y-plane our control points are. In this case,
it's very simple. The linear spline has been used so our curve is just straight lines zig-
zagging between the points. We change the declaratioreddfoint andBlue Point

to read as follows.

#declare Red_Point = <2.00, 0.00>;
#declare Blue_Point = <0.00, 4.00>;

o

Figure 3.3: Moving some points of the spline.

We re-render and, as we can see, all that happens is that the straight line segments just
move to accommodate the new position of the red and blue points. Linear splines are
so simple, we could manipulate them in our sleep, no?

Let’s try something dferent. First, we change the points to the following.

#declare Red_Point = <1.00, 0.00>;
#declare Orange_Point = <2.00, 1.00>;
#declare Yellow_Point = <3.50, 2.00>;
#declare Green_Point = <2.00, 3.00>;
#declare Blue_Point = <1.50, 4.00>;

Figure 3.4: A quadratic spline lathe.

70 Advanced Features

We then go down to the lathe declaration and charigear_spline t0o quadratic_spline.

We re-render and what do we have? Well, there’s a couple of things worthy of note this
time. First, we will see that instead of straight lines we have smooth arcs connect-
ing the points. These arcs are made from quadratic curves, so our lathe looks much
more interesting this time. Als@ed_Point is no longer connected to the curve. What
happened?

Well, while any two points can determine a straight line, it takes three to determine a
guadratic curve. POV-Ray looks not only to the two points to be connected, but to the
point immediately preceding them to determine the formula of the quadratic curve that
will be used to connect them. The problem comes in at the beginning of the curve.
Beyond the first point in the curve there is previouspoint. So we need to declare
one. Therefore, when using a quadratic spline, we must remember that the first point
we specify is only there so that POV-Ray can determine what curve to connect the first
two points with. It will not show up as part of the actual curve.

There’s just one more thing about this lathe example. Even though our curve is how
put together with smooth curving lines, the transitions between those lines is... well,
kind of choppy, no? This curve looks like the lines between each individual point have
been terribly mismatched. Depending on what we are trying to make, this could be
acceptable, or, we might long for a more smoothly curving shape. Fortunately, if the
latter is true, we have another option.

The quadratic spline takes longer to render than a linear spline. The math is more com-
plex. Taking longer still is the cubic spline, yet for a really smoothed out shape this is
the only way to go. We go back into our example, and simply replasératic_spline

with cubic_spline. We render one more time, and take a look at what we have.

fl,'

Figure 3.5: A cubic spline lathe.

While a quadratic spline takes three points to determine the curve, a cubic needs four.
So, as we might expe@]ue_Point has now dropped out of the curve, juskag Point

did, as the first and last points of our curve are now only control points for shaping the
curves between the remaining points. But look at the transition fl@range _Point to

Yellow Point and then back toGreen Point. Now, rather than looking mismatched,

our curve segments look like one smoothly joined curve.

finally there is another kind of quadratic spline, theier_spline. This one takes four
points per section. The start point, the end points and in between, two control points.

3.1 Spline Based Shapes 71

To use it, we will have to make a few changes to our work shop. Delete the Yellow
point, delete the Yellow cylinder. Change the points to:

#declare Red_Point = <2.00, 1.00>;
#declare Orange_Point = <3.00, 1.50>;
#declare Green_Point = <3.00, 3.50>;
#declare Blue_Point = <2.00, 4.00>;

And change the lathe to:

lathe {
bezier_spline
4,
Red_Point,
Orange_Point,
Green_Point,
Blue_Point
pigment { White }
finish { ambient 1 }
}

The, green and orange, control points are not connected to the curve. Move them
around a bit, for exampl@declare Orange Point = <1.00, 1.50>;. The line that

can be drawn from the start point to its closest control point (red to orange) shows the
tangent of the curve at the start point. Same for the end point, blue to green.

Figure 3.6: a beziespline lathe

One spline segment is nice, two is nicer. So we will add another segment and connect
it to the blue point. One segment has four points, so two segments have eight. The first
point of the second segment is the same as the last point of the first segment. The blue
point. So we only have to declare three more points. Also we have to move the camera
a bit and add more cylinders. Here is the complete scene again:

#include "colors.inc"
camera {
orthographic
up <0, 7, 0>
right <7, 0, 0>
location <3.5, 4, -100>
look_at <3.5, 4, 0>

72 Advanced Features

}

/* set the control points to be used */
#declare Red_Point = <2.00, 1.00>;
#declare Orange_Point = <1.00, 1.50>;
#declare Green_Point = <3.00, 3.50>;
#declare Blue_Point = <2.00, 4.00>;
#declare Green_Point2 = <3.00, 4.50>;
#declare Orange_Point2= <1.00, 6.50>;

#declare Red_Point2 = <2.00, 7.00>;
/% make the control points visible */

cylinder { Red_Point, Red_Point - <0,0,20>, .1
pigment { Red } finish { ambient 1 }

}

cylinder { Orange_Point, Orange_Point - <0,0,20>, .1
pigment { Orange } finish { ambient 1 }

}

cylinder { Green_Point, Green_Point - <0,0,20>, .1
pigment { Green } finish { ambient 1 }

}

cylinder { Blue_Point, Blue_Point- <0,0,20>, .1
pigment { Blue } finish { ambient 1 }

}

cylinder { Green_Point2, Green_Point2 - <0,0,20>, .1
pigment { Green } finish { ambient 1 }

}

cylinder { Orange_Point2, Orange_Point2 - <0,0,20>, .1
pigment { Orange } finish { ambient 1 }

}

cylinder { Red_Point2, Red_Point2 - <0,0,20>, .1
pigment { Red } finish { ambient 1 }

}

/* something to make the curve show up */

lathe {
bezier_spline
81
Red_Point, Orange_Point, Green_Point, Blue_Point
Blue_Point, Green_Point2, Orange_Point2, Red_Point2
pigment { White }
finish { ambient 1 }

}

A nice curve, but what if we want a smooth curve? Let us have a look at the tangents on
the Bluepoint, draw the lines GreeRoint, Bluepoint and GreerPoint2, Bluepoint.

Look at the angle they make, it is as sharp as the dent in the curve. What if we make the
angle bigger? What if we make the angle 180°? Try a few positions for Greem2

and end with*declare Green Point2 = <1.00, 4.50>;. A smooth curve. If we make

sure that the two control points and the connection point are on one line, the curve
is perfectly smooth. In general this can be achievedtdnclare Green Point2 =
Blue_Point+(Blue_Point-Green_Point);

The concept of splines is a handy and necessary one, which will be seen again in the
prism and polygon objects. But with a little tinkering we can quickly get a feel for
working with them.

3.1 Spline Based Shapes

73

—_—
|"’
- 1
N,
"
]
.
-\.
|
-
b
Emm——

Figure 3.7: two beziespline segments, not smooth

Figure 3.8: smooth beziespline lathe

74 Advanced Features

3.1.2 Surface of Revolution Object
Bottles, vases and glasses make nice objects in ray-traced scenes. We want to create a
golden cup using theurface of revolutiombject (SOR object).

We first start by thinking about the shape of the final object. It is quitecdit to come

up with a set of points that describe a given curve without the help of a modeling pro-
gram supporting POV-Ray'’s surface of revolution object. If such a program is available
we should take advantage of it.

8.0

6.0

Height h

4.0

2.0

0.0

-4.0 -2.0 0.0 2.0 4.0
Radius r

Figure 3.9: The point configuration of our cup object.

We will use the point configuration shown in the figure above. There are eight points
describing the curve that will be rotated about the y-axis to get our cup. The curve
was calculated using the method described in the reference section (see “Surface of
Revolution”).

Now it is time to come up with a scene that uses the above SOR object. We create a
file calledsordemo .pov and enter the following text.

#include "colors.inc"
#include "golds.inc"
camera {
location <10, 15, -20>
look_at <0, 5, 0>
angle 45
}
background { color rgh<0.2, 0.4, 0.8> }
light_source { <100, 100, -100> color rgb 1 }

plane {
y, ®
pigment { checker color Red, color Green scale 10 }
}
sor {
8,
<0.0, -0.5>,
<3.0, 0.0>,
<1.0, 0.2>,
<0.5, 0.4>,
<0.5, 4.0>,
<1.0, 5.0>,
<3.0, 10.0>,

3.1 Spline Based Shapes 75

<4.0, 11.0>
open
texture { T_Gold_1B }

3

The scene contains our cup object resting on a checkered plane. Tracing this scene
results in the image below.

Figure 3.10: A surface of revolution object.

The surface of revolution is described by starting with the number of points followed
by the points. Points from second to last but one are listed with ascending heights.
Each of them determines the radius of the curve for a given height. E. g. the first valid
point (second listed) tells POV-Ray that at height 0.0 the radius is 3. We should take
care that each point has a larger height than its predecessor. If this is not the case the
program will abort with an error message. First and last point from the list are used to
determine slope at beginning and end of curve and can be defined for any height.

3.1.3 Prism Object

The prism is essentially a polygon or closed curve which is swept along a linear path.
We can imagine the shape so swept leaving a trail in space, and the surface of that trail
is the surface of our prism. The curve or polygon making up a prism’s face can be a
composite of any number of sub-shapes, can use any kind of thfeeedi splines,

and can either keep a constant width as it is swept, or slowly tapefing @ fine

point on one end. But before this gets too confusing, let’s start one step at a time with
the simplest form of prism. We enter and render the following POV code (see file
prismdml.pov).

#include "colors.inc"
background{White}
camera {
angle 20
location <2, 10, -30>
look_at <0, 1, 0>
}
light_source { <20, 20, -20> color White }
prism {

76 Advanced Features

linear_sweep

linear_spline

0, // sweep the following shape from here ...

1, // ... up through here

7, // the number of points making up the shape ...
<3,5>, <-3,5>, <-5,0>, <-3,-5>, <3, -5>, <5,0>, <3,5>
pigment { Green }

Figure 3.11: A hexagonal prism shape.

This produces a hexagonal polygon, which is then swept frefh through y1. In

other words, we now have an extruded hexagon. One point to note is that although this
is a six sided figure, we have used a total of seven points. That is because the polygon
is supposed to be a closed shape, which we do here by making the final point the same
as the first. Technically, with linear polygons, if we didn't do this, POV-Ray would
automatically join the two ends with a line to force it to close, although a warning
would be issued. However, this only works with linear splines, so we mustn’t get too
casual about those warning messages!

Teaching An Old Spline New Tricks

If we followed the section on splines covered under the lathe tutorial (see section “Un-
derstanding The Concept of Splines”), we know that there are two additional kinds of
splines besides linear: the quadratic and the cubic spline. Sure enough, we can use
these with prisms to make a more free form, smoothly curving type of prism.

There is just one catch, and we should read this section carefully to keep from tearing
our hair out over mysterious “too few points in prism” messages which keep our prism
from rendering. We can probably guess where this is heading: how to close a non-
linear spline. Unlike the linear spline, which simply draws a line between the last and
first points if we forget to make the last point equal to the first, quadratic and cubic
splines are a little more fussy.

First of all, we remember that quadratic splines determine the equation of the curve
which connects any two points based on those two points and the previous point, so the
first point in any quadratic spline is jusiontrol pointand won't actually be part of the
curve. What this means is: when we make our shape out of a quadratic spline, we must

3.1 Spline Based Shapes 77

match the second point to the last, since the first point is not on the curve - it’s just a
control point needed for computational purposes.

Likewise, cubic splines need both the first and last points to be control points, therefore,
to close a shape made with a cubic spline, we must match the second point to the second
from last point. If we don’t match the correct points on a quadratic or cubic shape, that’s
when we will get the “too few points in prism” error. POV-Ray is still waiting for us to
close the shape, and when it runs out of points without seeing the closure, an error is
issued.

Confused? Okay, how about an example? We replace the prism in our last bit of code
with this one (see fil@rismdm2.pov).

prism {
cubic_spline
0, // sweep the following shape from here ...
1, // ... up through here
6, // the number of points making up the shape ...
< 3, -5>, // point#l1 (control point... not on curve)
<3, 5>, // point#2 ... THIS POINT ...
<-5, 0>, // point#3
< 3, -5>, // point#4
<3

, 5>, // point#5 ... MUST MATCH THIS POINT
<-5, 0> // point#6 (control point... not on curve)
pigment { Green }

Figure 3.12: A cubic, triangular prism shape.

This simple prism produces what looks like an extruded triangle with its corners sanded
smoothly df. Points two, three and four are the corners of the triangle and point five

closes the shape by returning to the location of point two. As for points one and six,
they are our control points, and aren’t part of the shape - they're just there to help
compute what curves to use between the other points.

Smooth Transitions

Now a handy thing to note is that we have made point one equal point four, and also
point six equals point three. Yes, this is important. Although this prism would still be

78 Advanced Features

legally closed if the control points were not what we've made them, the curve transi-
tions between points would not be as smooth. We change points one anddgi)6to
and<0,7> respectively and re-render to see how the back edge of the shape is altered
(see fileprismdm3. pov).

To put this more generally, if we want a smooth closure on a cubic spline, we make the
first control point equal to the third from last point, and the last control point equal to
the third point. On a quadratic spline, the trick is similar, but since only the first point
is a control point, make that equal to the second from last point.

Multiple Sub-Shapes

Just as with the polygon object (see section “Polygon Object”) the prism is very flexi-
ble, and allows us to make one prism out of several sub-prisms. To do this, all we need
to do is keep listing points after we have already closed the first shape. The second
shape can be simply an add on goirffjin another direction from the first, but one of

the more interesting features is that if any even number of sub-shapes overlap, that re-
gion where they overlap behaves as though it has been cut away from both sub-shapes.
Let's look at another example. Once again, same basic code as before for camera, light
and so forth, but we substitute this complex prism (seefiigmdm4 . pov).

prism {
linear_sweep
cubic_spline
0, // sweep the following shape from here ...
1, // ... up through here
18, // the number of points making up the shape ...
<3,-5>, <3,5>, <-5,0>, <3, -5>, <3,5>, <-5,0>,//sub-shape #1
<2,-4>, <2,4>, <-4,0>, <2,-4>, <2,4>, <-4,0>, //sub-shape #2
<1,-3>, <1,3>, <-3,0>, <1, -3>, <1,3>, <-3,0> //sub-shape #3
pigment { Green }

Figure 3.13: Using sub-shapes to create a more complex shape.

For readability purposes, we have started a new line every time we moved on to a new
sub-shape, but the ray-tracer of course tells where each shape ends based on whether
the shape has been closed (as described earlier). We render this new prism, and look

3.1 Spline Based Shapes 79

what we've got. It's the same familiar shape, but it now looks like a smaller version
of the shape has been carved out of the center, then the carved piece was sanded down
even smaller and set back in the hole.

Simply, the outer rim is where only sub-shape one exists, then the carved out part is
where sub-shapes one and two overlap. In the extreme center, the object reappears
because sub-shapes one, two, and three overlap, returning us to an odd number of
overlapping pieces. Using this technique we could make any number of extremely
complex prism shapes!

Conic Sweeps And The Tapering Hect

In our original prism, the keywortlinear_sweep is actually optional. This is the default
sweep assumed for a prism if no type of sweep is specified. But there is another,
extremely useful kind of sweep: the conic sweep. The basic idea is like the original
prism, except that while we are sweeping the shape from the first height through the
second height, we are constantly expanding it from a single point until, at the second
height, the shape has expanded to the original points we made it from. To give a small
idea of what suchféects are good for, we replace our existing prism with this (see file
prismdm4.pov):

prism {
conic_sweep
linear_spline
0, // height 1
1, // height 2
5, // the number of points making up the shape...
<4,4>,<-4,4>,<-4,-4>,<4,-4>,<4,4>
rotate <180, 0, 0>
translate <0, 1, 0>
scale <1, 4, 1>
pigment { gradient y scale .2 }

Figure 3.14: Creating a pyramid using conic sweeping.

The gradient pigment was selected to give some definition to our object without having
to fix the lights and the camera angle right at this moment, but when we render it, what

80 Advanced Features

have we created? A horizontally striped pyramid! By now we can recognize the linear
spline connecting the four points of a square, and the familiar final point which is there
to close the spline.

Notice all the transformations in the object declaration. That’s going to take a little
explanation. The rotate and translate are easy. Normally, a conic sweep starts full sized
at the top, and tapers to a point a0, but of course that would be upside down if we're
making a pyramid. So we flip the shape around the x-axis to put it right side up, then
since we actually orbited around the point, we translate back up to put it in the same
position it was in when we started.

The scale is to put the proportions right for this example. The base is eight units by
eight units, but the height (fromai to y=0) is only one unit, so we've stretched it out

a little. At this point, we’re probably thinking, “why not just sweep up fromOyto

y=4 and avoid this whole scaling thing?”

That is a very important gotcha! with conic sweeps. To see what's wrong with that,
let's try and put it into practice (see fil@rismdm5 . pov). We must make sure to remove
the scale statement, and then replace the line which reads

1, // height 2
with
4, // height 2

This sets the second height at4y so let's re-render and see if thezt is the same.

Figure 3.15: Choosing a second height larger than one for the conic sweep.

Whoa! Our height is correct, but our pyramid’s base is now huge! What went wrong
here? Simple. The base, as we described it with the points we used actually occurs at
y=1 no matter what we set the second height for. But if we do set the second height
higher than one, once the sweep passes, yt keeps expanding outward along the
same lines as it followed to our original base, making the actual base bigger and bigger
as it goes.

To avoid losing control of a conic sweep prism, it is usually best to let the second height
stay at y=1, and use a scale statement to adjust the height from its unit size. This way
we can always be sure the base’s corners remain where we think they are.

3.1 Spline Based Shapes 81

That leads to one more interesting thing about conic sweeps. What if we for some
reason don’t want them to taper all the way to a point? What if instead of a complete
pyramid, we want more of a ziggurat step? Easily done. After putting the second height
back to one, and replacing our scale statement, we change the line which reads

0, // height 1
to

0.251, // height 1

Figure 3.16: Increasing the first height for the conic sweep.

When we re-render, we see that the sweep stops short of going all the way to its point,
giving us a pyramid without a cap. Exactly how much of the cap is fidepends on
how close the first height is to the second height.

3.1.4 Sphere Sweep Object

A Sphere Sweep Object is the space a sphere occupies during its movement along a
spline.

So we need to specify the kind of spline we want and a list of control points to define
that spline. To help POV-Ray we tell how many control points will be used. In addition,
we also define the radius the moving sphere should have when passing through each of
these control points.

The syntax of the spher®weep object is:

sphere_sweep {
linear_spline | b_spline | cubic_spline
NUM_OF_SPHERES,

CENTER, RADIUS,
CENTER, RADIUS,

CENTER, RADIUS
[tolerance DEPTH_TOLERANCE]
[OBJECT_MODIFIERS]

82 Advanced Features

An example for a linear Sphere Sweep would be:

sphere_sweep {
linear_spline

4,

<-5, -5, 0>, 1
<-5, 5, 0>, 1
<5, -5, 0>, 1
<5, 5 0,1

}

This object is described by four spheres. You can use as many spheres as you like to
describe the object, but you will need at least two spheres for a linear Sphere Sweep,
and four spheres for one approximated with a cigptine or hspline.

The example above would result in an object shaped like the letter “N”. The sphere
sweep goes througddl points which are connected with straight cones.

Changing the kind of interpolation to a cubspline produces a quiteftirent, slightly

bent, object. It then starts at the second sphere and ends at the last but one. Since the
first and last points are used to control the spline, you need two more points to get a
shape that can be compared to the linear sweep. Let’s add them:

sphere_sweep {
cubic_spline
-4, -5, 0>,
-5, -5, 0>,
-5, 5, 0>,
5, -5, 0>,
5, 5, 0>,
<4, 5, 0>,
tolerance 0.1

AN AN AN AN A O

i = =R
(O, INV,]

}

So the cubic sweep creates a smooth sphere sweep actually going through all points
(except the first and last one). In this example the radius of the second and third
spheres have been changed. We also added the “tolerance” keyword, because dark
spots appeared on the surface with the default value (0.000001).

When using a Ispline, the resulting object is somewhat similar to the cubic sweep, but
doesn’t actually go through the control points. It lies somewhere between them.

3.1.5 Bicubic Patch Object

Bicubic patches are useful surface representations because they allow an easy definition
of surfaces using only a few control points. The control points serve to determine the
shape of the patch. Instead of defining the vertices of triangles, we simply give the
coordinates of the control points. A single patch has 16 control points, one at each
corner, and the rest positioned to divide the patch into smaller sections. POV-Ray does
not ray trace the patches directly, they are approximated using triangles as described in
the Scene Description Language section.

3.1 Spline Based Shapes 83

Bicubic patches are almost always created by using a third party modeler, but for this
tutorial we will manipulate them by hand. Modelers that support Bicubic patches and
export to POV-Ray can be found in the Link sectiopatray.org (http:/povray.org/links/)
Let’s set up a basic scene and start exploring the Bicubic patch.

#version 3.5;

global_settings {assumed_gamma 1.0}

background {rgb <1,0.9,0.9>}

camera {location <1.6,5,-6> look_at <1.5,0,1.5> angle 40}
light_source {<500,500,-500> rgb 1 }

#declare B11=<0,0,3>; #declare B12=<1,0,3>; //
#declare B13=<2,0,3>; #declare B14=<3,0,3>; // row 1

#declare B21=<0,0,2>; #declare B22=<1,0,2>; //
#declare B23=<2,0,2>; #declare B24=<3,0,2>; // row 2

#declare B31=<0,0,1>; #declare B32=<1,0,1>; //
#declare B33=<2,0,1>; #declare B34=<3,0,1>; // row 3

#declare B41=<0,0,0>; #declare B42=<1,0,0>; //
#declare B43=<2,0,0>; #declare B44=<3,0,0>; // row 4

bicubic_patch {
type 1 flatness 0.001
u_steps 4 v_steps 4
uv_vectors
<0,0> <1,0> <1,1> <0,1>
B11, B12, B13, Bl4
B21, B22, B23, B24
B31, B32, B33, B34
B41, B42, B43, B44
uv_mapping
texture {
pigment {
checker
color rgbf <1,1,1,0.5>
color rgbf <0,0,1,0.7>
scale 1/3
}
finish {phong 0.6 phong_size 20}
}
no_shadow

}

The points B11, B14, B41, B44 are the corner points of the patch. All other points are
control points. The names of the declared points are as follows: B for the colour of the
patch, the first digit gives the row number, the second digit the column number. If you

render the above scene, you'll get a blue & white checkered square, not very exciting.
First we will add some spheres to make the control points visible. As we don’t want

to type the code for 16 spheres, we’ll use an array and a while loop to construct the
spheres.

#declare Points=array[16]{

84 Advanced Features

B11, B12, B13, Bl4
B21, B22, B23, B24
B31, B32, B33, B34
B41, B42, B43, B44
}
#declare I=0;
#while (I<16)
sphere {
Points[I],0.1
no_shadow
pigment{
#if (I=0|I=3|I=12|I=15)
color rgb <1,0,0>
#else
color rgb <0,1,1>
#end
}

}
#declare I=I+1;
#end

Rendering this scene will show the patch with its corner points in red and its control
points in cyan. Now it's time to start exploring.

Change B41 ta-1,0,0> and render.

Change B41 ta-1,1,0> and render.

Change B41 ta 1,2,1> and render.

Let's do some exercise with the control points. Start with a flat patch again.

Change B42 t&1,2,0> and B43 to<2,-2,0> and render.

Change B42 and B43 back to their original positions and try B34ta, 1> and B24
to<2,-2,2> and render. Move the points around some more, also try the control points
in the middle.

L] - . -

L 4

Figure 3.17: Bicubigpatch with control points

After all this we notice two things:
e The patch always goes through the corner points.
e In most situations the patch does not go through the control points.

So far we've only been looking at one single patch, but one of the strengths of the
Bicubic patch lays in the fact that they can be connected smoothly, to form bigger

shapes. The process of connecting is relatively simple as there are actually only two
rules to follow. It can be done by using a well set up set of macros or by using a

modeler. To give an idea what is needed we’ll do a simple example by hand.

3.1 Spline Based Shapes 85

First put the patch in our scene back to its flat position. Then ch@dgelare B14=<3,0,3>;
#declare B24=<3,2,2>; #declare B34=<3.5,1,1> ; #declare B44=<3,-1,0>; #declare
B41=<0,-1,0>; Move the camera a bit baclmera {location <3.1,7,-8> look.at
<3,-2,1.5> angle 40} and delete all the code for the spheres. We will now try and
stitch a patch to the right side of the current onét @urse the points on the left side
(column 1) of the new patch have to be in the same position as the points on the right
side (column 4) of the blue one.

Render the scene, including our new patch:

#declare R11=B14; #declare R12=<4,0,3>; //
#declare R13=<5,0,3>; #declare R14=<6,0,3>; // row 1

#declare R21=B24; #declare R22=<4,0,2>; //
#declare R23=<5,0,2>; #declare R24=<6,0,2>; // row 2

#declare R31=B34; #declare R32=<4,0,1>; //
#declare R33=<5,0,1>; #declare R34=<6,0,1>; // row 3

#declare R41=B44; #declare R42=<4,0,0>; //
#declare R43=<5,0,0>; #declare R44=<6,0,0>; // row 4

bicubic_patch {
type 1 flatness 0.001
u_steps 4 v_steps 4
uv_vectors
<0,0> <1,0> <1,1> <0,1>
R11, R12, R13, R14
R21, R22, R23, R24
R31, R32, R33, R34
R41, R42, R43, R44
uv_mapping
texture {
pigment {
checker
color rgbf <1,1,1,0.5>
color rgbf <1,0,0,0.7>
scale 1/3
}
finish {phong 0.6 phong_size 20}
}
no_shadow

}

This is a rather disappointing result. The patches are connected, but not exactly smooth.
In connecting patches the same principles apply as for connecting two 2D-bezier splines
as we see in the spline workshop. Control point, connection point and the next control
point should be on one line to give a smooth result. Also it is preferred, not required,
that the distances from both control points to the connection point are the same. For the
Bicubic patch we have to do the same, for all connection points involved in the joint.
So, in our case, the following points should be on one line:

e B13, B14=R11, R12

86 Advanced Features

e B23, B24=R21, R22
e B33, B34R31, R32
e B43, B44=R41, R42

#declare R12=B14+(B14-B13);
#declare R22=B24+(B24-B23);
#declare R32=B34+(B34-B33);
#declare R42=B44+(B44-B43);

)

»

Figure 3.18: patches, (un)smoothly connected

This renders a smooth surface. Adding a third patch in front is relative simple now:
#declare G11=B41; #declare G12=B42; //
#declare G13=B43; #declare G14=B44; // row 1

#declare G21=B41+(B41-B31); #declare G22=B42+(B42-B32); //
#declare G23=B43+(B43-B33); #declare G24=B44+(B44-B34); // row 2

#declare G31=<0,0,-2>; #declare G32=<1,0,-2>; //
#declare G33=<2,0,-2>; #declare G34=<3,2,-2>; // row 3
#declare G41=<0,0,-3>; #declare G42=<1,0,-3>; //
#declare G43=<2,0,-3>; #declare G44=<3,0,-3> // row 4

bicubic_patch {
type 1 flatness 0.001
u_steps 4 v_steps 4
uv_vectors
<0,0> <1,0> <1,1> <0,1>
G11, G12, G13, Gl4
G21, G22, G23, G24
G31, G32, G33, G34
G41, G42, G43, G44
uv_mapping
texture {
pigment {
checker
color rgbf <1,1,1,0.5>
color rgbf <0,1,0,0.7>
scale 1/3
B
finish {phong 0.6 phong_size 20}
}
no_shadow

}

Finally, let’s put a few spheres back in the scene and add some cylinders to visualize
what is going on. See what happens if you move for example B44, B43, B33 or B34.

3.1 Spline Based Shapes 87

#declare Points=array[8]{B33,B34,R32,B43,B44,R42,G23,G24}
#declare I=0;
#while (I<8)
sphere {
Points[I],0.1
no_shadow
pigment{
#if (I=4)
color rgb <1,0,0>
#else
color rgb <0,1,1>
#end
}
}
#declare I=I+1;
#end
union {
cylinder {B33,B34,0.04} cylinder {B34,R32,0.04}
cylinder {B43,B44,0.04} cylinder {B44,R42,0.04}
cylinder {G23,G24,0.04}
cylinder {B33,B43,0.04} cylinder {B43,G23,0.04}
cylinder {B34,B44,0.04} cylinder {B44,G24,0.04}
cylinder {R32,R42,0.04}
no_shadow
pigment {color rgb <1,1,0>}
}

The hard part in using the Bicubic patch isn't in connecting several patches. The dif-
ficulty is keeping control over the shape you want to build. As patches are added, in
order to keep the result smooth, control over the position of many points gets restrained.

Figure 3.19: 3 patches, some control points

3.1.6 Text Object

The text object is a primitive that can use TrueType fonts and TrueType Collections
to create text objects. These objects can be used in CSG, transformed and textured just
like any other POV primitive.

88 Advanced Features

For this tutorial, we will make two uses of the text object. First, let’s just make some
block letters sitting on a checkered plane. Any TTF font should do, but for this tutorial,
we will use the timrom.ttf or cyrvetic.ttf which come bundled with POV-Ray.

We create a file calletlextdemo.pov and edit it as follows:

#include "colors.inc"
camera {
location <0, 1, -10>
look_at ®
angle 35
}
light_source { <500,500,-1000> White }
plane {

y,0
pigment { checker Green White }

}

Now let’'s add the text object. We will use the forntimrom.ttf and we will create

the string “POV-RAY 3.0". For now, we will just make the letters red. The syntax is
very simple. The first string in quotes is the font name, the second one is the string
to be rendered. The two floats are the thickness disgtovalues. The thickness float
determines how thick the block letters will be. Values of .5 to 2 are usually best for
this. The dfset value will add to the kerning distance of the letters. We will leave this
a 0 for now.

text {
ttf "timrom.ttf" "POV-RAY 3.0" 1, O
pigment { Red }

}

Rendering this at 200x15Q\, we notice that the letters ar& ¢o the right of the screen.

This is because they are placed so that the lower left front corner of the first letter is at
the origin. To center the string we need to translate it -x some distance. But how far? In
the docs we see that the letters are all 0.5 to 0.75 units high. If we assume that each one
takes about 0.5 units of space on the x-axis, this means that the string is about 6 units
long (12 characters and spaces). Let’s translate the string 3 units along the negative
X-axis.

text {
ttf "timrom.ttf" "POV-RAY 3.0" 1, O
pigment { Red }
translate -3*x

}

That's better. Now let’s play around with some of the parameters of the text object.
First, let’s raise the thickness float to something outlandish... say 25!

text {
ttf "timrom.ttf" "POV-RAY 3.0" 25, 0O
pigment { Red }
translate -2.25%x

}

Actually, that's kind of cool. Now let's return the thickness value to 1 and tryfemdint
offset value. Change thefeet float from 0 to 0.1 and render it again.

3.1 Spline Based Shapes 89

Wait a minute?! The letters go wanderinfj op at an angle! That is not what the docs
describe! It almost looks as if thdfeet value applies in both the x- and y-axis instead
of just the x axis like we intended. Could it be that a vector is called for here instead of
a float? Let's try it. We replace. 1 with 0.1*x and render it again.

That works! The letters are still in a straight line along the x-axis, just a little further
apart. Let's verify this and try toffset just in the y-axis. We replac®. 1*x with
0.1*y. Again, this works as expected with the letters going up to the right at an angle
with no additional distance added along the x-axis. Now let’s try the z-axis. We replace
0.1*y with 0.1*z. Rendering this yields a disappointment. N@set occurs! The
offset value can only be applied in the x- and y-directions.

Let’s finish our scene by giving a fancier texture to the block letters, using that cool
large thickness value, and adding a slightfiset. For fun, we will throw in a sky
sphere, dandy up our plane a bit, and use a little more interesting camera viewpoint
(we render the following scene at 640x48@.0. 2):

#include "colors.inc"
camera {
location <-5,.15,-2>
look_at <.3,.2,1>

angle 35
}
light_source { <500,500,-1000> White }
plane {
y,0
texture {
pigment { SeaGreen }
finish { reflection .35 specular 1 }
normal { ripples .35 turbulence .5 scale .25 }
}
}
text {

ttf "timrom.ttf" "POV-RAY 3.0" 25, 0.1%y
pigment { BrightGold }
finish { reflection .25 specular 1 }
translate -3*x

}

#include "skies.inc"

sky_sphere { S_Cloud5 }

Let’s try using text in a CSG object. We will attempt to create an inlay in a stone block
using a text object. We create a new file caltedtcsg.pov and edit it as follows:

#include "colors.inc"
#include "stones.inc"
background { color rgb 1 }
camera {
location <-3, 5, -15>
look_at ®
angle 25
}
light_source { <500,500,-1000> White }

Now let’s create the block. We want it to be about eight units across because our text

90 Advanced Features

string “POV-RAY 3.0” is about six units long. We also want it about four units high
and about one unit deep. But we need to avoid a potential coincident surface with the
text object so we will make the first z-coordinate 0.1 instead of 0. Finally, we will give
this block a nice stone texture.

box {
<-3.5, -1, 0.1>, <3.5, 1, 1>
texture { T_Stonel® }

}

Next, we want to make the text object. We can use the same object we used in the first
tutorial except we will use slightly fierent thickness andiset values.

text {
ttf "timrom.ttf" "POV-RAY 3.0" 0.15, 0
pigment { BrightGold }
finish { reflection .25 specular 1 }
translate -3*x

}

We remember that the text object is placed by default so that its front surface lies
directly on the x-y-plane. If the front of the box begins abz1 and thickness is set at
0.15, the depth of the inlay will be 0.05 units. We place féedénce block around the
two objects.

difference {

box {
<-3.5, -1, 0.1>, <3.5, 1, 1>
texture { T_Stonel® }

}

text {
ttf "timrom.ttf" "POV-RAY 3.0" 0.15, 0
pigment { BrightGold }
finish { reflection .25 specular 1 }
translate -3*x

Figure 3.20: Text carved from stone.

We render this at 200x15Q. We can see the inlay clearly and that it is indeed a bright

3.2 Polygon Based Shapes 91

gold color. We re-render at 640x480640.2 to see the results more clearly, but be
forewarned... this trace will take a little time.

3.2 Polygon Based Shapes

3.2.1 Mesh Object

You know you have been raytracing too long when ...
... You think that the evolution theory was based on the triangular origin of the wheel.
— Mark Kadela

Mesh objects are very useful because they allow us to create objects containing hun-
dreds or thousands of triangles. Compared to a simple union of triangles the mesh
object stores the triangles moréfieiently. Copies of mesh objects need only a little
additional memory because the triangles are stored only once.

Almost every object can be approximated using triangles but we may need a lot of
triangles to create more complex shapes. Thus we will only create a very simple mesh
example. This example will show a very useful feature of the triangles meshes though:
a different texture can be assigned to each triangle in the mesh.

Now let’s begin. We will create a simple box withfiirently colored sides. We create
an empty file callecheshdemo.pov and add the following lines. Note that a mesh is -
not surprisingly - declared using the keywaiskh.

camera {
location <20, 20, -50>
look_at <®, 5, 0>
}
light_source { <50, 50, -50> color rgb<l, 1, 1> }
#declare Red = texture {
pigment { color rgb<0.8, 0.2, 0.2> }
finish { ambient 0.2 diffuse 0.5 }
}
#declare Green = texture {
pigment { color rgb<0.2, 0.8, 0.2> }
finish { ambient 0.2 diffuse 0.5 }
}
#declare Blue = texture {
pigment { color rgb<0.2, 0.2, 0.8> }
finish { ambient 0.2 diffuse 0.5 }
}

We must declare all textures we want to use inside the mesh before the mesh is created.
Textures cannot be specified inside the mesh due to the poor memory performance that
would result.

Now we add the mesh object. Three sides of the box will use individual textures while
the other will use theglobal mesh texture.

mesh {
/* top side */

92 Advanced Features

triangle {
<-10, 10, -10>, <10, 10, -10>, <10, 10, 10>
texture { Red }
}
triangle {
<-10, 10, -10>, <-10, 10, 10>, <10, 10, 10>
texture { Red }
}
/* bottom side */
triangle { <-10, -10, -10>, <10, -10, -10>, <10, -10, 10> }
triangle { <-10, -10, -10>, <-10, -10, 10>, <10, -10, 10> }
/% left side */
triangle { <-10, -10, -10>, <-160, -10, 10>, <-10, 10, 10> }
triangle { <-10, -10, -10>, <-10, 10, -10>, <-10, 10, 10> }
/* right side */
triangle {
<10, -10, -10>, <10, -10, 10>, <10, 10, 10>
texture { Green }
}
triangle {
<10, -10, -10>, <10, 10, -10>, <10, 10, 10>
texture { Green }
}
/% front side */
triangle {
<-10, -10, -10>, <10, -10, -10>, <-10, 10, -10>
texture { Blue }
}
triangle {
<-10, 10, -10>, <10, 10, -10>, <10, -10, -10>
texture { Blue }
}
/* back side */
triangle { <-10, -10, 10>, <10, -10, 10>, <-10, 10, 10> }
triangle { <-10, 10, 160>, <10, 10, 10>, <10, -10, 10> }
texture {
pigment { color rgb<0.9, 0.9, 0.9> }
finish { ambient 0.2 diffuse 0.7 }
}
}

Tracing the scene at 320x240 we will see that the top, right and front side of the box
have diferent textures. Though this is not a very impressive example it shows what we
can do with mesh objects. More complex examples, also using smooth triangles, can
be found under the scene directory @Besmsh.pov.

3.2.2 Mesh2 Object

Themesh?2 is a representation of a mesh, that is much more like POV-Ray’s internal
mesh representation than the standarch. As a result, it parses faster and it file size
is smaller.

Due to its natureyeshz2 is not really suitable for building meshes by hand, it is intended

3.2 Polygon Based Shapes 93

for use by modelers and file format converters. An other option is building the meshes
by macros. Yet, to understand the format, we’ll do a small example by hand and go
through all options.

<0,1,0= <0510 <1,1,0=

1l

<0,0,0= <0.5,0,0= =1,0,0=

Figure 3.21: to be written as mesh2

We will turn the mesh sketched above intamesh2 object. The mesh is made of 8
triangles, each with 3 vertices, many of these vertices are shared among the triangles.
This can later be used to optimize the mesh. First we will set it up straight forward.

In mesh2 all the vertices are listed in a list nameedrtex_vectors{}. A second list,
face_indices{}, tells us how to put together three vertices to create one triangle, by
pointing to the index number of a vertex. All listsiash2 are zero based, the number
of the first vertex is 0. The very first item in a list is the amount of vertices, normals
or uv._vectors it containsmesh2 has to be specified in the orddECTORS., LISTS...
INDICES...

Lets go through the mesh above, we do it counter clockwise. The total amount of
vertices is 24 (8 triangle * 3 vertices).

mesh2 {
vertex_vectors {
24,

Now we can add the coordinates of the vertices of the first triangle:

mesh2 {
vertex_vectors {
24,
<0,0,0>, <0.5,0,0>, <0.5,0.5,0>

Next step, is to tell the mesh how the triangle should be created; There will be a to-
tal of 8 faceindices (8 triangles). The first point in the first face, points to the first
vertexvector (0:<0,0,0>), the second to the second €0.5,0,0-), etc...

mesh2 {
vertex_vectors {
24,
<0,0,0>, <0.5,0,0>, <0.5,0.5,0>

94

Advanced Features

}

face_indices {
8!
<0,1,2>

The complete mesh:

mesh2 {

vertex_vectors
24,

{

<0,0,0>, <0.5,0,0>, <0.5,
<0.5,0,0>, <1,0,0>, <0.5,
<1,0,0>, <1,0.5,0>, <0.5,
<1,0.5,0>, <1,1,0>, <0.5,
<1,1,0>, <0.5,1,0>, <0.5,
<0.5,1,0>, <0,1,0>, <0.5,
<0,1,0>, <0,0.5,0>, <0.5,
<0,0.5,0>, <0,0,0>, <0.5

}

face_indices {
8,
<0,1,2>,
<6,7,8>,
<12,13,14>,
<18,19,20>,

<3,4,5>,
<9,10,11>,
<15,16,17>,
<21,22,23>

}

pigment {rgb 1}

}

As mentioned earlier, many vertices are shared by triangles. We can optimize the mesh
by removing all duplicate vertices but one. In the example this reduces the amount

from 24 to 9.

mesh2 {

vertex_vectors {

9,

<0,0,0>,
/*as 1*/
/*as 3
/*as 4
/*as 5
/¥*as 6
/*as 7
/*as 8

*

“/
*/
*/
*/
%/
*/

Next step is to rebuild the list of fadedices, as they now point to indices in the

<0.5,0,0>,
<1,0,0>,
<1,0.5,0>,
<1,1,0>,
<0.5,1,0>,
<0,1,0>,
<0,0.5,0>,
/*as 0%/

<0.5,
/*as
/*as
/*as
/*as
/*as
/*as
/*as

Y

Y

Vv

Y

Vv

Y

(=B — I — I — N — I I~ I~]

Vv

[A B B B B B I IV, |
eeee?eee

//1 2
//3 4
//5 6
//7 8

//1
//2
/73
/74
/75
//6
/77
//8

vertex_vector{} list that don’t exist anymore.

face_indices {

3.2 Polygon Based Shapes 95

8,
<0,1,2>, <1,3,2>,
<3,4,2>, <4,5,2>,
<5,6,2>, <6,7,2>,
<7,8,2>, <8,0,2>
}
pigment {rgb 1}

Smooth triangles and mesh2

In case we want a smooth mesh, the same steps we did also apply to the normals in a
mesh. For each vertex there is one normal vector listedsrimal _vectors(}, duplicates

can be removed. If the number of normals equals the number of vertices then the
normal_indices{} list is optional and the indexes from thece_indices{} list are used
instead.

mesh2 {
vertex_vectors {
9,
<0,0,0>, <0.5,0,0>, <0.5,0.5,0>,
<1,0,0>, <1,0.5,0>, <1,1,0>,
<0.5,1,0>, <0,1,0>, <0,0.5,0>

}

normal_vectors {
9,
<-1,-1,0>,<0,-1,0>, <0,0,1>,
/*as 1*/ <1,-1,0>, /*as 2%/
/*as 3*/ <1,0,0>, /*as 2%/
/*as 4%/ <1,1,0>, /*as 2%/
/*as 5%/ <0,1,0>, /*as 2%/
/*as 6*/ <-1,1,0>, /*as 2%/
/*as 7%/ <-1,0,0>, /*as 2%/
/*as 8%/ /*as 0%/ /*as 2%/

}

face_indices {
8,
<0,1,2>, <1,3,2>,
<3,4,2>, <4,5,2>,
<5,6,2>, <6,7,2>,
<7,8,2>, <8,0,2>

}

pigment {rgb 1}

}

When a mesh has a mix of smooth and flat triangles a liasbefial_indices{} has to
be added, where each entry points to what vertices a normal should be applied. In the
example below only the first four normals are actually used.

mesh2 {
vertex_vectors {
9,
<0,0,0>, <0.5,0,0>, <0.5,0.5,0>,
<1,0,0>, <1,0.5,0>, <1,1,0>,

96 Advanced Features

<0.5,1,0>, <0,1,0>, <0,0.5,0>
}
normal_vectors {
9,
<-1,-1,0>, <0,-1,0>, <0,0,1>,
<1,-1,0>, <1,0,0>, <1,1,0>,
<0,1,0>, <-1,1,0>, <-1,0,0>
}
face_indices {
8,
<0,1,2>, <1,3,2>,
<3,4,2>, <4,5,2>,
<5,6,2>, <6,7,2>,
<7,8,2>, <8,0,2>
}
normal_indices {
4,
<0,1,2>, <1,3,2>,
<3,4,2>, <4,5,2>
}
pigment {rgb 1}

UV mapping and mesh2

uv_mapping is a method of 'sticking’ 2D textures on an object in such a way that it
follows the form of the object. For umapping on triangles imagine it as follows; First
you cut out a triangular section of a texture form the xy-plane. Then stretch, shrink and
deform the piece of texture to fit to the triangle and stick it on.

Now, inmesh2 we first build a list of 2D-vectors that are the coordinates of the triangular
sections in the xy-plane. This is the_vectors{} list. In the example we map the
texture from the rectangular area®.5,-0.5>, <0.5,0.5>

to the triangles in the mesh. Again we can omit all duplicate coordinates

mesh2 {

vertex_vectors {
9,
<0,0,0>, <0.5,0,0>, <0.5,0.5,0>,
<1,0,0>, <1,0.5,0>, <1,1,0>,
<0.5,1,0>, <0,1,0>, <0,0.5,0>

}

uv_vectors {
9
<-0.5,-0.5>,<0,-0.5>, <0,0>

/*as 1%/ <0.5,-0.5>,/*as 2%/
/*as 3%/ <0.5,0>, /*as 2%/
/*as 4*/ <0.5,0.5>, /*as 2%/
/*as 5%/ <0,0.5>, /*as 2%/
/*as 6%/ <-0.5,0.5>,/*as 2%/
/*as 7*/ <-0.5,0>, /*as 2*/
/*as 8%/ /*as 0%/ /*as 2%/

3.2 Polygon Based Shapes 97

face_indices {
8,
<0,1,2>, <1,3,2>,
<3,4,2>, <4,5,2>,
<5,6,2>, <6,7,2>,
<7,8,2>, <8,0,2>

}

uv_mapping

pigment {wood scale 0.2}

}

Just as with the@wormal _vectors, if the number ofuv_vectors equals the number of
vertices then thav_indices{} list is optional and the indices from thface_indices{}
list are used instead.

In contrary to thenormal_indices list, if the uv_indices list is used, the amount of
indices should be equal to the amountfate_indices. In the example below only
‘one texture section’ is specified and used on all triangles, usingvthedices.

mesh2 {
vertex_vectors {
9,
<0,0,0>, <0.5,0,0>, <0.5,0.5,0>,
<1,0,0>, <1,0.5,0>, <1,1,0>,
<0.5,1,0>, <0,1,0>, <0,0.5,0>
}
uv_vectors {
3
<0,0>, <0.5,0>, <0.5,0.5>
}
face_indices {
8,
<0,1,2>, <1,3,2>,
<3,4,2>, <4,5,2>,
<5,6,2>, <6,7,2>,
<7,8,2>, <8,0,2>

uv_indices {
8,
<0,1,2>, <0,1,2>,
<0,1,2>, <0,1,2>,
<0,1,2>, <0,1,2>,
<0,1,2>, <0,1,2>
}
uv_mapping
pigment {gradient x scale 0.2}

A separate texture per triangle

By using thetexture_ list it is possible to specify a texture per triangle or even per
vertex in the mesh. In the latter case the three textures per triangle will be interpolated.
To let POV-Ray know what texture to apply to a triangle, the index of a texture is added

98 Advanced Features

to theface_indices list, after the face index it belongs to.

mesh2 {
vertex_vectors {
9,
<0,0,0>, <0.5,0,0>, <0.5,0.5,0>,
<1,0,0>, <1,0.5,0>, <1,1,0>
<0.5,1,0>, <0,1,0>, <0,0.5,0>

}

texture_list {
2,
texture{pigment{rgb<0,0,1>}}
texture{pigment{rgb<1,0,0>}}

}

face_indices {
8,
<0,1,2>,0, <1,3,2>,1,
<3,4,2>,0, <4,5,2>,1,
<5,6,2>,0, <6,7,2>,1,
<7,8,2>,0, <8,0,2>,1

}

To specify a texture per vertex, threexture_list indices are added after thiece_indices

mesh2 {
vertex_vectors {
9,
<0,0,0>, <0.5,0,0>, <0.5,0.5,0>,
<1,0,0>, <1,0.5,0>, <1,1,0>
<0.5,1,0>, <0,1,0>, <0,0.5,0>

}
texture_list {
3,
texture{pigment{rgb <0,0,1>}}
texture{pigment{rgb 1}}
texture{pigment{rgb <1,0,0>}}
}
face_indices {
8,
<0,1,2>,0,1,2, <1,3,2>,1,0,2,
<3,4,2>,0,1,2, <4,5,2>,1,0,2,
<5,6,2>,0,1,2, <6,7,2>,1,0,2,
<7,8,2>,0,1,2, <8,0,2>,1,0,2
}

Assigning a texture based on thexture 1ist and texture interpolation is done on a
per triangle base. So it is possible to mix triangles with just one texture and triangles
with three textures in a mesh. It is even possible to mix in triangles without any texture
indices, these will get their texture from a genetakture Statement in theesh2.
uv_mapping is supported for texturing usingexture_list.

3.2 Polygon Based Shapes 99

3.2.3 Polygon Obiject

Thepolygon oObject can be used to create any planar, n-sided shapes like squares, rect-
angles, pentagons, hexagons, octagons, etc.

A polygon is defined by a number of points that describe its shape. Since polygons
have to be closed the first point has to be repeated at the end of the point sequence.

In the following example we will create the word “POV” using just one polygon state-
ment.

We start with thinking about the points we need to describe the desired shape. We want
the letters to lie in the x-y-plane with the letter O being at the center. The letters extend
from y=0 to y=1. Thus we get the following points for each letter (the z coordinate is
automatically set to zero).

Letter P (outer polygon):

<-0.8, 0. 8
<-0.3, 1. .3, 0.5>,
<-0.7, 0 7
(

Letter P (inner polygon):

7, 0.6>, <-0.7, 0.9>,
4, 0.9 <

Letter O (outer polygon):

0.
0.
0.
P
<-0.
<-0.
@]
<-0.

25, 0.0>, <-0.25, 1.0>,
< 0.25,

1.0>, < 0.25, 0.0>

Letter O (inner polygon):

<-0.15, 0.1>, <-0.15, 0.9>,
< 0.15, 0.9, < 0.15, 0.1>

Letter V:

<0.45, 0.0>, <0.30, 1.0>,
<0.40, 1.0>, <0.55, 0.1>,
<0.70, 1.0>, <0.80, 1.0>,
<0.65, 0.0>

Both letters P and O have a hole while the letter V consists of only one polygon. We’'ll
start with the letter V because it is easier to define than the other two letters.

We create a new file calledolygdem.pov and add the following text.

camera {
orthographic
location <0, 0, -10>
right 1.3 * 4/3 * x

up 1.3 * y

look_at <0, 0.5, 0>
}
light_source { <25, 25, -100> color rgb 1 }
polygon {

81

100 Advanced Features

<0.45, 0.0>, <0.30, 1.0>, // Letter "V"
<0.40, 1.0>, <0.55, 0.1>,

<0.70, 1.0>, <0.80, 1.0>,

<0.65, 0.0>,

<0.45, 0.0>

pigment { color rgb <1, 0, 0> }

As noted above the polygon has to be closed by appending the first point to the point
sequence. A closed polygon is always defined by a sequence of points that ends when
a point is the same as the first point.

After we have created the letter V we'll continue with the letter P. Since it has a hole we
have to find a way of cutting this hole into the basic shape. This is quite easy. We just
define the outer shape of the letter P, which is a closed polygon, and add the sequence
of points that describes the hole, which is also a closed polygon. That'’s all we have to
do. There’ll be a hole where both polygons overlap.

In general we will get holes whenever an even number of sub-polygons inside a single
polygon statement overlap. A sub-polygon is defined by a closed sequence of points.

The letter P consists of two sub-polygons, one for the outer shape and one for the hole.
Since the hole polygon overlaps the outer shape polygon we'll get a hole.

After we have understood how multiple sub-polygons in a single polygon statement
work, it is quite easy to add the missing O letter.

Finally, we get the complete word POV.

polygon {
30,
<-0.8, 0.0>, <-0.8, 1.0>, // Letter "P"
<-0.3, 1.0>, <-0.3, 0.5>, // outer shape
<-0.7, 0.5>, <-0.7, 0.0>,
<-0.8, 0.0>,
<-0.7, 0.6>, <-0.7, 0.9>, // hole
<-0.4, 0.9>, <-0.4, 0.6>,
<-0.7, 0.6>
<-0.25, 0.0>, <-0.25, 1.0>, // Letter "0"
< 0.25, 1.0>, < 0.25, 0.0>, // outer shape
<-0.25, 0.0>,
<-0.15, 0.1>, <-0.15, 0.9>, // hole
< 0.15, 0.9>, < 0.15, 0.1>,
<-0.15, 0.1>,
<0.45, 0.0>, <0.30, 1.0>, // Letter "V"

<0.40, 1.0>, <0.55, 0.1>,
<0.70, 1.0>, <0.80, 1.0>,
<0.65, 0.0>,

<0.45, 0.0>

pigment { color rgb <1, 0, 0> }

3.3 Other Shapes 101

Figure 3.22: The word

3.3 Other Shapes

3.3.1 Blob Object

Blobs are described as spheres and cylinders covered with “goo” which stretches to
smoothly join them (see section “Blob”).

Ideal for modeling atoms and molecules, blobs are also powerful tools for creating
many smooth flowing “organic” shapes.

A slightly more mathematical way of describing a blob would be to say that it is one
object made up of two or more component pieces. Each piece is really an invisible field
of force which starts out at a particular strength and fafismoothly to zero at a given
radius. Where ever these components overlap in space, their field strength gets added
together (and yes, we can have negative strength which gets subtracted out of the total
as well). We could have just one component in a blob, but except for seeing what it
looks like there is little point, since the real beauty of blobs is the way the components
interact with one another.

Let us take a simple example blob to start. Now, in fact there are a coufdeedit

types of components but we will look at them a little later. For the sake of a simple first
example, let us just talk about spherical components. Here is a sample POV-Ray code
showing a basic camera, light, and a simple two component blob:

#include "colors.inc"
background{White}
camera {
angle 15
location <0,2,-10>
look_at <0,0,0>
}
light_source { <10, 20, -10> color White }
blob {
threshold .65
sphere { <.5,0,0>, .8, 1 pigment {Blue} }
sphere { <-.5,0,0>,.8, 1 pigment {Pink} }
finish { phong 1 }

102 Advanced Features

Figure 3.23: A simple, two-part blob.

The threshold is simply the overall strength value at which the blob becomes visible.
Any points within the blob where the strength matches the threshold exactly form the
surface of the blob shape. Those less than the thresholugsigleand those greater
than arensidethe blob.

We note that the spherical component looks a lot like a simple sphere object. We have
the sphere keyword, the vector representing the location of the center of the sphere and
the float representing the radius of the sphere. But what is that last float value? That is
the individual strength of that component. In a spherical component, that is how strong
the component’s field is at the center of the sphere. It will féliroa linear progression

until it reaches exactly zero at the radius of the sphere.

Before we render this test image, we note that we have given each component a dif-
ferent pigment. POV-Ray allows blob components to be given separate textures. We
have done this here to make it clearer which parts of the blob are which. We can also
texture the whole blob as one, like the finish statement at the end, which applies to all
components since it appears at the end, outside of all the components. We render the
scene and get a basic kissing spheres type blob.

The image we see shows the spheres on either side, but they are smoothly joined by
that bridge section in the center. This bridge represents where the two fields overlap,
and therefore stay above the threshold for longer than elsewhere in the blob. If that is
not totally clear, we add the following two objects to our scene and re-render. We note
that these are meant to be entered as separate sphere objects, not more components in
the blob.

sphere { <.5,0,0>, .8

pigment { Yellow transmit .75 }
}
sphere { <-.5,0,0>, .8

pigment { Green transmit .75 }

}

Now the secrets of the kissing spheres are laid bare. These semi-transparent spheres
show where the components of the blob actually are. If we have not worked with blobs
before, we might be surprised to see that the spheres we just added extend way farther

3.3 Other Shapes 103

Figure 3.24: The spherical components made visible.

out than the spheres that actually show up on the blobs. That of course is because our
spheres have been assigned a starting strength of one, which gradually fades to zero as
we move away from the sphere’s center. When the strength drops below the threshold
(in this case 0.65) the rest of the sphere becomes part of the outside of the blob and
therefore is not visible.

See the part where the two transparent spheres overlap? We note that it exactly cor-
responds to the bridge between the two spheres. That is the region where the two
components are both contributing to the overall strength of the blob at that point. That

is why the bridge appears: that region has a high enough strength to stay over the
threshold, due to the fact that the combined strength of two spherical components is
overlapping there.

Component Types and Other New Features

The shape shown so far is interesting, but limited. POV-Ray has a few extra tricks that
extend its range of usefulness however. For example, as we have seen, we can assign
individual textures to blob components, we can also apply individual transformations
(translate, rotate and scale) to stretch, twist, and squash pieces of the blob as we require.
And perhaps most interestingly, the blob code has been extended to allow cylindrical
components.

Before we move on to cylinders, it should perhaps be mentioned that the old style of
components used in previous versions of POV-Ray still work. Back then, all compo-
nents were spheres, so it was not necessary to say sphere or cylinder. An old style
component had the form:

component Strength, RadiusCenter

This has the samdtect as a spherical component, just as we already saw above. Thisis
only useful for backwards compatibility. If we already have POV-Ray files with blobs
from earlier versions, this is when we would need to recognize these components. We
note that the old style components did not put braces around the strength, radius and
center, and of course, we cannot independently transform or texture them. Therefore
if we are modifying an older work into a new version, it may arguably be of benefit to

104 Advanced Features

convert old style components into spherical components anyway.

Now for something new and fierent: cylindrical components. It could be argued that

all we ever needed to do to make a roughly cylindrical portion of a blob was string a
line of spherical components together along a straight line. Which is fine, if we like
having extra to type, and also assuming that the cylinder was oriented along an axis. If
not, we would have to work out the mathematical position of each component to keep
it is a straight line. But no more! Cylindrical components have arrived.

We replace the blob in our last example with the following and re-render. We can get
rid of the transparent spheres too, by the way.

blob {
threshold .65
cylinder { <-.75,-.75,0>, <.75,.75,0>, .5, 1}
pigment { Blue }
finish { phong 1 }
}

We only have one component so that we can see the basic shape of the cylindrical com-
ponent. Itis not quite a true cylinder - more of a sausage shape, being a cylinder capped
by two hemispheres. We think of it as if it were an array of spherical components all
closely strung along a straight line.

As for the component declaration itself: simple, logical, exactly as we would expect it
to look (assuming we have been awake so far): it looks pretty much like the declaration
of a cylinder object, with vectors specifying the two endpoints and a float giving the
radius of the cylinder. The last float, of course, is the strength of the component. Just
as with spherical components, the strength will determine the nature and degree of this
component’s interaction with its fellow components. In fact, next let us give this fellow
something to interact with, shall we?

Complex Blob Constructs and Negative Strength

Beginning a new POV-Ray file, we enter this somewhat more complex example:

#include "colors.inc"

background{White}

camera {
angle 20
location<0,2,-10>
look_at<0,0,0>

}

light_source { <10, 20, -10> color White }

blob {
threshold .65
sphere{<-.23,-.32,0>,.43, 1 scale <1.95,1.05,.8>} //palm
sphere{<+.12,-.41,0>,.43, 1 scale <1.95,1.075,.8>} //palm
sphere{<-.23,-.63,0>, .45, .75 scale <1.78, 1.3,1>} //midhand
sphere{<+.19,-.63,0>, .45, .75 scale <1.78, 1.3,1>} //midhand
sphere{<-.22,-.73,0>, .45, .85 scale <1.4, 1.25,1>} //heel
sphere{<+.19,-.73,0>, .45, .85 scale <1.4, 1.25,1>} //heel
cylinder{<-.65,-.28,0>, <-.65,.28,-.05>, .26, 1} //lower pinky
cylinder{<-.65,.28,-.05>, <-.65, .68,-.2>, .26, 1} //upper pinky

3.3 Other Shapes 105

cylinder{<-.3,-.28,0>, <-.3,.44,-.05>, .26, 1} //lower ring
cylinder{<-.3,.44,-.05>, <-.3, .9,-.2>, .26, 1} //upper ring
cylinder{<.05,-.28,0>, <.05, .49,-.05>, .26, 1} //lower middle
cylinder{<.05,.49,-.05>, <.05, .95,-.2>, .26, 1} //upper middle
cylinder{<.4,-.4,0>, <.4, .512, -.05>, .26, 1} //lower index

cylinder{<.4,.512,-.05>, <.4, .85, -.2>, .26, 1} //upper index
cylinder{<.41, -.95,0>, <.85, -.68, -.05>, .25, 1} //lower thumb
cylinder{<.85,-.68,-.05>, <1.2, -.4, -.2>, .25, 1} //upper thumb
pigment{ Flesh }

Figure 3.25: A hand made with blobs.

As we can guess from the comments, we are building a hand here. After we render
this image, we can see there are a few problems with it. The palm and heel of the hand
would look more realistic if we used a couple dozen smaller components rather than
the half dozen larger ones we have used, and each finger should have three segments
instead of two, but for the sake of a simplified demonstration, we can overlook these
points. But there is one thing we really need to address here: This poor fellow appears
to have horrible painful swelling of the joints!

A review of what we know of blobs will quickly reveal what went wrong. The joints

are places where the blob components overlap, therefore the combined strength of both
components at that point causes the surface to extend further out, since it stays over
the threshold longer. To fix this, what we need are components corresponding to the
overlap region which have a negative strength to counteract part of the combined field
strength. We add the following components to our blob.

sphere{<-.65,.28,-.05>, .26, -1} //counteract pinky knucklebulge
sphere{<-.65,-.28,0>, .26, -1} //counteract pinky palm bulge
sphere{<-.3,.44,-.05>, .26, -1} //counteract ring knuckle bulge
sphere{<-.3,-.28,0>, .26, -1} //counteract ring palm bulge
sphere{<.05,.49,-.05>, .26, -1} //counteract middle knuckle bulge
sphere{<.05,-.28,0>, .26, -1} //counteract middle palm bulge
sphere{<.4,.512,-.05>, .26, -1} //counteract index knuckle bulge
sphere{<.4,-.4,0>, .26, -1} //counteract index palm bulge
sphere{<.85,-.68,-.05>, .25, -1} //counteract thumb knuckle bulge
sphere{<.41,-.7,0>, .25, -.89} //counteract thumb heel bulge

Much better! The negative strength of the spherical components counteracts approxi-

106 Advanced Features

Figure 3.26: The hand without the swollen joints.

mately half of the field strength at the points where to components overlap, so the ugly,
unrealistic (and painful looking) bulging is cut out making our hand considerably im-
proved. While we could probably make a yet more realistic hand with a couple dozen
additional components, what we get this time is a considerable improvement. Any by
now, we have enough basic knowledge of blob mechanics to make a wide array of
smooth, flowing organic shapes!

3.3.2 Height Field Object

A height_field is an object that has a surface that is determined by the color value
or palette index number of an image designed for that purpose. With height fields,
realistic mountains and other types of terrain can easily be made. First, we need an
image from which to create the height field. It just so happens that POV-Ray is ideal
for creating such an image.

We make a new file callethage.pov and edit it to contain the following:

#include "colors.inc"

global_settings {
assumed_gamma 2.2
hf_gray_16

}

Thehf_gray_16 keyword causes the output to be in a special 16 bit grayscale that is
perfect for generating height fields. The normal 8 bit output will lead to less smooth
surfaces.

Now we create a camera positioned so that it points directly down the z-axis at the
origin.
camera {
location <0, 0, -10>

look_at ®
}

We then create a plane positioned like a wall-a®zThis plane will completely fill the
screen. It will be colored with white and gray wrinkles.

3.3 Other Shapes 107

plane { z, 10
pigment {
wrinkles
color_map {
[0 0.3*White]
[1 White]
}
}
}

Finally, create a light source.
light_source { <0, 20, -100> color White }

We render this scene at 640x48® .1 +FT. We will get an image that will produce an
excellent height field. We create a new file caligdemo . pov and edit it as follows:

Note: Windows users, unless you specifiT as above, you will get a .BMP file (which
is the default Windows version output). In this case you will need tausinstead of
tga in theheight_field statement below.

#include "colors.inc"
We add a camera that is two units above the origin and ten units back ...

cameraf{
location <0, 2, -10>
look_at ®
angle 30

}

... and a light source.
light_source{ <1000,1000,-1000> White }

Now we add the height field. In the following syntax, a Targa image file is specified,
the height field is smoothed, it is given a simple white pigment, it is translated to center
it around the origin and it is scaled so that it resembles mountains and fills the screen.

height_field {
tga "image.tga"

smooth
pigment { White }
translate <-.5, -.5, -.5>
scale <17, 1.75, 17>

}

We save the file and render it at 320x240 Later, when we are satisfied that the height
field is the way we want it, we render it at a higher resolution with anti-aliasing.

Wow! The Himalayas have come to our computer screen!

3.3.3 Isosurface Object

You know you have been raytracing too long when ...

... You find yourself wishing you'd paid attention in math class to all those formulae
you thought you'd never have any use for in real life.

108 Advanced Features

Figure 3.27: A height field created completely with POV-Ray.

—JgfLee
Isosurfaces are shapes described by mathematical functions.

In contrast to the other mathematically based shapes in POV-Ray, isosurfaces are ap-
proximated during rendering and therefore they are sometimes nthoglito handle.
However, they ffer many interesting possibilities.

Some knowledge about mathematical functions and geometry is useful, but not neces-
sarily required to work with isosurfaces.

simple functions

For the start we will choose a most simple functionThe value of this function is
exactly the current x-coordinate.

The isosurface object takes this function as a user defined function:

isosurface {

function { x }

contained_by { box { -2, 2 } }
}

Figure 3.28: Isosurface sample (functiox })

3.3 Other Shapes 109

the resulting shape is fairly simple: a box.

The fact that it is a box is only caused by the container object which is required for an
isosurface. You can either use a box or a sphere for this purpose.

So only one side of the box is made by the function in fact. This surface is where
the x-coordinate is 0 since 0 is the default threshold. There usually is no reason to
change this, since it is the most common and most suggestive value, but you can specify
something dferent by adding

threshold 1

to the isosurface definition.

Figure 3.29: Isosurface sample (functiox }, threshold 1)

As you can see, the surface is now at x-coordinate 1.

We can also remove the visible surfaces of the container object by adding the word
‘open’ to the isosurface definition.

Figure 3.30: Isosurface sample (functipx }, open)

For making it clearer what surfaces are the actual isosurface and what are caused by
the container object, the color will beftBrent in all the following pictures.

Now we replace the used function with somethinfjedient:

110 Advanced Features

function { x+y }

Figure 3.31: Isosurface sample (plane function)

function { x+y+z }

p
-

Figure 3.32: Isosurface sample (plane function)
Note: 'max_gradient 4’ is added to the isosurface definition here, this will be explained
later on.

All these functions describe planes going through the origin. The function just de-
scribes the normal vector of this plane.

several surfaces

The following two functions lead to identical results:
function { abs(x)-1 }
function { sqrt(x*x)-1 }

You can see that there are two planes now. The reason is that both formulas have the
same two solutions (where the function value is 0), narrely andx=1.

We can now mix all these elements irffdrent combinations, the results always consist
of plane surfaces:

3.3 Other Shapes 111

Figure 3.33: Isosurface sample (functipabs(x)-1}, open)

function { abs(x)-1+y }

-
-

Figure 3.34: Isosurface sample (combined linear functions)

function { abs(x)+abs(y)+abs(z)-2 }

non-linear functions

Curved surfaces of manyftirent kinds can be achieved with non-linear functions.
function { pow(x,2) + vy }

You can see the parabolic shape caused by the square function.

To get a cylindrical surface we can use the following function.
function { sqrt(pow(x,2) + pow(z,2)) - 1}

In 2 dimensions it describes a circle, since it is constant in the 3rd dimension, we get a
cylinder:

It is of course not dficult to change this into a cone, we just need to add a linear
component in y-direction:

function { sqrt(pow(x,2) + pow(z,2)) + vy }

112 Advanced Features

Figure 3.35: Isosurface sample (combined linear functions)

Figure 3.36: Isosurface sample (non-linear function)

<

Figure 3.37: Isosurface sample (cylinder function)

3.3 Other Shapes 113

Figure 3.38: Isosurface sample (cone function)

And we of course can also make a sphere:

function { sqrt(pow(x,2) + pow(y,2) + pow(z,2)) - 2 }

Figure 3.39: Isosurface sample (sphere function)

The2 specifies the radius here.

internal functions

There are a lot of internal functions available in POV-Ray. For example a sphere could
also be generated withunction { f_sphere(x, y, z, 2) } These functions are de-
clared in thefunctions.inc include file. Most of them are more complicated and it’s
usually faster to use them instead of a hand coded equivalent. See the complete list for
details.

The following makes a torus just like POV-Ray’s torus object:
#include "functions.inc"
isosurface {

function { f_torus(x, y, z, 1.6, 0.4) }
contained_by { box { -2, 2 } }

114 Advanced Features

I
<=

Figure 3.40: Isosurface sample (torus function)
The 4th and 5th parameter are the major and minor radius, just like the corresponding
values in thecorus{} object.

The parameters x, y and z are required, because it is a declared function. You can also
declare functions yourself like it is explained in the reference section.

Combining isosurface functions

We can also simulate some Constructive Solid Geometry with isosurface functions. If
you don’t know about CSG we suggest you have a look at “What is CSG?” or the
corresponding part of the reference section first.

We will take two functions: a cylinder and a rotated box:

#declare fn_A = function { sqrt(pow(y,2) + pow(z,2)) - 0.8 }
#declare fn_B = function { abs(x)+abs(y)-1 }

If we combine them the following way, we get a “merge”:

function { min(fn A(x, vy, z), fnB(x, vy, 2)) }

|

Figure 3.41: Isosurface sample (merge)

3.3 Other Shapes 115

An “intersection” can be obtained by usiagx) instead ofnin():

function { max(fn A(x, y, z), fnB(x, y, z)) }

<«

Figure 3.42: Isosurface sample (intersection)

Of course also “dterence” is possible, we just have to add a minus (-) before the
second function:

function { max(fn A(x, vy, z), -fnB(x, y, 2)) }

&

Figure 3.43: Isosurface sampleffdrence)

Apart from basic CSG you can also obtain smooth transits betweenffeedt sur-
faces (like with the blob object)

#declare Blob_threshold=0.01;

isosurface {
function {
(1+Blob_threshold)
-pow(Blob_threshold, fn_A(x,y,z))
-pow(Blob_threshold, fn_B(x,y,z))
}
max_gradient 4
contained_by { box { -2, 2 } }
}

116 Advanced Features

@

Figure 3.44: Isosurface sample (blob)

TheBlob_threshold value influences the smoothness of the transit between the shapes.
a lower value leads to sharper edges.

noise and pigment functions

Some of the internal functions have a random or noise-like structure

Together with the pigment functions they are one of the most powerful tools for de-
signing isosurfaces. We can add real surface displacement to the objects rather than
only normal perturbation known from the norrtjadtatement.

The relevant internal functions are:

e f noise3d(x,y,z)
uses the noise generator specifiedlinbal_settings{} and generates structures
like the bozo pattern.

e f noise_generator(x,y,z, noise_generator)
generates noise with a specified noise generator.

e f ridged mf(x,y,z, H, Lacunarity, Octaves, Offset, Gain, noise_generator)
generates a ridged multifractal pattern.

e f ridge(x,y,z, Lambda, Octaves, Omega, Offset, Ridge, noise_generator)
generates another noise with ridges.

o f heteromf(x,y,z, H, Lacunarity, Octaves, Offset, T, noise_generator)
generates heterogenic multifractal noise.

Using pure noise3d as a function results in the following picture:
function { fnoise3d(x, y, z)-0.5 }

Note: the -0.5 is only there to make it match to the used threshold value of O, the
f noise3d function returns values between 0 and 1.

With this and the other functions you can generate objects similar to heightfields, hav-
ing the advantage that a high resolution can be achieved without high memory require-
ments.

3.3 Other Shapes 117

Figure 3.45: Isosurface sample (noise3d)

function { x+fnoise3d(®, y, z) }

Figure 3.46: Isosurface sample (noise3d 'heightfield’)
The noise function can of course also be subtracted which results in an 'inverted’ ver-
sion:
function { x-fnoise3d(®, y, z) }

In the last two pictures we added the noise function to a plane function. The x-
parameter was set to 0 so the noise function is constant in x-direction. This way we
achieve the typical heightfield structure.

Of course we can also add noise to any other function. If the noise function is very
strong this can result in several separated surfaces.

function { f_sphere(x, y, z, 1.2)-fnoise3d(x, y, z) }

This is a noise function applied to a sphere surface, we can influence the intensity of the
noise by multiplying it with a factor and change the scale by multiplying the coordinate
parameters:

function { f_sphere(x, y, z, 1.6)-fnoise3d(x*5, y*5, z*5)*0.5 }

As alternative to noise functions we can also use any pigment in a function:

118 Advanced Features

Figure 3.47: Isosurface sample (noise3d 'heightfield’ inverted)

Figure 3.48: Isosurface sample (noise3d on sphere)

Figure 3.49: Isosurface sample (noise3d on sphere scaled)

3.3 Other Shapes 119

#declare fn_Pigm=function {
pigment {
agate
color_map {
[0 color rgb 0]
[1 color rgb 1]
}
}
}

This function is a vector function returning a (color) vector. For use in isosurface func-
tions we have to specify the component to use (for details see the reference section).

function { f_sphere(x, y, z, 1.6)-fn Pigm(x/2, y/2, z/2).gray*0.5 }

Figure 3.50: Isosurface sample (pigment function)

There are quite a lot of things possible with pigment functions, but you probably have
recognized that this renders quite slow.

accuracy, maxgradient, etc.

To optimize the approximation of the isosurface and to get maximum rendering speed
it is important to adapt certain values (see also “Improving Isosurface Speed” in the
reference section).

accuracy

The accuracy value influences how accurate the surface geometry is calculated. Lower
values lead to a more precise, but slower result. The default valaeset is fairly

low. We used this value in all the previous samples, but often you can raise this quite a
lot and thereby make things faster.

max_gradient

For finding the actual surface it is important for POV-Ray to know the maximum gra-
dient of the function, meaning how fast the function value changes. We can specify a
value with themax_gradient keyword. Lower maxgradient values lead to faster ren-
dering, but if the specified value is below the actual maximum gradient of the function,
there can be holes or other artefacts in the surface.

120 Advanced Features

For the same reason functions with infinite gradient should not be used. This applies
for pigment functions with brick or checker pattern for example. You should also be
careful when usingelect () in isosurface functions because of this.

If the real maximum gradient fiers too much from the specified value POV-Ray prints
a warning together with the found maximum gradient. It is usualiidant to use this
number for thenax_gradient parameter to get fast and correct results.

POV-Ray can also dynamically change th& _gradient when you specifievaluate
with 3 parameters the isosurface definition. Concerning the details on this and other
things see the reference section.

3.3.4 Poly Object

The polynomial object (and its “shortcut” versionaibic, quartic andquadric) of
POV-Ray is one of the most complex and mathematical primitives of the program. One
could think that it's seldom used and more or less obsolete, but we have to remember
that for example the torus primitive is just a shortcut for the equivajenttic, which

is just a shortcut for the equivalepdly object. Polys are, however, seldom used in
scenes due to the fact that they are sialilt to define and it's far from trivial to

get the desired shape with just a polynomial equation. It is mostly used by the most
mathematically oriented POV-Ray users.

This tutorial explains the process of making a polynomial object in POV-Ray.

Note: POV-Ray 3.5 includes the neigosurface object which makes the polynomial
object more or less obsolete. The isosurface is more versatile (you can specify any
mathematical function, not just polynomials), easier to use. You can write the func-
tion as is, without needing to put values in a gigantic vector. Isosurfaces often render
considerably faster than equivalent polys.

However, the most mathematically oriented still like polys because isosurfaces are cal-
culated just by approximating the right value, while the poly is calculated in a mathe-
matically exact way. Usually isosurfaces are more than good enough for most applica-
tions, though.

Note: at maximum a 15th degree polynomial can be represented with the poly object.
If a higher degree polynomial or other non-polynomial function has to be represented,
then it's necessary to use the isosurface object.

Creating the polynomial function

The first step is to create the polynomial function to be represented. You will need
some (high-school level) mathematical knowledge for this.

1) Let’s start with an easy example: A sphere.

The sphere function is:

Now we have to convert this to polynomial form:

We will need a polynomial of the 2nd degree to represent this.

3.3 Other Shapes 121

R+ + 2=

Equation 3.1: sphere function
X+y+Z2-r=0
Equation 3.2: sphere polynomial

2) A more elaborated example:

Let’s take the function:

2xy?
xR+

Equation 3.3: function

Converting this to polynomial form we get:

Although the highest power is 4 we will need a 5th order polynomial to represent this
function (because we can’t represefe with a 4th order polynomial).

3) And since we talked about the torus, let’s also take it as an example.
A torus can be represented with the function:

where i is the major radius ang is the minor radius.

Now, this is tougher to convert to polynomial form, but finally we get:

A 4th order polynomial is enough to represent this.

Note: not every function can be represented in polynomial form. Only functions that
use addition (and substraction), multiplication (and division) and scalar powers (includ-
ing rational powers, eg. the square root) can be represented. Also, the poly primitive
supports only polynomials of the 7th degree at max.

Converting a function to polynomial form may be a very laborious task for certain
functions. Some mathematical programs are very helpful in this matter.

Writing the polynomial vector

Now that we have the function in polynomial form, we have to write it in POV-Ray
syntax. The syntax is specified in the in the chapters “Poly, Cubic and Quartic” and
“Quadric” of the SDL section. There’s also a table in this chapter which we will be
using to make the polynomial vector. It's most easy to have this table printed on paper.

122 Advanced Features

Xz+y'z—2xyY =0

Equation 3.4: polynomial

2
\/(\/x2+z2— rl) +y2 =13
Equation 3.5: torus function

Note: It is also possible to make a little program with your favorite programming
language which will print the poly vector from the polynomial function, but making a
program like this is up to you.

1) Let’s start with the easy one, ie. the sphere.

Since the sphere can be represented with a polynomial of 2nd degree, we look at the
row titled “2nd” in the table. We see that it has 10 items, ie. we need a vector of size
10. Each item of the vector will be the factor of the term listed in the table.

The polynomial was:
Writing the poly in this way we get:

#declare Radius=1;

poly

{2,
<1,0,0,0,1,

0,0,1,0,-Radius*Radius>

}
Put each group of factors (separated with lines in the table) in their own lines.

In the table we see that the first item is the factor fgnahich is 1 in the function. The
next item is xy. Since it isn't in the function, its factor is 0. Likewise the next item,
which is xz. And so on. The last item is the scalar term, which is in this case -r

If we make a proper scene and render it, we get:

camera { location y*4-z*5 look_at 0O angle 35 }
light_source { <100,200,-50> 1 }
background { rgb <0,.25,.5> }

#declare Radius=1;
poly
{ 2 ’

X+ 20+ 222 =22+ 1)+ Y 4 2P 2 4+ 2(1 2 — 1)+ 2 = 2(r2 +12) 2+ (r2—r3)* = 0

Equation 3.6: torus polynomial

3.3 Other Shapes 123

X+y+Z-r=0

Equation 3.7: sphere polynomial

<1,0,0,0,1,

0,0,1,0,-Radius*Radius>

pigment { rgb <1,.7,.3> } finish { specular .5 }
}

Figure 3.51: Sphere polynomial

Note: there’s a shortcut for 2nd degree polynomials: Ghedric primitive. Using a
shortcut version, whenever possible, can lead to faster renderings. We can write the
sphere code described above in the following way:

quadric

{ <1,1,1>, <0,0,0>, <0,0,0>, -Radius*Radius
pigment { rgb <1,.7,.3> } finish { specular .5 }

}

2) Now lets try the second one. We do it similarly, but this time we need to look at the
row titled “5th” in the table.

The polynomial was:

Xz+y'z-2xy =0

Equation 3.8: 5th order polynomial

Writing the poly primitive we get:

poly
{5

124 Advanced Features

}

0,0,0,0,0,
-2,0,0,0,0,

With the proper scene we get:

camera { location <8,20,-10>*.7 look_at x*.01 angle 35 }
light_source { <100,200,20> 1 }
background { rgb <0,.25,.5> }

poly

{

5

0,0,0,0,0,0>

clipped_by { box { <-4,-4,-1><4,4,1> } }
bounded_by { clipped_by }

pigment { rgb <1,.7,.3> } finish { specular .5 }
rotate <0,90,-90>

Figure 3.52: 5th order polynomial example

3) And finally the torus:

The polynomial was:

And we get the proper 4th degree poly primitive:

3.3 Other Shapes 125

X+ 20+ 22 - 2(r2 + 1)+ Y 4 2P 2+ 212~ 1)+ 2 = 2(r2 +12) 2+ (r2—r3)*> = 0
Equation 3.9: torus polynomial

camera { location y*4-z*5 look_at 0O angle 35 }
light_source { <100,200,-50> 1 }
background { rgb <0,.25,.5> }

#declare ri=1;
#declare r2=.5;

poly
{4,
<1,0,0,0,2,

0,0,2,0,-2*(rl*rl+r2*r2),
0,0,0,0,0,
0,0,0,0,0,
1,0,0,2,0,
2*(rl*rl-r2*r2),0,0,0,0,

1,0,-2*(r1*rl+r2*r2),0,pow(rl,4)+pow(r2,4)-2*r1*rl*r2*r2>
pigment { rgb <1,.7,.3> } finish { specular .5 }
}

When rendered we get:

Figure 3.53: Torus polynomial

There’s a shortcut for 4th order polynomials: Tdiartic primitive. We can write the
torus like this:

quartic
{ <1,0,
!®!

72!
,=2%(rl*rl+r2*r2),

0,
9,0,2,
0,0,0,
0,0,0
1,0,0 s
2*(rl1*rl1-r2%r2),0,0,0,0,

1,0,-2*(rl*rl+r2*r2),0,pow(rl,4) +pow(r2,4)-2*r1*r1*r2*r2>
pigment { rgb <1,.7,.3> } finish { specular .5 }

14y
¥

H VNS

126 Advanced Features

3.3.5 Superquadric Ellipsoid Object

Sometimes we want to make an object that does not have perfectly sharp edges like
a box does. Then, the superquadric ellipsoid shape made byhee11ipsoid is a
useful object. It is described by the simple syntax:

superellipsoid { <Value_E, Value_N >}

WhereValue E andValueN are float values greater than zero and less than or equal
to one. Let's make a superellipsoid and experiment with the valudé&loke E and
ValueN to see what kind of shapes we can make. We create a file caligéel1ps.pov

and edit it as follows:

#include "colors.inc"
camera {
location <10, 5, -20>
look_at O
angle 15

}
background { color rgb <.5, .5, .5> }
light_source { <10, 50, -100> White }

The addition of a gray background makes it a little easier to see our object. We now
type:

superellipsoid { <.25, .25>
pigment { Red }
}

We save the file and trace it at 200x150to see the shape. It will look like a box, but
the edges will be roundedio Now let's experiment with dferent values o¥alue E
and ValueN. For the next trace, try1, 0.2>. The shape now looks like a cylinder,
but the top edges are rounded. Now 4.1, I>. This shape is an odd one! We don't
know exactly what to call it, but it is interesting. Finally, let's tal, 1>. Well, this is
more familiar... a sphere!

There are a couple of facts about superellipsoids we should know. First, we should
not use a value of 0 for eitheMalueE nor ValueN. This will cause POV-Ray to
incorrectly make a black box instead of our desired shape. Second, very small values
of Value E and Value N may yield strange results so they should be avoided. Finally,
the Sturmian root solver will not work with superellipsoids.

Superellipsoids are finite objects so they respond to auto-bounding and can be used in
CSG.

Now let’s use the superellipsoid to make something that would be useful in a scene.
We will make a tiled floor and place a couple of superellipsoid objects hovering over
it. We can start with the file we have already made.

We rename it to tiles.pov and edit it so that it reads as follows:

#include "colors.inc"
#include "textures.inc"

3.3 Other Shapes 127

camera {
location <10, 5, -20>
look_at ©®
angle 15

}
background { color rgb <.5, .5, .5>}
light_source{ <10, 50, -100> White }

Note: we have addeéinclude ‘‘textures.inc’’ SO we can use pre-defined textures.
Now we want to define the superellipsoid which will be our tile.

#declare Tile = superellipsoid { <0.5, 0.1>
scale <1, .05, 1>

}

Superellipsoids are roughly 2*2*2 units unless we scale them otherwise. If we wish to
lay a bunch of our tiles side by side, they will have to Ifiset from each other so they
don't overlap. We should select affset value that is slightly more than 2 so that we
have some space between the tiles to fill with grout. So we now add this:

#declare Offset = 2.1;

We now want to lay down a row of tiles. Each tile will b&set from the original by

an ever-increasing amount in both the and -z directions. We refer to ouffset and
multiply by the tile’s rank to determine the position of each tile in the row. We also
union these tiles into a single object called like this:

#declare Row = union {

Tile translate -z*0ffset*5 }
Tile translate -z*Offset*6 }

object
object
}

This gives us a single row of 17 tiles, more than enough to fill the screen. Now we
must make copies of theow and translate them, again by thset value, in both the
+x and -x directions in ever increasing amounts in the same manner.

object { Tile }
object { Tile translate z*Offset }
object { Tile translate z*Offset*2 }
object { Tile translate z*0Offset*3 }
object { Tile translate z*0Offset*4 }
object { Tile translate z*Offset*5 }
object { Tile translate z*0Offset*6 }
object { Tile translate z*Offset*7 }
object { Tile translate z*Offset*8 }
object { Tile translate z*0Offset*9 }
object { Tile translate z*0Offset*10 }
object { Tile translate -z*Offset }
object { Tile translate -z*Offset*2 }
object { Tile translate -z*0ffset*3 }
object { Tile translate -z*Offset*4 }

{

{

object { Row }

object { Row translate x*0Offset }
object { Row translate x*0Offset*2 }
object { Row translate x*Offset*3 }
object { Row translate x*0Offset*4 }

128 Advanced Features

object { Row translate x*Offset*5 }
object { Row translate x*0Offset*6 }
object { Row translate x*0ffset*7 }
object { Row translate -x*0Offset }

object { Row translate -x*Offset*2 }
object { Row translate -x*0Offset*3 }
object { Row translate -x*Offset*4 }
object { Row translate -x*0Offset*5 }
object { Row translate -x*0ffset*6 }
object { Row translate -x*Offset*7 }

Finally, our tiles are complete. But we need a texture for them. To do this we union
all of the rRows together and apply @hite Marble pigment and a somewhat shiny
reflective surface to it:

union{

object { Row }

object { Row translate x*0Offset }
object { Row translate x*Offset*2 }
object { Row translate x*0Offset*3 }
object { Row translate x*0Offset*4 }
object { Row translate x*0Offset*5 }
object { Row translate x*0Offset*6 }
object { Row translate x*0Offset*7 }
object { Row translate -x*0Offset }
object { Row translate -x*0Offset*2 }
object { Row translate -x*0ffset*3 }
object { Row translate -x*0ffset*4 }
object { Row translate -x*0Offset*5 }
object { Row translate -x*0ffset*6 }
object { Row translate -x*0ffset*7 }

pigment { White_Marble }
finish { phong 1 phong_size 50 reflection .35 }
}

We now need to add the grout. This can simply be a white plane. We have stepped up
the ambient here a little so it looks whiter.

plane {
y, 0 //this is the grout
pigment { color White }
finish { ambient .4 diffuse .7 }
}

To complete our scene, let’s add fivétdrent superellipsoids, each dfdrent color, so
that they hover over our tiles and are reflected in them.

superellipsoid {
<0.1, 1>
pigment { Red }
translate <5, 3, 0>
scale .45

}

superellipsoid {
<1, 0.25>
pigment { Blue }

3.4 Advanced Texture Options 129

translate <-5, 3, 0>
scale .45

}

superellipsoid {
<0.2, 0.6>
pigment { Green }
translate <0, 3, 5>
scale .45

}

superellipsoid {
<0.25, 0.25>
pigment { Yellow }
translate <0, 3, -5>
scale .45

}

superellipsoid {
<1, 1>
pigment { Pink }
translate y*3
scale .45

Figure 3.54: Some superellipsoids hovering above a tiled floor.

We trace the scene at 320x200to see the result. If we are happy with that, we do a
final trace at 640x480A0. 2.

3.4 Advanced Texture Options

The extremely powerful texturing ability is one thing that really sets POV-Ray apart

from other raytracers. So far we have not really tried anything too complex but by now
we should be comfortable enough with the program’s syntax to try some of the more
advanced texture options.

Obviously, we cannot try them all. It would take a tutorial a lot more pages to use
every texturing option available in POV-Ray. For this limited tutorial, we will content
ourselves to just trying a few of them to give an idea of how textures are created. With
a little practice, we will soon be creating beautiful textures of our own.

130 Advanced Features

Note: early versions of POV-Ray made a distinction between pigment and normal
patterns, i. e. patterns that could be used insid&amal or pigment Statement. Since
POV-Ray 3.0 this restriction was removed so that all patterns listed in section “Patterns”
can be used as a pigment or normal pattern.

3.4.1 Pigments

Every surface must have a color. In POV-Ray this color is calleib@ent. It does not

have to be a single color. It can be a color pattern, a color list or even an image map.
Pigments can also be layered one on top of the next so long as the uppermost layers are
at least partially transparent so the ones beneath can show through. Let’s play around
with some of these kinds of pigments.

We create a file calle¢lexdemo.pov and edit it as follows:

#include "colors.inc"
camera {
location <1, 1, -7>
look_at ®
angle 36
}
light_source { <1000, 1000, -1000> White }
plane {
y, -1.5
pigment { checker Green, White }
}
sphere {
<0,0,0>, 1
pigment { Red }
}

Giving this file a quick test render at 200x150we see that it is a simple red sphere
against a green and white checkered plane. We will be using the sphere for our textures.

Using Color List Pigments

Before we begin we should note that we have already made one kind of pigment, the
color list pigment. In the previous example we have used a checkered pattern on our
plane. There are three other kinds of color list pigmeiitick, hexagon and theobject
pattern. Let's quickly try each of these. First, we change the plane’s pigment as follows:

pigment { hexagon Green, White, Yellow }

Rendering this we see a three-color hexagonal pattern. Note that this pattern requires
three colors. Now we change the pigment to...

pigment { brick Gray75, Red rotate -90*x scale .25 }

Looking at the resulting image we see that the plane now has a brick pattern. We note
that we had to rotate the pattern to make it appear correctly on the flat plane. This
pattern normally is meant to be used on vertical surfaces. We also had to scale the
pattern down a bit so we could see it more easily. We can play around with these color
list pigments, change the colors, etc. until we get a floor that we like.

3.4 Advanced Texture Options 131

Using Pigment and Patterns

Let’s begin texturing our sphere by using a pattern and a color map consisting of three
colors. We replace the pigment block with the following.

pigment {
gradient x
color_map {
[0.00 color Red]
[0.33 color Blue]
[0.66 color Yellow]
[1.00 color Red]
}
}

Rendering this we see that theadient pattern gives us an interesting pattern of ver-
tical stripes. We change the gradient direction to y. The stripes are horizontal now.
We change the gradient direction to z. The stripes are now more like concentric rings.
This is because the gradient direction is directly away from the camera. We change the
direction back to x and add the following to the pigment block.

pigment {
gradient x
color_map {
[0.00 color Red]
[0.33 color Blue]
[0.66 color Yellow]
[1.00 color Red]
}
rotate -45%z // <- add this line
}

The vertical bars are now slanted at a 45 degree angle. All patterns can be rotated,
scaled and translated in this manner. Let's now try sonfierdint types of patterns.

One at a time, we substitute the following keywordsdesdient x and render to see

the result:bozo, marble, agate, granite, leopard, spotted andwood (if we like we

can test all patterns listed in section “Patterns”).

Rendering these we see that each results in a slighflsrdint pattern. But to get really
good results each type of pattern requires the use of some pattern modifiers.

Using Pattern Modifiers

Let’s take a look at some pattern modifiers. First, we change the pattern type to bozo.
Then we add the following change.

pigment {
bozo
frequency 3 // <- add this line
color_map {
[0.00 color Red]
[0.33 color Blue]
[0.66 color Yellow]
[1.80 color Red]

132 Advanced Features

3

rotate -45*z

}

The frequency modifier determines the number of times the color map repeats itself
per unit of size. This change makes #hwzo pattern we saw earlier have many more
bands in it. Now we change the pattern typaieble. When we rendered this earlier,

we saw a banded pattern similar g§padient y that really did not look much like
marble at all. This is because marble really is a kind of gradient and it needs another
pattern modifier to look like marble. This modifier is callegtbulence. We change

the line frequency 3 to turbulence 1 and render again. That's better! Now let's

put frequency 3 back in right after the turbulence and take another look. Even more
interesting!

But wait, it gets better! Turbulence itself has some modifiers of its own. We can adjust
the turbulence several ways. First, the float that followstih®ulence keyword can

be any value with higher values giving us more turbulence. Second, we can use the
keywordsomega, 1ambda andoctaves to change the turbulence parameters.

Let's try this now:

pigment {

marble

turbulence 0.5

lambda 1.5

omega 0.8

octaves 5

frequency 3

color_map {
[0.00 color Red]
[0.33 color Blue]
[0.66 color Yellow]
[1.00 color Red]

}

rotate 45%z

}

Rendering this we see that the turbulence has changed and the pattern fierkesidi
We play around with the numerical values of turbulence, lambda, omega and octaves
to see what they do.

Using Transparent Pigments and Layered Textures

Pigments are described by numerical values that give the rgb value of the color to
be used (likecolor rgb<1,0,0> giving us a red color). But this syntax will give us
more than just the rgb values. We can specify filtering transparency by changing it as
follows: color rgbf<1,0,0,1>. Thef stands forfilter, POV-Ray’s word for filtered
transparency. A value of one means that the color is completely transparent, but still
filters the light according to what the pigment is. In this case, the color will be a
transparent red, like red cellophane.

There is another kind of transparency in POV-Ray. It is caltadsmittanceor non-
filtering transparency (the keyword tgansmit; see alsargbt). It is different from

3.4 Advanced Texture Options 133

filter in that it does not filter the light according to the pigment color. It instead
allows all the light to pass through unchanged. It can be specified like this:
<1,0,0,1>.

Let's use some transparent pigments to create another kind of texture, the layered tex-
ture. Returning to our previous example, declare the following texture.

#declare LandArea = texture {
pigment {
agate
turbulence 1
lambda 1.5
omega .8
octaves 8
color_map {
[0.00 color
[0.33 color
[0.86 color
[1.00 color
}

.25, .15>]
.4>]
L1>]

.15>]

rgb
rgb
rgb
rgb

1%l

.3,
, .25,

AN N N A
U1 o = WU

}
}

This texture will be the land area. Now let's make the oceans by declaring the follow-
ing.

#declare OceanArea = texture {
pigment {
bozo
turbulence .5
lambda 2
color_map {
[0.00, 0.33 color
color

rgb <0, 0, 1>
rgb <0, 0, 1>]

[0.33, 0.66 color
color
1.00 color
color

[0.66,

rgbf <1, 1, 1, 1>
rgbf <1, 1, 1, 1>]
rgb <0, 0, 1>
rgb <0, 0, 1>]

}
}
}

Note: how the ocean is the opaque blue area and the land is the clear area which will
allow the underlying texture to show through.

Now, let's declare one more texture to simulate an atmosphere with swirling clouds.

#declare CloudArea = texture {
pigment {

agate

turbulence 1

lambda 2

frequency 2

color_map {
[0.0 color rgbf <1, 1, 1, 1>]
[0.5 color rgbf <1, 1, 1, .35>]

134

Advanced Features

[1.8 color rgbf <1, 1, 1, 1>]
}
}
}

Now apply all of these to our sphere.

sphere {
<0,0,0>, 1
texture { LandArea }
texture { OceanArea }
texture { CloudArea }
}

We render this and have a pretty good rendition of a little planetoid. But it could be
better. We don't particularly like the appearance of the clouds. There is a way they

could be done that would be much more realistic.

Using Pigment Maps

Pigments may be blended together in the same way as the colors in a color map using
the same pattern keywords angigment map. Let's just give it a try.

We add the following declarations, making sure they appear before the other declara-

tions in the file.

#declare Cloudsl = pigment {
bozo
turbulence 1
color_map {
[0.0 color White filter 1]
[0.5 color White]
[1.0 color White filter 1]
}
}
#declare Clouds2 = pigment {
agate
turbulence 1
color_map {
[0.0 color White filter 1]
[0.5 color White]
[1.0 color White filter 1]
}
}
#declare Clouds3 = pigment {
marble
turbulence 1
color_map {
[0.0 color White filter 1]
[0.5 color White]
[1.0 color White filter 1]
}
}
#declare Clouds4 = pigment {

3.4 Advanced Texture Options 135

granite

turbulence 1

color_map {
[0.0 color White filter 1]
[0.5 color White]
[1.0 color White filter 1]

}

}

Now we use these declared pigments in our cloud layer on our planetoid. We replace
the declared cloud layer with.

#declare CloudArea = texture {
pigment {
gradient y
pigment_map {
[0.00 Cloudsl]
[0.25 Clouds2]
[0.50 Clouds3]
[0.75 Clouds4]
[1.00 Cloudsl]
}
}
}

We render this and see a remarkable pattern that looks very much like weather patterns
on the planet earth. They are separated into bands, simulatingffeeedt weather
types found at dferent latitudes.

3.4.2 Normals

Objects in POV-Ray have very smooth surfaces. This is not very realistic so there are
several ways to disturb the smoothness of an object by perturbing the surface normal.
The surface normal is the vector that is perpendicular to the angle of the surface. By
changing this normal the surface can be made to appear bumpy, wrinkled or any of the
many patterns available. Let’s try a couple of them.

Using Basic Normal Modifiers

We comment out the planetoid sphere for now and, at the bottom of the file, create a
new sphere with a simple, single color texture.

sphere {
<0,0,0>, 1
pigment { Gray75 }
normal { bumps 1 scale .2 }

}

Here we have addedrarmal block in addition to the pigment block (note that these

do not have to be included in aexture block unless they need to be transformed
together or need to be part of a layered texture). We render this to see what it looks
like. Now, one at a time, we substitute for the keywbotslps the following keywords:

136 Advanced Features

dents, wrinkles, ripples andwaves (we can also use any of the patterns listed in
“Patterns”). We render each to see what they look like. We play around with the float
value that follows the keyword. We also experiment with the scale value.

For added interest, we change the plane texture to a single color with a normal as
follows.

plane {
y, -1.5
pigment { color rgb <.65, .45, .35> }
normal { dents .75 scale .25 }

}

Blending Normals

Normals can be layered similar to pigments but the results can be unexpected. Let’s try
that now by editing the sphere as follows.

sphere {
<0,0,0>, 1
pigment { Gray75 }
normal { radial frequency 10 }
normal { gradient y scale .2 }

}

As we can see, the resulting pattern is neither a radial nor a gradient. It is instead the
result of first calculating a radial pattern and then calculating a gradient pattern. The
results are simply additive. This can befdiult to control so POV-Ray gives the user
other ways to blend normals.

One way is to use normal maps. A normal map works the same way as the pigment
map we used earlier. Let's change our sphere texture as follows.

sphere {
<0,0,0>, 1
pigment { Gray75 }
normal {
gradient y
frequency 3
turbulence .5
normal_map {
[0.00 granite]
[0.25 spotted turbulence .35]
[0.50 marble turbulence .5]
[0.75 bozo turbulence .25]
[1.00 granite]
}
}
}

Rendering this we see that the sphere now has a very irregular bumpy surface. The
gradient pattern type separates the normals into bands but they are turbulated, giving
the surface a chaotic appearance. But this gives us an idea.

3.4 Advanced Texture Options 137

Suppose we use the same pattern for a normal map that we used to create the oceans
on our planetoid and applied it to the land areas. Does it follow that if we use the same
pattern and modifiers on a sphere the same size that the shape of the pattern would be
the same? Wouldn't that make the land areas bumpy while leaving the oceans smooth?
Let's try it. First, let's render the two spheres side-by-side so we can see if the pattern

is indeed the same. We un-comment the planetoid sphere and make the following
changes.

sphere {
<0,0,0>, 1
texture { LandArea }
texture { OceanArea }
//texture { CloudArea } // <-comment this out
translate -x // <- add this transformation

by
Now we change the gray sphere as follows.

sphere {
<0,0,0>, 1
pigment { Gray75 }
normal {
bozo
turbulence .5
lambda 2
normal_map {
[0.4 dents .15 scale .01]
[0.6 agate turbulence 1]
[1.0 dents .15 scale .01]
}
}
translate x // <- add this transformation

3

We render this to see if the pattern is the same. We see that indeed it is. So let's com-
ment out the gray sphere and add themal block it contains to the land area texture

of our planetoid. We remove the transformations so that the planetoid is centered in the
scene again.

#declare LandArea = texture {
pigment {
agate
turbulence 1
lambda 1.5
omega .8
octaves 8
color_map {
[0.00 color rgb <.5, .25, .15>]
[0.33 color rgb <.1, .5, .4>]
[0.86 color rgb <.6, .3, .1>]
[1.00 color rgb <.5, .25, .15>]
}
}
normal {
bozo

138 Advanced Features

turbulence .5

lambda 2

normal_map {
[0.4 dents .15 scale .01]
[0.6 agate turbulence 1]
[1.0 dents .15 scale .01]

}

}
}

Looking at the resulting image we see that indeed our idea works! The land areas are
bumpy while the oceans are smooth. We add the cloud layer back in and our planetoid
is complete.

There is much more that we did not cover here due to space constraints. On our own,
we should take the time to explore slope maps, average and bump maps.

3.4.3 Finishes

The final part of a POV-Ray texture is thénish. It controls the properties of the sur-

face of an object. It can make it shiny and reflective, or dull and flat. It can also specify
what happens to light that passes through transparent pigments, what happens to light
that is scattered by less-than-perfectly-smooth surfaces and what happens to light that is
reflected by surfaces with thin-film interference properties. There are twefeeatit
properties available in POV-Ray to specify the finish of a given object. These are con-
trolled by the following keywordsambient, diffuse, brilliance, phong, specular
metallic, reflection, crand andiridescence. Let’s design a couple of textures that
make use of these parameters.

Using Ambient

Since objects in POV-Ray are illuminated by light sources, the portions of those ob-
jects that are in shadow would be completely black were it not for the first two finish
propertiesambient anddiffuse. Ambient is used to simulate the light that is scattered
around the scene that does not come directly from a light sourdéusBidetermines

how much of the light that is seen comes directly from a light source. These two key-
words work together to control the simulation of ambient light. Let's use our gray
sphere to demonstrate this. Let's also change our plane back to its original green and
white checkered pattern.

plane {
y, -1.5
pigment {checker Green, White}
}
sphere {
<0,0,0>, 1
pigment { Gray75 }
finish {
ambient .2
diffuse .6
}

3.4 Advanced Texture Options 139

3

In the above example, the default values for ambient afidsd#i are used. We render
this to see what theffect is and then make the following change to the finish.

ambient 0
diffuse 0

The sphere is black because we have specified that none of the light coming from any
light source will be reflected by the sphere. Let's chaaggfuse back to the default
of 0.6.

Now we see the gray surface color where the light from the light source falls directly
on the sphere but the shaded side is still absolutely black. Now let's cldaffiese to
0.3 andambient to 0.3.

The sphere now looks almost flat. This is because we have specified a fairly high
degree of ambient light and only a low amount of the light coming from the light
source is dfusely reflected towards the camera. The default valueamfient and
diffuse are pretty good averages and a good starting point. In most cases, an ambient
value of 0.1 ... 0.2 is dficient and a diuse value of 0.5 ... 0.7 will usually do the

job. There are a couple of exceptions. If we have a completely transparent surface with
high refractive antr reflective values, low values of both ambient antiudie may be

best. Here is an example:

sphere {
<0,0,0>, 1
pigment { White filter 1 }
finish {
ambient 0
diffuse 0
reflection .25
specular 1
roughness .001
}

interior { ior 1.33 }

}

This is glass, obviously. Glass is a material that takes nearly all of its appearance
from its surroundings. Very little of the surface is seen because it transmits or reflects
practically all of the light that shines on it. Sgkass. inc for some other examples.

If we ever need an object to be completely illuminated independently of the lighting
situation in a given scene we can do this artificially by specifyingrrient value of

1 and adiffuse value of 0. This will eliminate all shading and simply give the object
its fullest and brightest color value at all points. This is good for simulating objects that
emit light like light bulbs and for skies in scenes where the sky may not be adequately
lit by any other means.

Let’s try this with our sphere now.

sphere {
<0,0,0>, 1
pigment { White }
finish {
ambient 1

140 Advanced Features

diffuse 0

}

Rendering this we get a blinding white sphere with no visible highlights or shaded
parts. It would make a pretty good street light.

Using Surface Highlights

In the glass example above, we noticed that there were bright lttiesspotson the
surface. This gave the sphere a hard, shiny appearance. POV-Ray gives us two ways
to specify surface specular highlights. The first is cafémng highlighting.Usually,

Phong highlights are described using two keywoggd®ng andphong_size. The float

that followsphong determines the brightness of the highlight while the float following
phong_size determines its size. Let's try this.

sphere {
<0,0,0>, 1
pigment { Gray50 }
finish {
ambient .2
diffuse .6
phong .75
phong_size 25
}
}

Rendering this we see a fairly broad, soft highlight that gives the sphere a kind of
plastic appearance. Now let's changfong_size to 150. This makes a much smaller
highlight which gives the sphere the appearance of being much harder and shinier.

There is another kind of highlight that is calculated byféedent means callespecular
highlighting It is specified using the keyworgbecular and operates in conjunction
with another keyword calledoughness. These two keywords work together in much
the same way ashong andphong_size to create highlights that alter the apparent shini-
ness of the surface. Let’s try using specular in our sphere.

sphere {
<0,0,0>, 1
pigment { Gray50 }
finish {
ambient .2
diffuse .6
specular .75
roughness .1
}
}

Looking at the result we see a broad, soft highlight similar to what we had when we
usedphong_size of 25. Changeroughness to .001 and render again. Now we see a
small, tight highlight similar to what we had when we ughdng_size of 150. Gen-

erally speaking, specular is slightly more accurate and therefore slightly more realistic
than phong but you should try both methods when designing a texture. There are even
times when both phong and specular may be used on a finish.

3.4 Advanced Texture Options 141

Using Reflection, Metallic and Metallic

There is another surface parameter that goes hand in hand with highligfitsetion.
Surfaces that are very shiny usually have a degree of reflection to them. Let’s take a
look at an example.

sphere {
<0,0,0>, 1
pigment { Gray50 }
finish {
ambient .2
diffuse .6
specular .75
roughness .001
reflection {
.5
}

}

We see that our sphere now reflects the green and white checkered plane and the black
background but the gray color of the sphere seems out of place. This is another time
when a lower difuse value is needed. Generally, the higheflection is the lower
diffuse should be. We lower the fluse value to 0.3 and the ambient value to 0.1 and
render again. That is much better. Let's make our sphere as shiny as a polished gold
ball bearing.

sphere {
<0,0,0>, 1
pigment { BrightGold }
finish {
ambient .1
diffuse .1
specular 1
roughness .001
reflection {
.75
}
}
}

That s close but there is something wrong, the colour of the reflection and the highlight.
To make the surface appear more like metal the keywetdllic is used. We add it
now to see the dierence.

sphere {
<0,0,0>, 1
pigment { BrightGold }
finish {
ambient .1
diffuse .1
specular 1
roughness .001
reflection {
.75

142 Advanced Features

metallic

}
}

The reflection has now more of the gold color than the color of its environment. Last
detail, the highlight. We add another metallic statement, now to the finish and not
inside the reflection block.

sphere {
<0,0,0>, 1
pigment { BrightGold }
finish {
ambient .1
diffuse .1
specular 1
roughness .001
metallic
reflection {
.75
metallic

}
}

We see that the highlight has taken on the color of the surface rather than the light
source. This gives the surface a more metallic appearance.

Using Iridescence

Iridescenceis what we see on the surface of an oil slick when the sun shines on it.
The rainbow €ect is created by something callddn-film interferencgread section
“Iridescence” for details). For now let’s just try using it. Iridescence is specified by
theirid statement and three values: amouhtf,ckness andturbulence. The amount

is the contribution to the overall surface color. Usually 0.1 to 0.5 tH@ent here.

The thickness fdects the “busyness” of theffect. Keep this between 0.25 and 1 for
best results. The turbulence is a littléfdirent from pigment or normal turbulence. We
cannot sebctaves, lambda Or omega but we can specify an amount which wilifect

the thickness in a slightly fierent way from the thickness value. Values between 0.25
and 1 work best here too. Finally, iridescence will respond to the surface normal since
it depends on the angle of incidence of the light rays striking the surface. With all of
this in mind, let's add some iridescence to our glass sphere.

sphere {
<0,0,0>, 1
pigment { White filter 1 }
finish {
ambient .1
diffuse .1
reflection .2
specular 1
roughness .001
irid {

3.4 Advanced Texture Options 143

0.35
thickness .5
turbulence .5
}
}
interior{
ior 1.5
fade_distance 5
fade_power 1
caustics 1

}

We try to vary the values for amount, thickness and turbulence to see what changes
they make. We also try to addharmal block to see what happens.

3.4.4 Working With Pigment Maps

Let’s look at the pigment map. We must not confuse this with a color map, as color
maps can only take individual colors as entries in the map, while pigment maps can
use entire other pigment patterns. To get a feel for these, let’s begin by setting up a
basic plane with a simple pigment map. Now, in the following example, we are going
to declare each of the pigments we are going to use before we actually use them. This
isn't strictly necessary (we could put an entire pigment description in each entry of the
map) but it just makes the whole thing more readable.

// simple Black on White checkerboard... it’s a classic
#declare Pigmentl = pigment {
checker color Black color White
scale .1
}
// kind of a "psychedelic rings" effect
#declare Pigment2 = pigment {
wood
color_map {
[.0 Red]
[0.3 Yellow]
[0.6 Green]
[1.0 Blue]
}
}
plane {
-z, 0
pigment {
gradient x
pigment_map {
[0.0 Pigmentl]
[0.5 Pigment2]
[1.0 Pigmentl]
}
}
}

144 Advanced Features

Okay, what we have done here is very simple, and probably quite recognizable if we
have been working with color maps all along anyway. All we have done is substituted a
pigment map where a color map would normally go, and as the entries in our map, we
have referenced our declared pigments. When we render this example, we see a pattern
which fades back and forth between the classic checkerboard, and those colorful rings.
Because we fade from Pigmentl to Pigment2 and then back again, we see a clear
blending of the two patterns at the transition points. We could just as easily get a
sudden transition by amending the map to read.

pigment_map {
[0.0 Pigmentl]
[0.5 Pigmentl]
[0.5 Pigment2]
[1.0 Pigment2]
}

Blending individual pigment patterns is just the beginning.

3.4.5 Working With Normal Maps

For our next example, we replace the plane in the scene with this one.

plane {
-z, 0
pigment { White }
normal {
gradient x
normal_map {
[0.0 bumps 1 scale .1]
[1.0 ripples 1 scale .1]
b
}
}

First of all, we have chosen a solid white color to shdivadl bumping to bestféect.
Secondly, we notice that our map blends smoothly from all bumps at 0.0 to all ripples
at 1.0, but because this is a default gradient, it faffsabruptly back to bumps at the
beginning of the next cycle. We Render this and see just enough sharp transitions to
clearly see where one normal gives over to another, yet also an example of how two
normal patterns look while they are smoothly blending into one another.

The syntax is the same as we would expect. We just changed the type of map, moved it
into the normal block and supplied appropriate bump types. Itis important to remember
that as of POV-Ray 3, all patterns that work with pigments work as normals as well
(and vice versa, except for facets) so we could just as easily have blended from wood
to granite, or any other pattern we like. We experiment a bit and get a feel for what the
different patterns look like.

After seeing how interesting the various normals look blended, we might like to see
them completely blended all the way through rather than this business of fading from
one to the next. Well, that is possible too, but we would be getting ahead of ourselves.
That is called the average function, and we will return to it a little bit further down

the page.

3.4 Advanced Texture Options 145

3.4.6 Working With Texture Maps

We know how to blend colors, pigment patterns, and normals, and we are probably
thinking what about finishes? What about whole textures? Both of these can be kind
of covered under one topic. While there is no finish map per se, there are texture maps,
and we can easily adapt these to serve as finish maps, simply by putting the same
pigment angbr normal in each of the texture entries of the map. Here is an example.
We eliminate the declared pigments we used before and the previous plane, and add
the following.

#declare Texturel = texture {
pigment { Grey }
finish { reflection 1 }

}
#declare Texture2 = texture {
pigment { Grey }
finish { reflection 0 }
}
cylinder {
<-2, 5, -2>, <=2, -5, -2>, 1
pigment { Blue }
}
plane {
-z, 0
rotate y * 30
texture {
gradient y
texture_map {
[0.0 Texturel]
4 Texturel]
Texture2]

[0.
[0.6
[1.0 Texture2]

Now, what have we done here? The background plane alternates vertically between
two textures, identical except for their finishes. When we render this, the cylinder has
a reflection part of the way down the plane, and then stops reflecting, then begins and
then stops again, in a gradient pattern down the surface of the plane. With a little
adaptation, this could be used with any pattern, and in any number of creative ways,
whether we just wanted to give various parts of an objeffedint finishes, as we are
doing here, or whole dlierent textures altogether.

One might ask: if there is a texture map, why do we need pigment and normal maps?
Fair question. The answer: speed of calculation. If we use a texture map, for every
in-between point, POV-Ray must make multiple calculations for each texture element,
and then run a weighted average to produce the correct value for that point. Using just
a pigment map (or just a nhormal map) decreases the overall number of calculations,
and our texture renders a bit faster in the bargain. As a rule of thumb: we use pigment
or normal maps where we can and only fall back on texture maps if we need the extra
flexibility.

146 Advanced Features

3.4.7 Working With List Textures

If we have followed the corresponding tutorials on simple pigments, we know that
there are three patterns calledlor list patterns, because rather than using a color
map, these simple but useful patterns take a list of colors immediately following the
pattern keyword. We're talking about checker, hexagon, the brick pattern and the object
pattern.

Naturally they also work with whole pigments, normals, and entire textures, just as the
other patterns do above. The onlyffdrence is that we list entries in the pattern (as
we would do with individual colors) rather than using a map of entries. Here is an
example. We strike the plane and any declared pigments we had left over in our last
example, and add the following to our basic file.

#declare Pigmentl = pigment {
hexagon
color Yellow color Green color Grey
scale .1
}
#declare Pigment2 = pigment {
checker
color Red color Blue
scale .1
}
#declare Pigment3 = pigment {
brick
color White color Black
rotate -90%*x
scale .1
}
box {
-5, 5
pigment {
hexagon
pigment {Pigmentl}
pigment {Pigment2}
pigment {Pigment3}
rotate 90%x
}
}

We begin by declaring an example of each of the color list patterns as individual pig-
ments. Then we use the hexagon pattern aggment listpattern, simply feeding

it a list of pigments rather than colors as we did above. There are two rotate state-
ments throughout this example, because bricks are aligned along the z-direction, while
hexagons align along the y-direction, and we wanted everything to face toward the
camera we originally declared out in the -z-direction so we can really see the patterns
within patterns &ect here.

Of course color list patterns used to be only for pigments, but as of POV-Ray 3, every-
thing that worked for pigments can now also be adapted for normals or entire textures.
A couple of quick examples might look like

normal {

3.4 Advanced Texture Options 147

brick
normal { granite .1 }
normal { bumps 1 scale .1 }

}
or...

texture {
checker
texture { Gold_Metal }
texture { Silver_Metal }

}

3.4.8 What About Tiles?

In earlier versions of POV-Ray, there was a texture pattern callees. By simply

using a checker texture pattern (as we just saw above), we can achieve the same thing as
tiles used to do, so it is now obsolete. It is still supported by POV-Ray 3 for backwards
compatibility with old scene files, but now is a good time to get in the habit of using a
checker pattern instead.

3.4.9 Average Function

Now things get interesting. Above, we began to see how pigments and normals can
fade from one to the other when we used them in maps. But how about if we want
a smooth blend of patterns all the way through? That is where a new feature called
average can come in very handy. Average works with pigment, normal, and texture
maps, although the syntax is a little bitiéirent, and when we are not expecting it, the
change can be confusing. Here is a simple example. We use our standard includes,
camera and light source from above, and enter the following object.

plane { -z, ©
pigment { White }
normal {
average
normal_map {
[1, gradient x]
[1, gradient y]
}
}
}

What we have done here is pretty self explanatory as soon as we render it. We have
combined a vertical with a horizontal gradient bump pattern, creating crisscrossing gra-
dients. Actually, the crisscrossindfect is a smooth blend of gradient x with gradient

y all the way across our plane. Now, what about that syntigrince?

We see how our normal map has changed from earlier examples. The floating point
value to the left-hand side of each map entry hagfedint meaning now. It gives the
weight factor per entry in the map. Try somédfdient values for the 'gradient x’ entry

and see how the normal changes.

148 Advanced Features

The weight factor can be omitted, the result then will be the same as if each entry had
a weight factor of 1.

3.4.10 Working With Layered Textures

With the multitudinous colors, patterns, and options for creating complex textures in
POV-Ray, we can easily become deeply engrossed in mixing and tweaking just the right
textures to apply to our latest creations. But as we go, sooner or later there is going to
come thatspecialtexture. That texture that is sort of like wood, only varnished, and
with a kind of spotty yellow streaking, and some vertical gray flecks, that looks like
someone started painting over it all, and then stopped, leaving part of the wood visible
through the paint.

Only... now what? How do we get all that into one texture? No pattern can do that
many things. Before we panic and say image map there is at least one more option:
layered textures

With layered textures, we only need to specify a series of textures, one after the other,
all associated with the same object. Each texture we list will be applied one on top of
the other, from bottom to top in the order they appear.

It is very important to note that we must have some degree of transparency (filter or
transmit) in the pigments of our upper textures, or the ones below will get lost under-
neath. We won't receive a warning or an error - technically it is legal to do this: it just
doesn’'t make sense. It is like spending hours sketching an elaborate image on a bare
wall, then slapping a solid white coat of latex paint over it.

Let's design a very simple object with a layered texture, and look at how it works. We
create a file calledaYyTEX. POV and add the following lines.

#include "colors.inc"
#include "textures.inc"
camera {
location <0, 5, -30>
look_at <0, 0, 0>
}
light_source { <-20, 30, -50> color White }
plane { y, O pigment { checker color Green color Yellow 1} }
background { rgb <.7, .7, 1>}

box {
<-10, 0, -10>, <10, 10, 10>
texture {
Silver_Metal // a metal object ...
normal { // ... which has suffered a beating
dents 2
scale 1.5
}
} // (end of base texture)
texture { // ... has some flecks of rust ...
pigment {
granite

color_map {
[0.0 rgb <.2, 0, 0>]

3.4 Advanced Texture Options 149

[0.2 color Brown]
[0.2 rgbt <1, 1, 1, 1>]
[1.0 rgbt <1, 1, 1, 1>]
}
frequency 16

}
} // (end rust fleck texture)
texture { // ... and some sooty black marks
pigment {
bozo
color_map {
[0.0 color Black]
[0.2 color rgbt <0, 0, 0, .5>]
[0.4 color rgbt <.5, .5, .5, .5>]
[0.5 color rgbt <1, 1, 1, 1>]
[1.0 color rgbt <1, 1, 1, 1>]
}

scale 3

}
} // (end of sooty mark texture)
} // (end of box declaration)

Whew. This gets complicated, so to make it easier to read, we have included comments
showing what we are doing and where various parts of the declaration end (so we don't
get lost in all those closing brackets!). To begin, we created a simple box over the
classic checkerboard floor, and give the background sky a pale blue color. Now for the
fun part...

To begin with we made the box use tha ver Metal texture as declared in textures.inc

(for bonus points, look upextures.inc and see how this standard texture was orig-
inally created sometime). To give it the start of its abused state, we added the dents
normal pattern, which creates the illusion of some denting in the surface as if our mys-
terious metal box had been knocked around quite a bit.

The flecks of rust are nothing but a fine grain granite pattern fading from dark red to
brown which then abruptly drops to fully transparent for the majority of the color map.
True, we could probably come up with a more realistic pattern of rust using pigment
maps to cluster rusty spots, but pigment maps are a subject for another tutorial section,
so let’s skip that just now.

Lastly, we have added a third texture to the pot. The randomly shifidag texture
gradually fades from blackened centers to semi-transparent medium gray, and then
ultimately to fully transparent for the latter half of its color map. This gives us a look
of sooty burn marks further marring the surface of the metal box. The final result leaves
our mysterious metal box looking truly abused, using multiple texture patterns, one on
top of the other, to produce affect that no single pattern could generate!

Declaring Layered Textures

In the event we want to reuse a layered texture on several objects in our scene, it is
perfectly legal to declare a layered texture. We won't repeat the whole texture from
above, but the general format would be something like this:

150 Advanced Features

#declare Abused_Metal =
texture { /* insert your base texture here... */ }
texture { /* and your rust flecks here... */ }
texture { /* and of course, your sooty burn marks here */ }

POV-Ray has no problem spotting where the declaration ends, because the textures
follow one after the other with no objects or directives in between. The layered texture
to be declared will be assumed to continue until it finds something other than another
texture, so any number of layers can be added in to a declaration in this fashion.

One final word about layered textures: whatever layered texture we create, whether
declared or not, we must not leavé the texture wrapper. In conventional single
textures a common shorthand is to have just a pigment, or just a pigment and finish,
or just a normal, or whatever, and leave them outside of a texture statement. This
shorthand does not extend to layered textures. As far as POV-Ray is concerned we can
layer entire textures, but not individual pieces of textures. For example

#declare Bad_Texture =
texture { /* insert your base texture here... */ }
pigment { Red filter .5 }
normal { bumps 1 }

will not work. The pigment and the normal are just floating there without being part of
any particular texture. Inside an object, with just a single texture, we can do this sort
of thing, but with layered textures, we would just generate an error whether inside the
object or in a declaration.

Another Layered Textures Example

To further explain how layered textures work another example is described in detalil.
A tablecloth is created to be used in a picnic scene. Since a simple red and white
checkered cloth looks entirely too new, too flat, and too much like a tiled floor, layered

textures are used to stain the cloth.

We're going to create a scene containing four boxes. The first box has that plain red
and white texture we started with in our picnic scene, the second adds a layer meant
to realistically fade the cloth, the third adds some wine stains, and the final box adds a
few wrinkles (not another layer, but we must note when and where adding changes to
the surface normal have affect in layered textures).

We start by placing a camera, some lights, and the first box. At this stage, the texture
is plain tiling, not layered. See filelayered1.pov.

#include "colors.inc"
camera {

location <0, 0, -6>

look_at <0, 0, 0>
}
light_source { <-20, 30, -100> color White }
light_source { <10, 30, -10> color White }
light_source { <0, 30, 10> color White }
#declare PLAIN_TEXTURE =

// red/white check

texture {

3.4 Advanced Texture Options 151

pigment {
checker
color rgb<1.000, 0.000, 0.000>
color rgb<1.000, 1.000, 1.000>
scale <0.2500, 0.2500, 0.2500>
}
}
// plain red/white check box
box {
<-1, -1, -1>, <1, 1, 1>
texture {
PLAIN_TEXTURE
}
translate <-1.5, 1.2, 0>
}

We render this scene. It is not particularly interesting, is it? That is why we will use
some layered textures to make it more interesting.

First, we add a layer of two fferent, partially transparent grays. We tile them as we
had tiled the red and white colors, but we add some turbulence to make the fading
more realistic. We add the following box to the previous scene and re-render (see file
layered2.pov).

#declare FADED_TEXTURE =
// red/white check texture
texture {
pigment {
checker
color rgb<0.920, 0.000, 0.000>
color rgb<1.000, 1.000, 1.000>
scale <0.2500, 0.2500, 0.2500>
}
}
// greys to fade red/white
texture {
pigment {
checker
color rgbf<0.632, 0.612, 0.688, 0.698>
color rgbf<0.420, 0.459, 0.520, 0.953>
turbulence 0.500
scale <0.2500, 0.2500, 0.2500>
}
}
// faded red/white check box
box {
<-1, -1, -1>, <1, 1, 1>
texture {
FADED_TEXTURE
}
translate <1.5, 1.2, 0>
}

Even though it is a subtle flerence, the red and white checks no longer look quite so
new.

152 Advanced Features

Since there is a bottle of wine in the picnic scene, we thought it might be a nice touch
to add a stain or two. While thisfect can almost be achieved by placing a flattened
blob on the cloth, what we really end up with is a spilleet, not a stain. Thus it is
time to add another layer.

Again, we add another box to the scene we already have scripted and re-render (see file
layered3.pov).

#declare STAINED_TEXTURE =
// red/white check
texture {
pigment {
checker
color rgb<0.920, 0.000, 0.000>
color rgb<1.000, 1.000, 1.000>
scale <0.2500, 0.2500, 0.2500>
}
}
// greys to fade check
texture {
pigment {
checker
color rgbf<0.634, 0.612, 0.688, 0.698>
color rgbf<0.421, 0.463, 0.518, 0.953>
turbulence 0.500
scale <0.2500, 0.2500, 0.2500>
}
}
// wine stain
texture {
pigment {
spotted
color_map {
[0.000 color rgbh<0.483, 0.165, 0.165>]
[0.329 color rghf<1.000, 1.000, 1.000, 1.000>]
[0.734 color rghf<1.000, 1.000, 1.000, 1.000>]
[1.000 color rgbh<0.483, 0.165, 0.165>]
}
turbulence 0.500
frequency 1.500
}
}
// stained box
box {
<-1, -1, -1>, <1, 1, 1>
texture {
STAINED_TEXTURE
}
translate <-1.5, -1.2, 0>
}

Now there’s a tablecloth texture with personality.

Another touch we want to add to the cloth are some wrinkles as if the cloth had been
rumpled. This is not another texture layer, but when working with layered textures,

3.4 Advanced Texture Options 153

we must keep in mind that changes to the surface normal must be included in the
uppermost layer of the texture. Changes to lower layers havetaot @n the final
product (no matter how transparent the upper layers are).

We add this final box to the script and re-render (see filtgered4.pov)

#declare WRINKLED_TEXTURE =
// red and white check
texture {
pigment {
checker
color rgb<0.920, 0.000, 0.000>
color rgb<1.000, 1.000, 1.000>
scale <0.2500, 0.2500, 0.2500>
}
}
// greys to "fade" checks
texture {
pigment {
checker
color rgbf<0.632, 0.612, 0.688, 0.698>
color rgbf<0.420, 0.459, 0.520, 0.953>
turbulence 0.500
scale <0.2500, 0.2500, 0.2500>
}
}
// the wine stains
texture {
pigment {
spotted
color_map {
[0.000 color rgh<0.483, 0.165, 0.165>]
[0.329 color rghf<1.000, 1.000, 1.000, 1.000>]
[0.734 color rghf<1.000, 1.000, 1.000, 1.000>]
[1.000 color rgb<0.483, 0.165, 0.165>]
}
turbulence 0.500
frequency 1.500
}
normal {
wrinkles 5.0000
}
}
// wrinkled box
box {
<-1, -1, -1>, <1, 1, 1>
texture {
WRINKLED_TEXTURE
}
translate <1.5, -1.2, 0>
}

Well, this may not be the tablecloth we want at any picnhic we're attending, but if
we compare the final box to the first, we see just how much depth, dimension, and
personality is possible just by the use of creative texturing.

154 Advanced Features

One final note: the comments concerning the surface normal do not hold true for fin-
ishes. If dlower layer contains a specular finish andupperlayer does not, any place
where the upper layer is transparent, the specular will show through.

3.4.11 When All Else Fails: Material Maps

We have some pretty powerful texturing tools at our disposal, but what if we want a
more free form arrangement of complex textures? Well, just as image maps do for pig-
ments, and bump maps do for normals, whole textures can be mapped using a material
map, should the need arise.

Just as with image maps and bump maps, we need a source image in bitmapped format
which will be called by POV-Ray to serve as the map of where the individual textures
will go, but this time, we need to specify what texture will be associated with which
palette index. To make such an image, we can use a paint program which allows us
to select colors by their palette index number (the actual color is irrelevant, since it is
only a map to tell POV-Ray what texture will go at that location). Now, if we have
the complete package that comes with POV-Ray, we have in our include files an image
called povmap.gif which is a bitmapped image that uses only the first four palette
indices to create a bordered square with the words “Persistence of Vision” in it. This
will do just fine as a sample map for the following example. Using our same include
files, the camera and light source, we enter the following object.

plane {
-z, 0
texture {
material_map {
gif "povmap.gif"
interpolate 2

once
texture { PinkAlabaster } // the inner border
texture { pigment { DMFDarkOak } } // outer border
texture { Gold_Metal } // lettering
texture { Chrome_Metal } // the window panel

}

translate <-0.5, -0.5, 0>

scale 5

3
3

The position of the light source and the lack of foreground objects to be reflected do not
show these texturedido their best advantage. But at least we can see how the process
works. The textures have simply been placed according to the location of pixels of
a particular palette index. By using thace keyword (to keep it from tiling), and
translating and scaling our map to match the camera we have been using, we get to see
the whole thing laid out for us.

Of course, that is just with palette mapped image formats, such as GIF and certain
flavors of PNG. Material maps can also use non-paletted formats, such as the TGA
files that POV-Ray itself outputs. That leads to an interesting consequence: We can
use POV-Ray to produce source maps for POV-Ray! Before we wrap up with some of

3.4 Advanced Texture Options 155

the limitations of special textures, let's do one more thing with material maps, to show
how POV-Ray can make its own source maps.

To begin with, if using a non-paletted image, POV-Ray looks at the 8 bit red component
of the pixel's color (which will be a value from 0 to 255) to determine which texture
from the list to use. So to create a source map, we need to control very precisely what
the red value of a given pixel will be. We can do this by

1. Using an rgb statement to choose our color such askjB55,0,0-, where “N”
is the red value we want to assign that pigment, and then...

2. Use no light sources and apply a finishfafish { ambient 1 }to all objects,
to ensure that highlighting and shadowing will not interfere.

Confused? Alright, here is an example, which will generate a map very much like
povmap.gif which we used earlier, except in TGA file format. We notice that we have
given the pigments blue and green components too. POV-Ray will ignore that in our
final map, so this is really for us humans, whose unaided eyes cannot telffdrenice
between red variances of 0 t@285ths. Without those blue and green variances, our
map would look to our eyes like a solid black screen. That may be a great way to send
secret messages using POV-Ray (plug it into a material map to decode) but it is no
use if we want to see what our source map looks like to make sure we have what we
expected to.

We create the following code, namepitvmap . pov, then render it. This will create an
output file callethovmap. tga (povmap.bmp on Windows systems.

camera {
orthographic
up <0, 5, 0>
right <5, 0, 0>
location <0, 0, -25>
look_at <0, 0, 0>
}
plane {
-z, 0
pigment { rgb <1/255, 0, 0.5> }
finish { ambient 1 }
}
box {
<-2.3, -1.8, -0.2>, <2.3, 1.8, -0.2>
pigment { rgb <0/255, 0, 1> }
finish { ambient 1 }
}
box {
<-1.95, -1.3, -0.4>, <1.95, 1.3, -0.3>
pigment { rgb <2/255, 0.5, 0.5> }
finish { ambient 1 }
}
text {
ttf "crystal.ttf", "The vision", 0.1, 0
scale <0.7, 1, 1>
translate <-1.8, 0.25, -0.5>
pigment { rgb <3/255, 1, 1> }
finish { ambient 1 }

156 Advanced Features

}
text {
ttf "crystal.ttf", "Persists!", 0.1, 0
scale <0.7, 1, 1>
translate <-1.5, -1, -0.5>
pigment { rgb <3/255, 1, 1> }
finish { ambient 1 }
}

All we have to do is modify our last material map example by changing the material
map from GIF to TGA and modifying the filename. When we render using the new
map, the result is extremely similar to the palette mapped GIF we used before, except
that we didn’t have to use an external paint program to generate our source: POV-Ray
did it all!

3.4.12 Limitations Of Special Textures

There are a couple limitations to all of the special textures we have seen (from textures,
pigment and normal maps through material maps). First, if we have used the default
directive to set the default texture for all items in our scene, it will not accept any of the
special textures discussed here. This is really quite minor, since we can always declare
such a texture and apply it individually to all objects. It doesn’t actually prevent us
from doing anything we couldn’t otherwise do.

The other is more limiting, but as we will shortly see, can be worked around quite
easily. If we have worked with layered textures, we have already seen how we can pile
multiple texture patterns on top of one another (as long as one texture has transparency
in it). This very useful technigue has a problem incorporating the special textures we
have just seen as a layer. But there is an answer!

For example, say we have a layered texture calfpdckled Metal, which produces a

silver metallic surface, and then puts tiny specks of rust all over it. Then we decide, for
a really rusty look, we want to create patches of concentrated rust, randomly over the
surface. The obvious approach is to create a special texture pattern, with transparency
to use as the top layer. But of course, as we have seen, we wouldn’t be able to use that
texture pattern as a layer. We would just generate an error message. The solution is
to turn the problem inside out, and make our layered texture part of the texture pattern
instead, like this

// This part declares a pigment for use
// in the rust patch texture pattern
#declare Rusty = pigment {
granite
color_map {
[® rgb <0.2, 0, 0>]
[1 Brown]
}
frequency 20
}
// And this part applies it
// Notice that our original layered texture
// "Speckled_Metal" is now part of the map

3.5 Using Atmospheric Effects 157

#declare Rust_Patches = texture {
bozo
texture_map {
[0.0 pigment {Rusty}]
[0.75 Speckled_Metal]
[1.0 Speckled_Metal]
}
}

And the ultimate &ect is the same as if we had layered the rust patches on to the
speckled metal anyway.

With the full array of patterns, pigments, normals, finishes, layered and special textures,
there is now practically nothing we cannot create in the way of amazing textures. An
almost infinite number of new possibilities are just waiting to be created!

3.5 Using Atmospheric Hfects

You know you have been raytracing too long when ...
... You want to cheat and look at nature’s source code.
— Mark Stock

POV-Ray dfers a variety of atmospheridfects, i. e. features thaffact the back-
ground of the scene or the air by which everything is surrounded.

It is easy to assign a simple color or a complex color pattern to a virtual sky sphere.
You can create anything from a cloud free, blue summer sky to a stormy, heavy clouded
sky. Even starfields can easily be created.

You can use dferent kinds of fog to create foggy scenes. Multiple fog layers bédi
ent colors can add an eerie touch to your scene.

A much more realisticffect can be created by using an atmosphere, a constant fog that
interacts with the light coming from light sources. Beams of light become visible and
objects will cast shadows into the fog.

Last but not least you can add a rainbow to your scene.

3.5.1 The Background

Thebackground feature is used to assign a color to all rays that don’t hit any object.
This is done in the following way.

camera {
location <0, 0, -10>
look_at <0, 0, 0>
}
background { color rgb <0.2, 0.2, 0.3> }
sphere {
0, 1
pigment { color rgb <0.8, 0.5, 0.2> }

158 Advanced Features

}

The background color will be visible if a sky sphere is used and if some translucency
remains after all sky sphere pigment layers are processed.

3.5.2 The Sky Sphere

The sky_sphere can be used to easily create a cloud covered sky, a nightly star sky or
whatever sky you have in mind.

In the following examples we’ll start with a very simple sky sphere that will get more
and more complex as we add new features to it.

Creating a Sky with a Color Gradient

Beside the single color sky sphere that is covered with the background feature the
simplest sky sphere is a color gradient. You may have noticed that the color of the
sky varies with the angle to the earth’s surface normal. If you look straight up the sky

normally has a much deeper blue than it has at the horizon.

We want to model thisféect using the sky sphere as shown in the scene belowigh1.pov).

#include "colors.inc"
camera {
location <0, 1, -4>
look_at <0, 2, 0>
angle 80
}
light_source { <10, 10, -10> White }
sphere {
2%y, 1
pigment { color rgb <1, 1, 1>}
finish { ambient 0.2 diffuse ® reflection 0.6 }
}
sky_sphere {
pigment {
gradient y
color_map {
[® color Red]
[1 color Blue]
}
scale 2
translate -1
}
}

The interesting part is the sky sphere statement. It contains a pigment that describes
the look of the sky sphere. We want to create a color gradient along the viewing angle
measured against the earth’s surface normal. Since the ray direction vector is used to
calculate the pigment colors we have to use the y-gradient.

The scale and translate transformation are used to map the points derived from the
direction vector to the right range. Without those transformations the pattern would be

3.5 Using Atmospheric Effects 159

repeated twice on the sky sphere. Tdeale statement is used to avoid the repetition
and thetranslate -1 statement moves the color at index zero to the bottom of the sky
sphere (that’s the point of the sky sphere you'll see if you look straight down).

After this transformation the color entry at position 0 will be at the bottom of the sky
sphere, i. e. below us, and the color at position 1 will be at the top, i. e. above us.

The colors for all other positions are interpolated between those two colors as you can
see in the resulting image.

Figure 3.55: A simple gradient sky sphere.

If you want to start one of the colors at a specific angle you'll first have to convert the
angle to a color map index. This is done by using the formul@ar_map_index = (1

- cos(angle)) / 2 where the angle is measured against the negated earth’s surface
normal. This is the surface normal pointing towards the center of the earth. An angle
of 0 degrees describes the point below us while an angle of 180 degrees represents the
zenith.

In POV-Ray you first have to convert the degree valueattians as it is shown in the
following example.

sky_sphere {
pigment {
gradient y
color_map {
[(1-cos(radians(30)))/2 color Red]
[(1-cos(radians(120)))/2 color Blue]
}
scale 2
translate -1
}
}

This scene uses a color gradient that starts with a red color at 30 degrees and blends
into the blue color at 120 degrees. Below 30 degrees everything is red while above 120
degrees all is blue.

160 Advanced Features

Adding the Sun

In the following example we will create a sky with a red sun surrounded by a red color
halo that blends into the dark blue night sky. We’ll do this using only the sky sphere
feature.

The sky sphere we use is shown below. A ground plane is also added for greater realism
(skysph2.pov).

sky_sphere {
pigment {
gradient y
color_map {
[0.000 0.002 color rgb <1.
color rgb <1.
[0.002 0.200 color rgb <0.
color rgb <0.

}
scale 2
translate -1

}

rotate -135%x

}
plane {

y, 0
pigment { color Green }
finish { ambient .3 diffuse .7 }

}

The gradient pattern and the transformation inside the pigment are the same as in the
example in the previous section.

The color map consists of three colors. A bright, slightly yellowish red that is used for
the sun, a darker red for the halo and a dark blue for the night sky. The sun’s color
covers only a very small portion of the sky sphere because we don’t want the sun to
become too big. The color is used at the color map values 0.000 and 0.002 to get a
sharp contrast at value 0.002 (we don’t want the sun to blend into the sky). The darker
red color used for the halo blends into the dark blue sky color from value 0.002 to
0.200. All values above 0.200 will reveal the dark blue sky.

Therotate -135*x Statement is used to rotate the sun and the complete sky sphere to
its final position. Without this rotation the sun would be at O degrees, i.e. right below
us.

Looking at the resulting image you'll see what impressiffe@s you can achieve with
the sky sphere.

Adding Some Clouds

To further improve our image we want to add some clouds by adding a second pigment.

This new pigment uses the bozo pattern to create some nice clouds. Since it lays on top
of the other pigment it needs some transparent colors in the color map (look at entries

0.5t0 1.0).

3.5 Using Atmospheric Effects 161

Figure 3.56: A red sun descends into the night.

sky_sphere {
pigment {
gradient y
color_map {
[0.000 0.002 color rgb <
color rgb
[0.002 0.200 color rgb
color rgb <

Y

A A
S D=
N = NN
(=B — I —]
w o o
VvV Vv

—_

N O
[I — I —]

\Y
—

}
scale 2
translate -1
}
pigment {
bozo
turbulence 0.65
octaves 6
omega 0.7
lambda 2
color_map {
[0.0 0.1 color rgb <0.85, 0.85, 0.85>
color rgb <0.75, 0.75, 0.75>]
[0.1 0.5 color rgb <0.75, 0.75, 0.75>
color rgbt <1, 1, 1, 1>]
[0.5 1.0 color rgbt <1, 1, 1, 1>
1

color rgbt <1, 1, 1, 1>]
}
scale <0.2, 0.5, 0.2>
}
rotate -135*x

The sky sphere has one drawback as you might notice when looking at the final image
(skysph3.pov). The sun doesn’t emit any light and the clouds will not cast any shad-
ows. If you want to have clouds that cast shadows you'll have to use areal, large sphere
with an appropriate texture and a light source somewhere outside the sphere.

162 Advanced Features

Figure 3.57: A cloudy sky with a setting sun.

3.5.3 The Fog

You can use théog feature to add fog of two ffierent types to your scene: constant fog
and ground fog. The constant fog has a constant density everywhere while the ground
fog’s density decreases as you move upwards.

The usage of both fog types will be described in the next sections in detail.

A Constant Fog

The simplest fog type is the constant fog that has a constant density in all locations.
It is specified by alistance keyword which actually describes the fog's density and a
fog color.

The distance value determines the distance at which 36.8% of the background is still
visible (for a more detailed explanation of how the fog is calculated read the reference
section “Fog”).

The fog color can be used to create anything from a pure white to a red, blood-colored
fog. You can also use a black fog to simulate tffee of a limited range of vision.

The following example will show you how to add fog to a simple scefag1(. pov).

#include "colors.inc"
camera {
location <0, 20, -100>
}
background { color SkyBlue }
plane {
y, -10
pigment {
checker color Yellow color Green
scale 20
}
}
sphere {
<0, 25, 0>, 40

3.5 Using Atmospheric Effects 163

pigment { Red }

finish { phong 1.0 phong_size 20 }
}
sphere {

<-100, 150, 200>, 20

pigment { Green }

finish { phong 1.0 phong_size 20 }
}
sphere {

<100, 25, 100>, 30

pigment { Blue }

finish { phong 1.0 phong_size 20 }
}
light_source { <100, 120, 40> color White }
fog {

distance 150

color rgb<0.3, 0.5, 0.2>
}

Figure 3.58: A foggy scene.

According to their distance the spheres in this scene more or less vanish in the greenish
fog we used, as does the checkerboard plane.

Setting a Minimum Translucency

If you want to make sure that the background does not completely vanish in the fog
you can set the transmittance channel of the fog’s color to the amount of background
you always want to be visible.

Using as transmittance value of 0.2 as in

fog {

distance 150

color rgbt<0.3, 0.5, 0.2, 0.2>
}

the fog’s translucency never drops below 20% as you can see in the resulting image
(fog2.pov).

164 Advanced Features

Figure 3.59: Fog with translucency threshold added.

Creating a Filtering Fog

The greenish fog we have used so far doesn't filter the light passing through it. All it
does is to diminish the light’s intensity. We can change this by using a non-zero filter
channel in the fog’s colorfog3.pov).

fog {
distance 150
color rgbf<0.3, 0.5, 0.2, 1.0>

}

The filter value determines the amount of light that is filtered by the fog. In our example
100% of the light passing through the fog will be filtered by the fog. If we had used a
value of 0.7 only 70% of the light would have been filtered. The remaining 30% would
have passed unfiltered.

Figure 3.60: A filtering fog.

You'll notice that the intensity of the objects in the fog is not only diminished due to the
fog’s color but that the colors are actually influenced by the fog. The red and especially
the blue sphere got a green hue.

3.5 Using Atmospheric Effects 165

Adding Some Turbulence to the Fog

In order to make our somewhat boring fog a little bit more interesting we can add some
turbulence, making it look like it had a non-constant dengibg4. pov).

fog {
distance 150
color rgbf<0.3, 0.5, 0.2, 1.0>
turbulence 0.2
turb_depth 0.3

Figure 3.61: Fog made more interesting with turbulence

The turbulence keyword is used to specify the amount of turbulence used while the
turb_depth value is used to move the point at which the turbulence value is calculated
along the viewing ray. Values near zero move the point to the viewer while values near
one move it to the intersection point (the default value is 0.5). This parameter can be
used to avoid noise that may appear in the fog due to the turbulence (this normally
happens at very far away intersection points, especially if no intersection occurs, i. e.
the background is hit). If this happens just lower theb_depth value until the noise
vanishes.

You should keep in mind that the actual density of the fog does not change. Only the
distance-based attenuation value of the fog is modified by the turbulence value at a
point along the viewing ray.

Using Ground Fog

The much more interesting and flexible fog type is the ground fog, which is selected
with the fog_type statement. It's appearance is described with ibgoffset and
fog_alt keywords. Thefog offset specifies the height, i. e. y value, below which
the fog has a constant density of one. Tag_alt keyword determines how fast the
density of the fog will approach zero as one moves along the y axis. At a height of
fog_offset-fog_alt the fog will have a density of 25%.

The following example fog5.pov) uses a ground fog which has a constant density
below y=25 (the center of the red sphere) and quickly faftsfor increasing altitudes.

166 Advanced Features

fog {
distance 150
color rgbf<®.3, 0.5, 0.2, 1.0>
fog_type 2
fog_offset 25
fog_alt 1

Figure 3.62: An example of ground fog.

Using Multiple Layers of Fog

It is possible to use several layers of fog by using more than one fog statement in your
scene file. This is quite useful if you want to get nidBeets using turbulent ground
fogs. You could add up several,fidirently colored fogs to create an eerie scene for
example.

Just try the following examplet$g6 . pov).

fog {
distance 150
color rgh<0.3, 0.5, 0.2>
fog_type 2
fog_offset 25
fog_alt 1
turbulence 0.1
turb_depth 0.2
}
fog {
distance 150
color rgbh<®.5, 0.1, 0.1>
fog_type 2
fog_offset 15
fog_alt 4
turbulence 0.2
turb_depth 0.2
}
fog {
distance 150

3.5 Using Atmospheric Effects 167

color rgb<0.1, 0.1, 0.6>
fog_type 2

fog_offset 10

fog_alt 2

Figure 3.63: Using multiple layers of fog.

You can combine constant density fogs, ground fogs, filtering fogs, non-filtering fogs,
fogs with a translucency threshold, etc.

Fog and Hollow Objects

Whenever you use the fog feature and the camera is inside a non-hollow object you
won't get any fog &ects. For a detailed explanation why this happens see “Empty and
Solid Objects”.

In order to avoid this problem you have to make all those objects hollow by either
making sure the camera is outside these objects (usingnthese keyword) or by
adding thenollow to them (which is much easier).

3.5.4 The Rainbow

The rainbow feature can be used to create rainbows and maybe other more strange
effects. The rainbow is a fog likefect that is restricted to a cone-like volume.

Starting With a Simple Rainbow

The rainbow is specified with a lot of parameters: the angle under which it is visible,
the width of the color band, the direction of the incoming light, the fog-like distance
based particle density and last but not least the color map to be used.

The size and shape of the rainbow are determined byrtbiee andwidth keywords.
Thedirection keyword is used to set the direction of the incoming light, thus setting
the rainbow’s position. The rainbow is visible when the angle between the direction

168 Advanced Features

vector and the incident light direction is larger than angle-wRldnd smaller than
anglerwidth/2.

The incoming light is the virtual light source that is responsible for the rainbow. There
needn’t be a real light source to create the rainbfiect.

The rainbow is a fog-like fect, i.e. the rainbow’s color is mixed with the background
color based on the distance to the intersection point. If you choose small distance
values the rainbow will be visible on objects, not just in the background. You can
avoid this by using a very large distance value.

The color map is the crucial part of the rainbow since it contains all the colors that
normally can be seen in a rainbow. The color of the innermost color band is taken from
the color map entry O while the outermost band is take from entry 1. You should note
that due to the limited color range any monitor can display it is impossible to create a
real rainbow. There are just some colors that you cannot display.

The filter channel of the rainbow’s color map is used in the same way as with fogs. It
determines how much of the light passing through the rainbow is filtered by the color.

The following example shows a simple scene with a ground plane, three spheres and a
somewhat exaggerated rainbawiinbowl.pov).

#include "colors.inc"
camera {
location <0, 20, -100>
look_at <0, 25, 0>
angle 80
}
background { color SkyBlue }
plane { y, -10 pigment { color Green } }
light_source { <100, 120, 40> color White
// declare rainbow’s colors

S

#declare r_violetl color rgbf<1.0, 0.5, 1.0, 1.0>;
#declare r_violet2 = color rgbf<1.0, 0.5, 1.0, 0.8>;
#declare r_indigo = color rgbf<®.5, 0.5, 1.0, 0.8>;
#declare r_blue = color rgbhf<0.2, 0.2, 1.0, 0.8>;
#declare r_cyan = color rgbf<0.2, 1.0, 1.0, 0.8>;
#declare r_green = color rgbf<0.2, 1.0, 0.2, 0.8>;
#declare r_yellow = color rgbf<1.0, 1.0, 0.2, 0.8>;
#declare r_orange = color rgbf<1.0, 0.5, 0.2, 0.8>;
#declare r_redl = color rgbf<1.0, 0.2, 0.2, 0.8>;
#declare r_red2 = color rgbf<1.0, 0.2, 0.2, 1.0>;
// create the rainbow
rainbow {

angle 42.5

width 5

distance 1.0e7

direction <-0.2, -0.2, 1>

jitter 0.01

color_map {
[0.000 color r_violetl]
[0.100 color r_violet2]
[0.214 color r_indigo]
[0.328 color r_blue]

3.5 Using Atmospheric Effects

169

[0.442
[0.556
[0.670
[0.784
[0.900
3
}

Some irregularity is added to the color bands usingjthe er keyword.

color r_cyan]
color r_green]
color r_yellow]
color r_orange]
color r_redl]

Figure 3.64: A colorful rainbow.

The rainbow in our sample is much too bright. You'll never see a rainbow like this in
reality. You can decrease the rainbow’s colors by decreasing the RGB values in the

color map.

Increasing the Rainbow’s Translucency

The result we have so far looks much too bright. Just reducing the rainbow’s color
helps but it's much better to increase the translucency of the rainbow because it is more

realistic if the background is visible through the rainbow.

We can use the transmittance channel of the colors in the color map to specify a mini-
mum translucency, just like we did with the fog. To get realistic results we have to use
very large transmittance values as you can see in the following exanapt®éw2 . pov).

rainbow {

angle 42.5

width 5

distance 1.0e7

direction <-0.2, -0.2, 1>
jitter 0.01

color_map {

[0.000
[0.100
[0.214
[0.328
[0.442
[0.556

color r_violetl
color r_violet2
color r_indigo
color r_blue
color r_cyan
color r_green

transmit
transmit
transmit
transmit
transmit
transmit

o

.98]
.96]
.94]
.92]
.90]
.92]

170 Advanced Features

[0.670 color r_yellow transmit 0.94]
[0.784 color r_orange transmit 0.96]
[0.900 color r_redl transmit 0.98]
}
}

The transmittance values increase at the outer bands of the rainbow to make it softly
blend into the background.

Figure 3.65: A much more realistic rainbow.

The resulting image looks much more realistic than our first rainbow.

Using a Rainbow Arc

Currently our rainbow has a circular shape, even though most of it is hidden below the
ground plane. You can easily create a rainbow arc by usingitbengle keyword
with an angle below 360 degrees.

If you usearc_angle 120 for example you'll get a rainbow arc that abruptly vanishes
at the arc’s ends. This does not look good. To avoid thistth@off angle keyword
can be used to specify a region where the arc smoothly blends into the background.

As explained in the rainbow’s reference section (see “Rainbow”) the arc extends from -
arc.anglg? to arcanglg2 while the blending takes place from -aainglg?2 to -falloff_anglg2
and falldf_anglg2 to arcanglg2. This is the reason why th&lloff angle has to be
smaller or equal to therc_angle.

In the following examples we use an 120 degrees arc with a 45 degre fagjan on
both sides of the ara§inbow3.pov).

rainbow {
angle 42.5
width 5
arc_angle 120
falloff_angle 30
distance 1.0e7
direction <-0.2, -0.2, 1>
jitter 0.01
color_map {

3.6 Radiosity 171

[0.000 color r_violetl transmit 0.98]
[0.100 color r_violet2 transmit 0.96]
[0.214 color r_indigo transmit 0.94]
[0.328 color r_blue transmit 0.92]
[0.442 color r_cyan transmit 0.90]
[0.556 color r_green transmit 0.92]
[0.670 color r_yellow transmit 0.94]
[0.784 color r_orange transmit 0.96]
[0.900 color r_redl transmit 0.98]
}

}

The arc angles are measured against the rainbows up direction which can be specified
using theup keyword. By default the up direction is the y-axis.

Figure 3.66: A rainbow arc.

We finally have a realistic looking rainbow arc.

3.6 Radiosity

3.6.1 Introduction

Radiosity is a lighting technique to simulate th&dse exchange of radiation between

the objects of a scene. With a raytracer like POV-Ray, normally only the direct influ-
ence of light sources on the objects can be calculated, all shadowed parts look totally
flat. Radiosity can help to overcome this limitation. More details on the technical
aspects can be found in the reference section.

To enable radiosity, you have to add a radiosity block to the glebtings in your
POV-Ray scene file. Radiosity is more accurate than simplistic ambient light but it
takes much longer to compute, so it can be useful to swifthadiosity during scene
development. You can use a declared constant or an INI-file constant and state-
ment to do this:

#declare RAD = off;

global_settings {

172 Advanced Features

#1£f(RAD)
radiosity {

}
#end

}

Most important for radiosity are the ambient anétue finish components of the ob-
jects. Their fect difers quite much from a conventionally lit scene.

e ambient: specifies the amount of light emitted by the object. This is the basis
for radiosity without conventional lighting but also in scenes with light sources
this can be important. Since most materials do not actually emit light, the default
value of 9.1 is too high in most cases. You can also change amiiginit to
influence this.

e diffuse: influences the amount of flluse reflection of incoming light. In a
radiosity scene this does not only mean the direct appearance of the surface but
also how much other objects are illuminated by indirect light from this surface.

3.6.2 Radiosity with conventional lighting

The pictures here introduce combined conventi@adlosity lighting. Later on you
can also find examples for pure radiosity illumination.

The following settings are default, the result will be the same with an empty radiosity
block:

global_settings {
radiosity {
pretrace_start 0.08
pretrace_end 0.04
count 35

nearest_count 5
error_bound 1.8
recursion_limit 3

low_error_factor 0.5
gray_threshold 0.0
minimum_reuse 0.015
brightness 1

adc_bailout 0.01/2
}
}

The following pictures are rendered with default settings and are made to introduce the
sample scene.

All objects except the sky have an ambient finish of 0.

Theambient 1 finish of the blue sky makes it functioning as some kind dfugie light
source. This leads to a bluish touch of the whole scene in the radiosity version.

3.6 Radiosity 173

You can see that radiosity muclffects the shadowed parts when applied combined
with conventional lighting.

Changingbrightness changes the intensity of radiosityfects. brightness 0 would

be the same as without radiosibrightness 1 should work correctly in most cases, if
effects are too strong you can reduce this. Larger values lead to quite strange results in
most cases.

Changing therecursion_limit value leads to the following results, second line are
difference to defaultrecursion_limit 3):

You can see that higher values than the default of 3 do not lead to much better results
in such a quite simple scene. In most cases values of 1 or 2 fhicesu.

The error_ bound value mainly #ects the structures of the shadows. Values larger
than the default of 1.8 do not have mudfieets, they make the shadows even flatter.
Extremely low values can lead to very good results, but the rendering time can become
very long. For the following sample®cursion_limit 1 is used.

Somewhat related terror bound iS low_error_factor. It reduces errabound during
the last pretrace step. Changing this can be useful to eliminate artefacts.

174 Advanced Features

3.6 Radiosity 175

The next samples usecursion_ 1limit 1 anderror_bound 0.2. These 3 pictures il-
lustrate the ffect of count. It is a general quality and accuracy parameter leading to
higher quality and slower rendering at higher values.

Sy ¢

Another parameter thatfacts quality ismearest_count. You can use values from 1 to
20, default is 5:

Again higher values lead to less artefacts and smoother appearance but slower render-
ing.

minimum_reuse influences whether previous radiosity samples are reused during calcu-
lation. It also #ects quality and smoothness.

Another important value ipretrace_end. It specifies how many pretrace steps are
calculated and thereby strongly influences the speed. Usually lower values lead to
better quality, but it's important to keep this in good relatiorit@or_bound.

Strongly related tpretrace_end is always_sample. Normally even in the final trace ad-
ditional radiosity samples are taken. You can avoid this by addlifigys _sample off.
That's especially useful if you load previously calculated radiosity datawith file.

The dfect of max_sample is similar tobrightness. It does not reduce the radiosity
effect in general but weakens samples with brightness above the specified value.

176 Advanced Features

You can strongly fiect things with the objects’ finishes. In fact that is the most im-
portant thing about radiosity. Normal objects should have ambient finish O which is
not default in POV-Ray and therefore needs to be specified. Objects with amstlent
actually emit light.

Default finish values used until now at¢ffuse 0.65 ambient 0.

Finally you can vary the sky in outdoor radiosity scenes. In all these examples it is
implemented with a sphere objectinish { ambient 1 diffuse 0 } was used until
now. The following pictures show some variations:

3.6.3 Radiosity without conventional lighting

You can also leave out all light sources and have pure radiosity lighting. The situation
then is similar to a cloudy day outside, when the light comes from no specific direction
but from the whole sky.

The following 2 pictures show what changes with the scene used in part 1, when the
light source is removed. (default radiosity, hitcursion_ 1imit 1 anderror_bound
0.2)

You can see that when the light source is removed the whole picture becomes very
blue, because the scene is illuminated by a blue sky, while on a cloudy day, the color
of the sky should be somewhere between grey and white.

The following pictures show the sample scene used in this part witkrelint settings
for recursion_limit (everything else default settings).

3.6 Radiosity 177

178 Advanced Features

This looks much worse than in the first part, because the default settings are mainly
selected for use with conventional light sources.

The next three pictures show thfeet of error bound. (recursion_limit is 1 here)
Without light sources, this is even more important than with, good values much depend
on the scenery and the other settings, lower values do not necessarily lead to better
results.

St Sek Sk

If there are artefacts it often helps to increasent, it does dfect quality in general
and often helps removing them (the following three picturesetigér bound 0.62).

L)]
S———

S

-

The next sequence shows thEeet ofnearest_count, the diference is not very strong,
but larger values always lead to better results (maximum is 20). From now on all the
pictures userror_bound 0.2

- — —-—
Theminimum_reuse is a geometric value related to the size of the render in pixel and

affects whether previous radiosity calculations are reused at a new point. Lower values
lead to more often and therefore more accurate calculations.

In most cases it is not necessary to changeltiweerror_factor. This factor reduces
the errorbound value during the final pretrace stgpetrace_end was lowered t@. 01

in these pictures, the second line shows thHeedénce to default. Changing this value
can sometimes help to remove persistent artefacts.

gray_threshold reduces the color in the radiosity calculations. as mentioned above the
blue sky dfects the color of the whole scene when radiosity is calculated. To reduce this
coloring dfect without d@ecting radiosity in general you can increasey_threshold.

1.0 means no color in radiosity at all.

180 Advanced Features

Another important parametergetrace_end. Together with pretracstart it specifies
the pretrace steps that are done. Lower values lead to more pretrace steps and more
accurate results but also to significantly slower rendering.

It's worth experimenting with the thingdfecting radiosity to get some feeling for how
things work. The next 3 images show some more experiments.

il
Finally you can strongly change the appearance of the whole scene with the sky’s
texture. The following pictures give some example.

v Nk

Really good results much depend on the single situation and how the scene is meant to
look. Here is some “higher quality” render of this particular scene, but requirements
can be much dierent in other situations.

global_settings {
radiosity {
pretrace_start 0.08
pretrace_end 0.01
count 500

nearest_count 10
error_bound 0.02
recursion_limit 1

low_error_factor 0.2
gray_threshold 0.0
minimum_reuse 0.015
brightness 1

adc_bailout 0.01/2

3.6 Radiosity 181

Figure 3.67: higher quality

3.6.4 Normals and Radiosity

When using a normal statement in combination with radiosity lighting, you will see
that the shadowed parts of the objects are totally smooth, no matter how strong the
normals are made.

The reason is that POV-Ray by default does not take the normal into account when
calculating radiosity. You can change this by adding

normal on

to the radiosity block. This can slow things down quite a lot, but usually leads to more
realistic results if normals are used.

When using normals you should also remember that they are only faked irregularities
and do not generate real geometric disturbances of the surface. A more realistic ap-
proach is using an isosurface with a pigment function, but this usually leads to very

slow renders, especially if radiosity is involved.

You can see that the isosurface version does not have a natural smooth circumference
and a more realistic shadowline.

182 Advanced Features

3.6.5 Performance considerations

Radiosity can be very slow. To some extend this is the price to pay for realistic lighting,
but there are a lot of things that can be done to improve speed.

The radiosity settings should be set as fast as possible. In most cases this is a quality
vs. speed compromise. Especialbtursion_limit should be kept as low as possible.
Sometimes is suficient, if not2 or 3 should often be enough.

With high quality settings, radiosity data can take quite a lot of memory. Apart from
that the other scene data is also used much more intensive than in a conventional scene.
Therefore insfficient memory and swapping can slow down things even more.

Finally the scene geometry and textures are important too. Objects not visible in the
camera usually only increase parsing time and memory use, but in a radiosity scene,
also objects behind the camera can slow down the rendering process.

3.7 Making Animations

There are a number of programs available that will take a series of still image files
(such as POV-Ray outputs) and assemble them into animations. Such programs can
produce AVI, MPEG, FLIFLC, QuickTime, or even animated GIF files (for use on
the World Wide Web). The trick, therefore, is how to produce the frames. That, of
course, is where POV-Ray comes in. In earlier versions producing an animation series
was no joy, as everything had to be done manually. We had to set the clock variable,
and handle producing unique file names for each individual frame by hand. We could
achieve some degree of automation by using batch files or similar scripting devices,
but still, We had to set it all up by hand, and that was a lot of work (not to mention
frustration... imagine forgetting to set the individual file names and coming back 24
hours later to find each frame had overwritten the last).

Now, at last, with POV-Ray 3, there is a better way. We no longer need a separate batch
script or external sequencing programs, because a few simple settings in our INI file
(or on the command line) will activate an internal animation sequence which will cause
POV-Ray to automatically handle the animation loop details for us.

Actually, there are two halves to animation support: those settings we put in the INI
file (or on the command line), and those code modifications we work into our scene
description file. If we've already worked with animation in previous versions of POV-
Ray, we can probably skip ahead to the section “INI File Settings” below. Otherwise,
let's start with basics. Before we get to how to activate the internal animation loop,
let’s look at a couple examples of how a couple of keywords can set up our code to
describe the motions of objects over time.

3.7.1 The Clock Variable: Key To It All

POV-Ray supports an automatically declared floating point variable identifietbels
(all lower case). This is the key to making image files that can be automated. In
command line operations, the clock variable is set usingth®witch. For example,

3.7 Making Animations 183

+k3.4 from the command line would set the value of clock to 3.4. The same could be
accomplished from the INI file usinglock=3.4 in an INI file.

If we don'’t set clock for anything, and the animation loop is not used (as will be de-
scribed a little later) the clock variable is still there - it's just set for the default value
of 0.0, soitis possible to set up some POV code for the purpose of animation, and still
render it as a still picture during the objaebrld creation stage of our project.

The simplest example of using this to our advantage would be having an object which
is travelling at a constant rate, say, along the x-axis. We would have the statement

translate <clock, 0, 0>

in our object’'s declaration, and then have the animation loop assign progressively
higher values to clock. And that’s fine, as long as only one element or aspect of our
scene is changing, but what happens when we want to control multiple changes in the
same scene simultaneously?

The secret here is to use normalized clock values, and then make other variables in
your scene proportional to clock. That is, when we set up our clock, (we're getting to
that, patience!) have it run from 0.0 to 1.0, and then use that as a multiplier to some
other values. That way, the other values can be whatever we need them to be, and clock
can be the same 0 to 1 value for every application. Let's look at a (relatively) simple
example

#include "colors.inc"
camera {
location <0, 3, -6>
look_at <0, 0, 0>
}
light_source { <20, 20, -20> color White }
plane {
y, 0
pigment { checker color White color Black }
}
sphere {
<0, 0, 0> , 1
pigment {
gradient x
color_map {
[0.0 Blue]
[0.5 Blue]
[0.5 White]
[1.0 White]
}
scale .25
}
rotate <0, 0, -clock*360>
translate <-pi, 1, 0>
translate <2*pi*clock, 0, 0>

}

Assuming that a series of frames is run with the clock progressively going from 0.0 to
1.0, the above code will produce a striped ball which rolls from left to right across the
screen. We have two goals here:

184 Advanced Features

1. Translate the ball from point A to point B, and,

2. Rotate the ball in exactly the right proportion to its linear movement to imply
that it is rolling — not gliding — to its final position.

Taking the second goal first, we start with the sphere at the origin, because anywhere
else and rotation will cause it to orbit the origin instead of rotating. Throughout the
course of the animation, the ball will turn one complete 360 degree turn. Therefore, we
used the formulag60+*clock to determine the rotation in each frame. Since clock runs

0 to 1, the rotation of the sphere runs from 0 degrees through 360.

Then we used the first translation to put the sphere at its initial starting point. Re-
member, we couldn’t have just declared it there, or it would have orbited the origin,
so before we can meet our other goal (translation), we have to compensate by putting
the sphere back where it would have been at the start. After that, we re-translate the
sphere by a clock relative distance, causing it to move relative to the starting point.
We've chosen the formula of 2*pi* r*clock (the widest circumference of the sphere
times current clock value) so that it will appear to move a distance equal to the circum-
ference of the sphere in the same time that it rotates a complete 360 degrees. In this
way, we've synchronized the rotation of the sphere to its translation, making it appear
to be smoothly rolling along the plane.

Besides allowing us to coordinate multiple aspects of change over time more cleanly,
mathematically speaking, the other good reason for using normalized clock values is
that it will not matter whether we are doing a ten frame animated GIF, or a three hun-
dred frame AVI. Values of the clock are proportioned to the number of frames, so that
same POV code will work without regard to how long the frame sequence is. Our
rolling ball will still travel the exact same amount no matter how many frames our
animation ends up with.

3.7.2 Clock Dependant Variables And Multi-Stage Animations

Okay, what if we wanted the ball to roll left to right for the first half of the anima-
tion, then change direction 135 degrees and roll right to left, and toward the back of the
scene. We would need to make use of POV-Ray’s new conditional rendering directives,
and test the clock value to determine when we reach the halfway point, then start ren-
dering a diferent clock dependant sequence. But our goal, as above, it to be working
in each stage with a variable in the range of 0 to 1 (nhormalized) because this makes the
math so much cleaner to work with when we have to control multiple aspects during
animation. So let's assume we keep the same camera, light, and plane, and let the clock
run from O to 2! Now, replace the single sphere declaration with the following...

#if (clock <=1)
sphere { <0, 0, 0> , 1
pigment {

gradient x

color_map {
[0.0 Blue]
[0.5 Blue]
[0.5 White]
[1.0 White]

}

3.7 Making Animations 185

scale .25

}
rotate <0, 0, -clock*360>
translate <-pi, 1, 0>
translate <2*pi*clock, 0, 0>
}
#else
// (if clock is > 1, we’re on the second phase)
// we still want to work with a value from ® - 1
#declare ElseClock = clock - 1;
sphere { <0, 0, 0> , 1
pigment {
gradient x
color_map {
[0.0 Blue]
[0.5 Blue]
[0.5 White]
[1.0 White]
}

scale .25

}
rotate <0, 0, ElseClock*360>

translate <-2*pi*ElseClock, 0, 0>
rotate <0, 45, 0>
translate <pi, 1, 0>

}
#end

If we spotted the fact that this will cause the ball to do an unrealéstap turnwhen
changing direction, bonus points for us - we're a born animator. However, for the
simplicity of the example, let’s ignore that for now. It will be easy enough to fix in the
real world, once we examine how the existing code works.

All we did differently was assume that the clock would run 0 to 2, and that we wanted

to be working with a normalized value instead. So when the clock goes over 1.0, POV
assumes the second phase of the journey has begun, and we declare a new variable
Elseclock which we make relative to the original built in clock, in such a way that
while clock is going 1 to 2, Elseclock is going 0 to 1. So, even though there is only
one clock, there can be as many additional variables as we care to declare (and have
memory for), so even in fairly complex scenes, the single clock variable can be made
the common coordinating factor which orchestrates all other motions.

3.7.3 The Phase Keyword

There is another keyword we should know for purposes of animationghtize key-

word. The phase keyword can be used on many texture elements, especially those that
can take a color, pigment, normal or texture map. Remember the form that these maps
take. For example:

color_map {
[0.00 White]
[0.25 Blue]
[0.76 Green]

186 Advanced Features

[1.00 Red]
}

The floating point value to the left inside each set of brackets helps POV-Ray to map
the color values to various areas of the object being textured. Notice that the map runs
cleanly from 0.0 to 1.0?

Phase causes the color values to become shifted along the map by a floating point value
which follows the keyworcbhase. Now, if we are using a normalized clock value
already anyhow, we can make the variable clock the floating point value associated
with phase, and the pattern will smoothly shift over the course of the animation. Let's
look at a common example using a gradient normal pattern

#include "colors.inc"
#include "textures.inc"
background { rgb<0.8, 0.8, 0.8> }
camera {
location <1.5, 1, -30>
look_at <0, 1, 0>
angle 10
}
light_source { <-100, 20, -100> color White }
// flag
polygon {
5, <0, O, <0, 1>, <1, 1>, <1, 0>, <0, O>
pigment { Blue }
normal {
gradient x
phase clock
scale <0.2, 1, 1>
sine_wave
}
scale <3, 2, 1>
translate <-1.5, 0, 0>
}
// flagpole
cylinder {
<-1.5, -4, &, <-1.5, 2.25, 0>, 0.05
texture { Silver_Metal }
}
// polecap
sphere {
<-1.5, 2.25, 6>, 0.1
texture { Silver_Metal }
}

Now, here we've created a simple blue flag with a gradient normal pattern on it. We've
forced the gradient to use a sine-wave type wave so that it looks like the flag is rolling
back and forth as though flapping in a breeze. But the real magic here is that phase
keyword. It's been set to take the clock variable as a floating point value which, as the
clock increments slowly toward 1.0, will cause the crests and troughs of the flag’s wave
to shift along the x-axis. fectively, when we animate the frames created by this code,

it will look like the flag is actually rippling in the wind.

This is only one, simple example of how a clock dependant phase shift can create

3.7 Making Animations 187

interesting animationfeects. Trying phase will all sorts of texture patterns, and it is
amazing the range of animatioffects we can create simply by phase alone, without
ever actually moving the object.

3.7.4 Do Not Use Jitter Or Crand

One last piece of basic information to save frustration. Because jitter is an element
of anti-aliasing, we could just as easily have mentioned this under the INI file settings
section, but there are also forms of anti-aliasing used in area lights, and the new atmo-
spheric &ects of POV-Ray, so now is as good a time as any.

Jitter is a very small amount of random ray perturbation designedftesditiny aliasing

errors that might not otherwise totally disappear, even with intense anti-aliasing. By
randomizing the placement of erroneous pixels, the error becomes less noticeable to
the human eye, because the eye and mind are naturally inclined to look for regular
patterns rather than random distortions.

This concept, which works fantastically for still pictures, can become a nightmare in
animations. Because it is random in nature, it will b&adent for each frame we
render, and this becomes even more severe if we dither the final results down to, say
256 color animations (such as FLC's). The result is jumping pixels all over the scene,
but especially concentrated any place where aliasing would normally be a problem
(e.g., where an infinite plane disappears into the distance).

For this reason, we should always set jittes @ in area lights and anti-aliasing options
when preparing a scene for an animation. The (relatively) small extra measure quality
due to the use of jitter will beffset by the ocean of jumpies that results. This general
rule also applies to any truly random texture elements, suechaag.

3.7.5 INI File Settings

Okay, so we have a grasp of how to code our file for animation. We know about the
clock variable, user declared clock-relative variables, and the phase keyword. We know
not to jitter or crand when we render a scene, and we're all set build some animations.
Alright, let’s have at it.

The first concept we’ll need to know is the INI file settingsj tial Frame andFinal _Frame.
These are very handy settings that will allow us to render a particular number of frames
and each with its own unique frame number, in a completely hands free way. It is of
course, so blindingly simple that it barely needs explanation, but here’s an example
anyway. We just add the following lines to our favorite INI file settings

Initial_Frame = 1
Final_Frame = 20

and we'll initiate an automated loop that will generate 20 unique frames. The settings
themselves will automatically append a frame number onto the end of whatever we
have set the output file name for, thus giving each frame an unique file number without
having to think about it. Secondly, by default, it will cycle the clock variable up from

0 to 1 in increments proportional to the number of frames. This is very convenient,
since, no matter whether we are making a five frame animated GIF or a 300 frame

188 Advanced Features

MPEG sequence, we will have a clock value which smoothly cycles from exactly the
same start to exactly the same finish.

Next, about that clock. In our example with the rolling ball code, we saw that some-
times we want the clock to cycle through values other than the default of 0.0 to 1.0.
Well, when that's the case, there are setting for that too. The format is also quite sim-
ple. To make the clock run, as in our example, from 0.0 to 2.0, we would just add to
your INI file the linesInitial Clock = 0.0

Final Clock = 2.0

Now, suppose we were developing a sequence of 100 frames, and we detected a visual
glitch somewhere in frames, say 51 to 75. We go back over our code and we think
we've fixed it. We'd like to render just those 25 frames instead of redoing the whole
sequence from the beginning. What do we change?

If we said makeInitial Frame = 51, andFinal _Frame = 75, we're wrong. Even
though this would re-render files named with numbers 51 through 75, they will not
properly fit into our sequence, because the clock will begin at its initial value start-
ing with frame 51, and cycle to final value ending with frame 75. The only time
Initial Frame andFinal Frame Should change is if we are doing an essentially new
sequence that will be appended onto existing material.

If we wanted to look at just 51 through 75 of the original animation, we need two new
INI settings Subset_Start Frame = 51
Subset_End Frame = 75

Added to settings from before, the clock will still cycle through its values proportioned
from frames 1 to 100, but we will only be rendering that part of the sequence from the
51st to the 75th frames.

This should give us a basic idea of how to use animation. Although, this introductory
tutorial doesn't cover all the angles. For example, the last two settings we just saw,
subset animation, can take fractional values, like 0.5 to 0.75, so that the number of
actual frames will not change what portion of the animation is being rendered. There
is also support forficient odd-even field rendering as would be useful for animations
prepared for display in interlaced playback such as television (see the reference section
for full details).

With POV-Ray 3 now fully supporting a complete host of animation options, a whole
fourth dimension is added to the raytracing experience. Whether we are making a
FLIC, AVI, MPEG, or simply an animated GIF for our web site, animation support
takes a lot of the tedium out of the process. And don't forget that phase and clock
can be used to explore the range of nhumerous texture elements, as well as some of the
more dfficult to master objects (hint: the julia fractal for example). So even if we are
completely content with making still scenes, adding animation to our repertoire can
greatly enhance our understanding of what POV-Ray is capable of. Adventure awaits!

3.8 While-loop tutorial 189

3.8 While-loop tutorial

While-loops in POV-Ray are so often misunderstood and misused that | decided to
write a whole page about them. Usually people who have never programmed have
great dificulties understanding how simple while-loops work and how they should be
used. When you get into nested loops, the problem is even worse.

Sometimes even people who have programmed a bit with some language get confused
with POV-Ray’s while-loops. This usually happens when they have only used a for-
loop which in itself has an index variable (which is often even incremented automati-
cally).

3.8.1 What a while-loop is and what it is not

A while-loop in POV-Ray is just a control structure which tells POV-Ray to loop a
command block while the specified condition is true (ie. until it gets false).

That is, a while-loop is like this:

#while(condition)

#end

The commands between #while and #end are run over and over as long as the condition
evaluates to true.

A while-loop is not a for-loop nor any kind of loop which has an index variable by
itself (which may be incremented automatically in each loop).

The while-loopdoes notcare what the conditions are between the parentheses (as
long as they evaluate to some value) or what does the block between #while and #end
contain. It will just execute that block until the condition becomes false.

The while-loop does not do anything else. You can think about it as a kind of “dumb”
loop, which doesn’t do anything automatically (and this is not necessarily a bad thing).

3.8.2 How does a single while-loop work?

The while-loop works like this:

1. If the condition between the parentheses evaluates to false, jump to the com-
mand after the #end statement. If the condition evaluates to true, just continue
normally.

2. Atthe #end statement jump to the #while statement and start again.
That is:

¢ When POV-Ray gets to the #while statement it evaluates the condition between
parentheses.

o |f the statement evaluated to true then it will just continue normally with the next
command.

190 Advanced Features

e However, if the statement evaluated to false, POV-Ray will skip the entire body
of the loop and continue from the command after the #end statement.

e Atan #end statement POV-Ray will just jump back to the corresponding #while-
statement and then continue normally (ie. testing the condition and so on).

Note that nowhere there’s any mention about any index variable or anything else that
could be used to automatically end the loop or whatever. As said, it’s just a “dumb” loop
that continues forever if necessary, only testing the statement between the parentheses
(but it’s not interested in what it is, only in its evaluated value).

Although one could easily think that this kind of “dumb” loop is bad and it should be
more “intelligent” and better, the fact is that this kind of “dumb” loop is actually a lot
more flexible and versatile. It allows you to make things not possible or véiigudt

to do with an “intelligent” for-loop with automatic index variables.

3.8.3 How do | make a while-loop?

It depends on what you are trying to make.

The most common usage is to use it as a simple for-loop, that is, a loop which loops a
certain number of times (for example 10 times) with an index value getting successive
values (for example 1, 2, 3, ..., 10).

For this you need to first declare your index identifier with the first value. For example:
#declare Index = 1;

Now you want to loop 10 times. Remember how the condition worked: The while-loop
loops as long as the condition is true. So it should loop as long as our 'Index’ identifier
is less or equal to 10:

#while(Index <= 10)
When the 'Index’ gets the value 11 the loop ends, as it should.

Now we only have to add 1 to 'Index’ at each loop, so we should do it at the end of the
loop, thus getting:

#declare Index = 1;
#while(Index <= 10)

(some commands here)

#declare Index = Index + 1;
#end

The incrementation before the #end is important. If we don't do it, 'Index’ would
always have the value 1 and the loop would go forever since 1 is always less or equal
to 10.

What happens here?
1. First POV-Ray sets the value 1 to 'Index’.

2. Then it sees the #while statement and evaluates what is between the parentheses:
Index<=10

3.8 While-loop tutorial 191

3. As’Index’ has the value of 1 and<d= 10, the condition evaluates to true.

4. So, it just continues normally. It executes the commands following the #while
statement (denoted in the above example as “(some commands here)”).

5. Then it arrives normally to the last #declare command in the block. This causes
the value 2 to be assigned to 'Index’.

6. Now it arrives the the #end command and so it just jumps to the #while.
7. After that it executes the steps 2-6 again because also 2 is less or equal to 10.

8. After this has been done 10 times, the value 11 is assigned to 'Index’ in the last
command of the block.

9. Now, when POV-Ray evaluates the condition it sees that it's false (because 11 is
not less or equal to 10). This causes POV-Ray to jump to the command after the
#end statement.

10. The net ffect of all this is that POV-Ray looped 10 times and the 'Index’ variable
got successive values from 1 to 10 along the way.

If you read carefully the above description you'll notice that the looping is done in a
quite “dumb” way, that is, there’s no higher logic hidden inside the loop structure. In
fact, POV-Ray doesn't have the slightest idea how many times the loop is executed and
what variable is used to count the loops. It just follows orders.

The higher logic in this type of loop is in the combination of commands we wrote.
The dfect of this combination is that the loop works like a simple for-loop in most
programming languages (like BASIC, etc).

3.8.4 Whatis a condition and how do | make one?

A condition is an expression that evaluates to a boolean value (ie. true or false) and is
used in POV-Ray in #while-loops and #if-statements.

A condition is mainly a comparison between two values (although there are also some
other ways of making a condition, but that's not important now). For example:

is true
is false
is true
is false

e
Vv A

N = NN

and so on.

Usually it makes no sense to make comparisons like those. However, when compar-
ing identifiers with some value or two identifiers together it starts to be very useful.
Consider this:

#if(version < 3.1)
#error "Wrong version!"
#end

If the identifier called 'version’ has a value which is less than 3.1 the #error line will be
executed. If 'version’ has a value which is 3.1 or greater, the #error line is just skipped.

192 Advanced Features

You can combine conditions together with the boolean operators & (and) and — (or).
You can also invert the value of a condition with ! (not).

For example, if you want something to be done when 'a’ is less thaantlOb’ is
greater or equal to 20, the condition would be:

a<10 & b>=20

For more information about these comparison operators, see the 'Float operators’ sec-
tion of the POV-Ray documentation.

3.8.5 What about loop types other than simple for-loops?

As POV-Ray doesn'’t care what the condition is and what we are using to make that
condition, we can use the while-loop in many other ways.

For example, this is a typical use of the while-loop which is not a simple for-loop:

#declare S = seed(®);
#declare Point = <2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1>;
#while(vlength(Point) > 1)

#declare Point = <2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1>;
#end

What we are doing here is this: Take a random point betwe&n-1, -1> and<1, 1,
1> and if it's not inside the unit sphere take another random point in that range. Do
this until we get a point inside the unit sphere.

This is not an unrealistic example since it's very handy and | have used this type of
loops many times.

As we see, this has nothing to do with an ordinary for-loop:
¢ |t doesn't have any “index” value which gets consecutive values during the loop.

e We don’'t know how many times it will loop. In this case it loops a random
number of times.

e For-loops are usually used to get a series of things (eg. objects). At each loop
another instance of that thing is created. Here, however, we are only interested
in the value that resulafter the loop, not the values inside it.

As we can see, a while-loop can also be used for a task of type “calculate a value or
some values until the result is inside a specified range” (among many other tasks).

By the way, there’s a variant of this kind of loop where the task is: “Calculate a value
until the result is inside a specified range, but make only a certain number of tries. If
the value doesn’t get inside that range after that number of tries, stop trying”. This is
used when there’s a possibility for the loop for going on forever.

In the above example about the point inside the unit sphere we don’t need this because
the random point will surely hit the inside of the sphere at some time. In some other
situations, however, we can't be so sure.

In this case we need a regular index variable to count the number of loops. If we have
made that amount of loops then we stop.

3.8 While-loop tutorial 193

Suppose that we wanted to modify our point searching program to be completely safe
and to try only up to 10 times. If the point doesn't hit the inside of the sphere after 10
tries, we just give up and take the poi,0,0>.

#declare S = seed(0®);
#declare Point = <2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1>;
#declare Index = 1;
#while(Index <= 10 & vlength(Point) > 1)
#declare Point = <2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1>;
#declare Index = Index + 1;
#end

#if(vlength(Point) > 1)
#declare Point = <0,0,0>
#end

What did we do?

e We added an 'Index’ value which counts the amount of loops gone so far. It's
quite similar to the index loop of a simple for-loop.

e We added an extra condition to the while-loop: Besides testing that the point is
outside the unit sphere it also tests that our index variable has not bailed out. So
now there are two conditions for the loop to continue: The 'Index’ value must be
less or equal to 1@nd the 'Point’ has to be outside the unit sphere. If either one
of them fails, the loop is ended.

e Then we check if the point is still outside the unit sphere. If it is, we just take
<0,0,0-.

Btw, sometimes it's not convenient to make the test again in the #if statement. There’s
another way of determining whether the loop bailed out without successful termination

or not: Since the loop ends when the ’Index’ gets the value 11, we can use this to test
the successfulness of the loop:

#if(Index = 11)
(loop was not successful)
#end

3.8.6 What about nested loops?

Even when one masters simple loops, nested loops can be a frightening thing (or at
least hard to understand).

Nested loops are used for example for creating a 2D array of objects (with rows and
columns of objects), etc. For example if you want to create a 10x20 array of spheres in
your scene, a nested loop is the tool for it.

There’s nothing special about nested loops. You only have to pay attention to where
you initialize and update your index variables.

Let's recall the form of a simple for-loop:

#declare Index = initial_value;
#while(Index <= final_value)

194 Advanced Features

[Something here]

#declare Index = Index + index_step;
#end

The [Something here] part can be anything. If it's another while-loop, then we have
nested loops. The inner loop should have the same structure as the outer one.

Note that proper indentation helps us distinguishing between the loops. It's always a
good idea to use a good indentation scheme:

#declare Indexl = initial_valuel;
#while(Index1l <= final_valuel)

#declare Index2 = initial_value2;
#while(Index2 <= final_value2)

[Something here]

#declare Index2 = Index2 + index2_step;
#end

#declare Indexl = Indexl + indexl_step;
#end

It's a common mistake for beginners to break this structure. For example it's common
to declare the 'Index2’ before the first #while. This breaks the for-loop structure and
thus doesn’t work. If you follow step by step what POV-Ray does, as explained earlier,
you will see why it doesn’t work. Don’t mix the structures of the inner and the outer
loops together or your code will simply not work as expected.

So, if we want to make our 10x20 array of spheres, it will look like this:

#declare Indexl = 0;
#while(Indexl <= 9)

#declare Index2 = 0;
#while(Index2 <= 19)

sphere { <Indexl, Index2, 0>, .5 }

#declare Index2 = Index2 + 1;
#end

#declare Indexl = Indexl + 1;
#end

Note how we now start from 0 and continue to 9 in the outer loop and from 0 to 19 in
the inner loop. This has been done to get the sphere array start from the origin (instead
of starting from<1, 1, 0>). Of course we could have made the 'Index1’ and 'Index2’

go from 1 to 10 and from 1 to 20 respectively and then created the sphere in this way:

sphere { <Indexl-1, Index2-1, 0>, .5 }

Although you should not mix the loop structures together, you can perfectly use the
values of the outer loop in the inner loop (eg. in its condition). For example, if we

3.8 While-loop tutorial 195

wanted to create a triangular array of spheres instead of a rectangular one (that is, we
create only half of the spheres), we could have made the inner #while like this:

#while(Index2 < Index1%2)
('Index2’ will go from O to the value of 'Index1’ multiplied by 2.)

There’s no reason why we should limit ourselves to just two nested loops. There’s
virtually no limit how many loops you can nest. For example, if we wanted to create a
box-shape filled by spheres rows, colums and depth, we just make three nested loops,
one for the x-axis, another for the y-axis and the third for the z-axis.

3.8.7 Mixed-type nested loops

It is perfectly possible to put a for-loop inside a non-for-loop or vice-versa. Again, you
just have to be careful (with experience it gets easier).

For example, suppose that we want to create 50 spheres which are randomly placed
inside the unit sphere.

So the distinction is clear: First we need a loop to create 50 spheres (a for-loop type
sufices) and then we need another loop inside it to calculate the location of the sphere.
It will look like this:

#declare S = seed(0);
#declare Index = 1;
#while(Index <= 50)

#declare Point = <2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1>;
#while(vlength(Point) > 1)

#declare Point = <2*rand(S)-1, 2*rand(S)-1, 2*rand(S)-1>;
#end

sphere { Point, .1 }

#declare Index = Index + 1;
#end

There are some important things to note in this specific example:

e Although this is a nested loop, the sphere is not created in the inner loop but in
the outer one. The reason is clear: We want to create 50 spheres, so the sphere
creation has to be inside the loop that counts to 50. The inner loop just calculates
an appropriate location.

e The seed value 'S’ is declared outside all the loops although it's used only in the
inner loop. Can you guess why? (Putting it inside the outer loop would have
caused an undesired result: Which one?)

3.8.8 Other things to note

There’s no reason why the index value in your simple for-loop should step one unit at
a time. Since the while-loop doesn’t care how the index changes, you can change it in

196 Advanced Features

whichever way you want. Eg:

#declare Index = Index - 1; Decrements the index (be careful with the while
loop condition)

#declare Index = Index + 0.2; Increases by steps of 0.2
#declare Index = Index * 2; Doubles the value of the index at each step.

etc.
- Be carefulwhere you put your while-loop.
I have seen this kind of mistake more than once:

#declare Index = 1;
#while(Index <= 10)
blob
{ threshold 0.6
sphere { <Index, 0, 0>, 2, 1 }
}

#declare Index = Index + 1;
#end

You'll probably see immediately the problem.

This code creates 10 blobs with one component each. It doesn’t seem to make much
sense. Most probably the user wanted to make one blob with 10 components.

Why did this mistake happen? It may be that the user (more or less subconsciously)
thought that the while-loop must be the outermost control structure and do not real-

ize that while-loops can be anywhere, also inside objects (creating subcomponents or
whatever).

The correct code is, of course:

blob
{ threshold 0.6

#declare Index = 1;
#while(Index <= 10)

sphere { <Index, 0, 0>, 2, 1}

#declare Index = Index + 1;
#end
}

The essential dierence here is that it's only the sphere code which is run 10 times
instead of the whole blob code. The net result is the same as if we had written the
sphere code 10 times with proper values of 'Index’.

Be also careful with the placement of the braces. If you put them in the wrong place
you can end up accidentally repeating an opening or a closing brace 10 times. Again,
a proper indentation usually helps a lot with this (as seen in the above example).

- Tip: You can use while-loops in conjunction with arrays to automatize the creation of
long lists of elements with éliering data.

3.9 SDL tutorial: A raytracer 197

Imagine that you are making something like this:

color_map

{ [0.00 rgb <.1,1,.6>]
[0.05 rgb <.8,.3,.6>]
[0.10 rgb <.3,.7,.9>]
[0.15 rgb <1,.7,.3>]

and so on
It's tedious to have to write the same things over and over just changing the index value

and the values in the vector (even if you use copy-paste to copy the lines).

There’s also one very big problem here: If you ever want to add a new color to the
color map or remove a color, you would have to renumber all the indices again, which
can be extremely tedious and frustrating.

Wouldn't it be nice to automatize the creation of the color map so that you only have
to write the vectors and that’s it?

Well, you can. Using a while-loop which reads an array of vectors:

#declare MyColors = array[20]
{ <.1,1,.6>, <.8,.3,.6>, <.3,.7,.9>,
<1,.7,.3>, ...
}

color_map

{ #declare LastIndex = dimension_size(MyColors, 1)-1;
#declare Index = 0;
#while(Index <= LastIndex)

[Index/LastIndex rgb MyColors[Index]]

#declare Index = Index + 1;
#end
}

Now it's easy to add, remove or modify colors in your color map. Just edit the vector
array (remembering to change its size number accordingly) and the while-loop will
automatically calculate the right values and create the color map for yourself.

3.9 SDL tutorial: A raytracer

You know you have been raytracing too long when ...

... You've been asked how you did that thing you did, by the author of the raytracer
you used to do it.

— Alex McLeod

198 Advanced Features

3.9.1 Introduction

A raytracer made with POV-Ray sounds really weird, doesn't it? What is it anyways?
POV-Ray is already a raytracer in itself, how can we use it to make a raytracer? What
the...?

The idea is to make a simple sphere raytracer which supports colored spheres (with
diffuse and specular lighting), colored light sources, reflections and shadows with the
POV-Ray SDL (Scene Description Language), then just render the image created this
way. That is, we do not use POV-Ray itself to raytrace the spheres, but we make our
own raytracer with its SDL and use POV-Ray’s raytracing part to just get the image on
screen.

What obscure idea could be behind this weirdness (besides a very serious case of YH-
BRFTLW...)? Why don't just use POV-Ray itself to raytrace the spheres a lot faster
and that’s it?

The idea is not speed nor quality, but to show the power of the POV-Ray SDL. If you
know how to make such a thing as a raytracer with it, we can really grasp the expressive
power of the SDL.

The idea of this document is to make ddient approach to POV-Ray SDL teaching.

It's intended to be a dierent type of tutorial: Instead of starting from the basics and
give simple and dumb examples, we jump right into a high-end SDL code and see how
itis done. However, this is done in a way that even beginners can learn something from
it.

Another advantage is that you'll learn how a simple sphere raytracer is done by reading
this tutorial. There are lots of misconceptions about raytracing out there, and knowing
how to make one helps clear most of them.

Although this tutorial tries to start from basics, it will go quite fast to very “high-end”
scripting, so it might not be the best tutorial to read for a completely new user, but it
should be enough to have some basic knowledge. Also more advanced users may get
some new info from it.

Note: in some places some mathematics is needed, so you'd better not be afraid of
math.

If some specific POV-Ray SDL syntax is unclear you should consult the POV-Ray
documentation for more help. This tutorial explains how they can be used, not so much
what's their syntax.

3.9.2 Theidea and the code

The idea is to raytrace a simple scene consisting of spheres and light sources into a
2-dimensional array containing color vectors which represents our “screen”.

After this we just have to put those colors on the actual scene for POV-Ray to show
them. This is made by creating a flat colored triangle mesh. The mesh is just flat like a
plane with a color map on it. We could as well have written the result to a format like
PPM and then read it and apply it as an image map to a plane, but this way we avoid a
temporary file.

3.9 SDL tutorial: A raytracer 199

The following image is done with the raytracer SDL. It calculated the image at a res-
olution of 160x120 pixels and then raytraced an 512x384 image from it. This causes
the image to be blurred and jagged (because it's practically “zoomed in” by a factor of
3.2). Calculating the image at 320x240 gives a much nicer result, but it's also much
slower:

Figure 3.68: Some spheres raytraced by the SDL at 160x120

Note: there are no real spheres nor light sources here (“real” from the point of view of
POV-Ray), just a flat colored triangle mesh (like a plane with a pigment on it) and a
camera, nothing else.

Here is the source code of the raytracer; we will look it part by part through this tutorial.

#declare ImageWidth = 160;

#declare ImageHeight = 120;
#declare MaxReclLev = 5;

#declare AmbientLight = <.2,.2,.2>;
#declare BGColor = <0,0,0>;

// Sphere information.
// Values are:
// Center, <Radius, Reflection, 0>, Color, <phong_size, amount, 0>
#declare Coord = array[5][4]
{ {<-1.05,0,4>, <1,.5,0>, <1,.5,.25>, <40, .8, 0>}
{<1.05,0,4>, <1,.5,0>, <.5,1,.5>, <40, .8, 0>}
{<0,-3,5>, <2,.5,0>, <.25,.5,1>, <30, .4, 0>}
{<-1,2.3,9, <2,.5,0>, <.5,.3,.1>, <30, .4, 0>}
{<1.3,2.6,9>, <1.8,.5,0>, <.1,.3,.5>, <30, .4, 0>}
}

// Light source directions and colors:
#declare LVect = array[3][2]
{ {<-1, 0, -.5>, <.8,.4,.1>}
{<1, 1, -.5, <1,1,1>}
{<0,1,0>, <.1,.2,.5>}
}

200 Advanced Features

//

// Raytracing calculations:

/7

#declare MaxDist = le5;
#declare ObjAmnt = dimension_size(Coord, 1);
#declare LightAmnt = dimension_size(LVect, 1);

#declare Ind = 0;

#while(Ind < LightAmnt)
#declare LVect[Ind][0] = vnormalize(LVect[Ind][0]);
#declare Ind = Ind+1;

#end

#macro calcRaySphereIntersection(P, D, sphereInd)
#local V = P-Coord[sphereInd] [0];
#local R = Coord[sphereInd][1].x;

#local DV = vdot(D, V);
#local D2 = vdot(D, D);
#local SQ = DV*DV-D2*(vdot(V, V)-R*R);
#1£(SQ < 0) #local Result = -1;
#else
#local SQ = sqrt(SQ);
#local T1 = (-DV+SQ)/D2;
#local T2 = (-DV-SQ)/D2;
#local Result = (T1<T2 ? T1 : T2);
#end
Result
#end

#macro Trace(P, D, reclLev)
#local minT = MaxDist;
#local closest = ObjAmnt;

// Find closest intersection:
#local Ind = 0;
#while(Ind < ObjAmnt)
#local T = calcRaySpherelIntersection(P, D, Ind);
#if(T>0 & T<minT)
#local minT = T;
#local closest = Ind;
#end
#local Ind = Ind+1;
#end

// If not found, return background color:
#if(closest = ObjAmnt)
#local Pixel = BGColor;
#else
// Else calculate the color of the intersection point:
#local IP = P+minT*D;
#local R = Coord[closest][1].x;
#local Normal = (IP-Coord[closest][0])/R;

3.9 SDL tutorial: A raytracer

201

#local V = P-
#local Refl = 2*Normal*(vdot(Normal, V)) - V;

// Lighting:
#local Pixel
#local Ind =
#while(Ind <

#local L

IP;

= AmbientLight;
0;

LightAmnt)
LVect[Ind][0];

// Shadowtest:

#local Shadowed = false;
#local Ind2 = 0;
#while(Ind2 < ObjAmnt)

#1f(Ind2!'=closest & calcRaySpherelIntersection(IP,L,Ind2)>0)

#local
#local
#end

Shadowed = true;
Ind2 = ObjAmnt;

#local Ind2 = Ind2+1;

#end

#if(!Shadowed)
// Diffuse:

#local Factor = vdot(Normal, L);

#if(Factor > 0)

#local Pixel=Pixel+LVect[Ind][1]*Coord[closest][2]*Factor;

#end

// Specular:

#local Factor = vdot(vnormalize(Refl), L);

#if(Factor > 0)

#local

Pixel =

Pixel +

LVect[Ind][1]*pow(Factor, Coord[closest][3].x)*

Coord[closest][3].y;

#end
#end

#local Ind = Ind+1;

#end

// Reflection:

#if(recLev < MaxRecLev & Coord[closest][1].y > O)

#local Pixel =

Pixel + Trace(IP, Refl, recLev+1)*Coord[closest][1].y;

#end
#end

Pixel
#end

#debug "Rendering...\n\n"

#declare Image =

array[ImageWidth] [ImageHeight]

#declare IndY = 0;
#while(IndY < ImageHeight)

202 Advanced Features

#declare CoordY = IndY/(ImageHeight-1)*2-1;
#declare IndX = 0;
#while(IndX < ImageWidth)
#declare CoordX =
(IndX/(ImageWidth-1)-.5)*2*ImageWidth/ImageHeight;
#declare Image[IndX][IndY] =
Trace(-z*3, <CoordX, CoordY, 3>, 1);
#declare IndX = IndX+1;
#end
#declare IndY = IndY+1;
#debug concat("\rDone ", str(100*IndY/ImageHeight, 0, 1),
"\% (line ",str(IndY,0,0)," out of ",str(ImageHeight,0,0),")")
#end

#debug "\n"

//

// Image creation (colored mesh):
//

#default { finish { ambient 1 } }
#debug "Creating colored mesh to show image...\n"
mesh2
{ vertex_vectors
{ ImageWidth*ImageHeight*2,
#declare IndY = 0;
#while(IndY < ImageHeight)
#declare IndX = 0;
#while(IndX < ImageWidth)
<(IndX/(ImageWidth-1)-.5)*ImageWidth/ImageHeight*2,
IndY/(ImageHeight-1)*2-1, 0>,
<((IndX+.5)/(ImageWidth-1)-.5)*ImageWidth/ImageHeight*2,
(IndY+.5)/(ImageHeight-1)*2-1, 0>
#declare IndX = IndX+1;
#end
#declare IndY = IndY+1;
#end
}
texture_list
{ ImageWidth*ImageHeight*2,
#declare IndY = 0;
#while(IndY < ImageHeight)
#declare IndX = 0;
#while(IndX < ImageWidth)
texture { pigment { rgb Image[IndX][IndY] } }
#1f(IndX < ImageWidth-1 & IndY < ImageHeight-1)
texture { pigment { rgb
(Image[IndX] [IndY]+Image[IndX+1] [IndY]+
Image[IndX] [IndY+1]+Image[IndX+1][IndY+1])/4 } }
#else
texture { pigment { rgb 0 } }
#end
#declare IndX = IndX+1;
#end

3.9 SDL tutorial: A raytracer 203

#declare IndY = IndY+1;
#end
}
face_indices
{ (ImageWidth-1)*(ImageHeight-1)*4,
#declare IndY = 0;
#while(IndY < ImageHeight-1)
#declare IndX = 0;
#while(IndX < ImageWidth-1)
<IndX*2+ IndY *(ImageWidth*2),
IndX*2+2+IndY *(ImageWidth*2),
IndX*2+1+IndY *(ImageWidth*2)>,
IndX*2+ IndY *(ImageWidth*2),
IndX*2+2+IndY *(ImageWidth*2),
IndX*2+1+IndY *(ImageWidth*2),

<IndX*2+ IndY *(ImageWidth*2),
IndX*2+ (IndY+1)*(ImageWidth*2),
IndX*2+1+IndY *(ImageWidth*2)>,
IndX*2+ IndY *(ImageWidth*2),
IndX*2+ (IndY+1)*(ImageWidth*2),
IndX*2+1+IndY *(ImageWidth*2),

<IndX*2+ (IndY+1)*(ImageWidth*2),
IndX*2+2+(IndY+1) *(ImageWidth*2),
IndX*2+1+IndY *(ImageWidth*2)>,
IndX*2+ (IndY+1)*(ImageWidth*2),
IndX*2+2+(IndY+1) *(ImageWidth*2),
IndX*2+1+IndY *(ImageWidth*2),

<IndX*2+2+IndY *(ImageWidth*2),
IndX*2+2+(IndY+1) * (ImageWidth*2),

IndX*2+1+IndY *(ImageWidth*2)>,
IndX*2+2+IndY *(ImageWidth*2),
IndX*2+2+(IndY+1) * (ImageWidth*2),
IndX*2+1+IndY *(ImageWidth*2)
#declare IndX = IndX+1;
#end
#declare IndY = IndY+1;

#end
}
}

camera { orthographic location -z*2 look_at 0 }

3.9.3 Short introduction to raytracing

Before we start looking at the code, let’s look briefly how raytracing works. This will
help you understand what the script is doing.

The basic idea of raytracing is to “shoot” rays from the camera towards the scene
and see what does the ray hit. If the ray hits the surface of an object then lighting
calculations are performed in order to get the color of the surface at that place.

204 Advanced Features

The following image shows this graphically:

Light souree

! Shadow test
way

Reflectad
iy

Nomal v
el B i

Viewing plane

Camera
Ray

Figure 3.69: The basic raytracing algorithm

First a ray is “shot” in a specified direction to see if there’s something there. As this

is solved mathematically, we need to know the mathematical representation of the ray
and the objects in the scene so that we can calculate where does the ray intersect the
objects. Once we get all the intersection points, we choose the closest one.

After this we have to calculate the lighting (ie. the illumination) of the object at the
intersection point. In the most basic lighting model (as the one used in the script) there
are three main things thaffact the lighting of the surface:

e The shadow test ray, which determines whether a light source illuminates the
intersection point or not.

e The normal vector, which is a vector perpendicular (ie. at 90 degrees) to the
object surface at the intersection point. It determines tffesé component of
the lighting as well as the direction of the reflected ray (in conjunction with the
incoming ray; that is, the angle alpha determines the direction of the reflected

ray).

e The reflected ray, which determines the specular component of the lighting and
of course the color of the reflection (if the object is reflective).

Don't worry if these things sound a bit confusing. Full details of all these things will
be given through this tutorial, as we look what does the raytracing script do. The most
important thing at this stage is to understand how the basic raytracing algorithm works
at theoretical level (the image above should say most of it).

Let’s just look at the raytracer source code line by line and look what does it do

3.9.4 Global settings

#declare ImageWidth = 160;
#declare ImageHeight = 120;
#declare MaxRecLev = 5;

#declare AmbientLight = <.2,.2,.2>;
#declare BGColor = <0,0,0>;

These lines just declare some identifiers defining some general values which will be
used later in the code. The keyword we use hergléglare and it means that we are
declaring a global identifier, which will be seen in the whole code.

3.9 SDL tutorial: A raytracer 205

As you can see, we declare some identifiers to be of float type and others to be of
vector type. The vector type identifiers are, in fact, used later for color definition (as
their name implies).

The ImageWidth and ImageHeight define the resolution of the image we are going to
render.

Note: this only defines the resolution of the image we are going to render in our SDL
(ie. into the array we will define later); it doesn’t set the resolution of the image which
POV-Ray will render.

TheMaxRecLev limits the maximum number of recursive reflections the code will calcu-
late. It's equivalent to th@ax_trace_level value inglobal_settings which POV-Ray
uses to raytrace.

The AmbientLight defines a color which is added to all surfaces. This is used to
“lighten up” shadowed parts so that they are not completely dark. It's equivalent to
theambient_light value inglobal_settings.

Finally, BGColor defines the color of the rays which do not hit anything. It's equivalent
to thebackground block of POV-Ray.

3.9.5 Scene definition

// Sphere information.
// Values are:
// Center, <Radius, Reflection, 0>, Color, <phong_size, amount, 0>
#declare Coord = array[5][4]
{ {<-1.05,0,4>, <1,.5,0>, <1,.5,.25>, <40, .8, 0>}
{<1.05,0,4>, <1,.5,0>, <.5,1,.5>, <40, .8, 0>}
{<0,-3,5>, <2,.5,0>, <.25,.5,1>, <30, .4, 0>}
{<-1,2.3,9>, <2,.5,0>, <.5,.3,.1>, <30, .4, 0>}
{<1.3,2.6,9>, <1.8,.5,0>, <.1,.3,.5>, <30, .4, 0>}
}

// Light source directions and colors:
#declare LVect = array[3][2]
{ {<-1, 0, -.5>, <.8,.4,.1>}
{<1, 1, -.5, <1,1,1>}
{<0,1,0>, <.1,.2,.5>}
}

Here we use a bit more complex declarations: Array declarations.

In fact, they are even more complex than simple arrays, as we are declaring two-
dimensional arrays.

A simple one-dimensional array can be declared like:
#declare MyArray = array([4] { 1, 2, 3, 4 }

and then values can be read from inside it with for exammy@rray[2] (which will
return3 in this case as the indexing starts from 0, ie. the index O gets the first value in
the array).

206 Advanced Features

A two-dimensional array can be thought as an array containing arrays. That is, if
you sayarray[3][2], that means “an array which has 3 elements; each one of those
elements is an array with 2 elements”. When you want to read a value from it, for
examplelyArray[1][3], you can think about it as “get the fourth value from the second

array” (as indexing starts from 0, then the index value 3 actually means “fourth value”).

Note: although you can put almost anything inside an array (floats, vectors, objects
and so on) you can only put one type of things inside an array. That is, you can’t mix
float values and objects inside the same array. (One nice feature is that all POV-Ray
objects are considered equivalent, which means that an object array can contain any
objects inside it.)

What we are doing here is to define the information for our spheres and light sources.
The first array (calledoord) defines the information for the spheres and the second
(Lvect) defines the light sources.

For spheres we define their center as the first vector. The second vector has both the
radius of the sphere and its reflection amount (which is equivalent teetfiection

value in thefinish block of an object). This is a trick we use to not to waste so much
space, so we use two values of the same vector for defining ti@yetit things.

The third vector defines the color of the sphere and the fourth the specular component
of the lighting (equivalent t@hong_size andphong values in thefinish block of an
object).

The light source definition array contains direction vectors and colors. This means that
the light sources are directional, that is, they just say which direction the light is coming
from. It could have been equally easy to make point lights, though.

We will use the information inside these arrays later in order to raytrace the scene they
define.

3.9.6 Initializing the raytracer

#declare MaxDist = 1le5;
#declare ObjAmnt = dimension_size(Coord, 1);
#declare LightAmnt = dimension_size(LVect, 1);

#declare Ind = 0;

#while(Ind < LightAmnt)
#declare LVect[Ind][0] = vnormalize(LVect[Ind][0]);
#declare Ind = Ind+1;

#end

Before being able to start the raytracing, we have to intialize a couple of things.

TheMaxDist defines the maximum distance a surface can be from the starting point of
aray. This means that if a surface is farther away from the starting point of the ray than
this value, it will not be seen. Strictly speaking this value is unnecessary and we can
make the raytracer so that there’s no such a limitation, but we save one extra step when
we do it this way, and for scenes sized like ours it doesn’t really matter. (If you really,
really want to get rid of the limitation, I'm sure you'll figure out yourself how to do it
after this tutorial.)

3.9 SDL tutorial: A raytracer 207

Theobjamnt andLightAmnt identifiers are declared just to make it easier for us to see
how many objects and lights are there (we need this info to loop through all the objects
and lights). Calling thelimension_size () function is a really nice way of getting the
number of items in an array.

All right, now we are getting to a bit more advancedfitiWhat does the while-loop
do there?

The#while-loop uses thénd identifier as an index value going frooro LightAmnt-1
(yes,-1; whenind gets the valueightAmnt the loop is ended right away). We also see
that we are indexing thevect array; thus, it's clear we are going through all the light
sources (specifically through their direction vectors, as we only usesthpart) and
we assign something to them.

What we are doing is to assign a normalized version of each light source direction onto
themselves, that is, just normalizing them.

Normalize is a synonym for “convert to unit vector”, that is, convert to a vector with
the same direction as the original but with length 1.

Why? We will later see that for illumination calculations we will be needing unit
vectors. It's more fiicient to convert the light source directions to unit vectors once at
the beginning than every time for each pixel later.

3.9.7 Ray-sphere intersection

#macro calcRaySphereIntersection(P, D, spherelnd)
#local V = P-Coord[sphereInd][0];
#local R = Coord[sphereInd][1].x;

#local DV = vdot(D, V);
#local D2 = vdot(D, D);
#local SQ = DV*DV-D2*(vdot(V, V)-R*R);
#i1f(SQ < 0) #local Result = -1;
#else
#local SQ = sqrt(SQ);
#local Tl = (-DV+SQ)/D2;
#local T2 = (-DV-SQ)/D2;
#local Result = (T1<T2 ? Tl : T2);
#end
Result
#end

This is the core of the whole raytracing process.

First let's see how a macro works (if you know it, just skip the following section):

Inner workings of a #macro

A macro works like a substitution command (similar to the #define macros in the C
programming language). The body of the macro is in practice inserted in the place
where the macro is called. For example you can use a macro like this:

208 Advanced Features

#macro UnitSphere()
sphere { 0,1 }
#end

object { UnitSphere() pigment { rgb 1 } }
The result of this code is, infiect, as if you had written:
object { sphere { 0,1 } pigment { rgb 1 } }

Of course there’s no reason in making this, as you could have just #declared the
UnitSphere as a sphere of radius 1. However, the power of macros kick in when you
start using macro parameters. For example:

#macro Sphere(Radius)
sphere { 0, Radius }
#end

object { Sphere(3) pigment { rghb 1 } }

Now you can use the macBphere to create a sphere with the specified radius. Of
course this doesn’t make much sense either, as you could just write the sphere primi-
tive directly because it's so short, but this example is intentionally short to show how
it works; the macros become very handy when they create something much more com-
plicated than just a sphere.

There’s one important fierence between POV-Ray macros and real substitution macros:
Any #local statement inside the macro definition will be parsed at the visibility level
of the macro only, that is, it will have ndfect on the environment where the macro
was called from. The following example shows what I'm talking about:

#macro Sphere(Radius)

#local Color = <1,1,1>;

sphere { 0, Radius pigment { rgb Color } }
#end

#declare Color = <1,0,0>;
object { Sphere(3) }

// ’Color’ is still <1,0,0> here,

// thus the following box will be red:
box { -1,1 pigment { rgb Color } }

In the example above, although the macro creates a local identifier called and
there’s an identifier with the same name at global level, the local definition doesn’t
affect the global one. Also even if there wasn't any global definitioncabr, the one
inside the macro is not seen outside it.

There’s one important exception to this, and this is one of the most powerful features
of macros (thanks to this they can be used as if they were functions): If an identifier (be
it local or global) appears alone in the body of a macro (usually at the end), its value
will be passed outside the macro (as if it was a return value). The following example
shows how this works:

#macro Factorial(N)
#local Result = 1;
#local Ind = 2;
#while(Ind <= N)

3.9 SDL tutorial: A raytracer 209

#local Result = Result*Ind;
#local Ind = Ind+1;
#end
Result
#end

#declare Value = Factorial(5);

Although the identifieresult is local to the macro, its value is passed as if it was a
return value because of the last line of the macro (wlresalt appears alone) and
thus the identifievalue will be set to the factorial of 5.

The ray-sphere intersection macro

Here is again the macro at the beginning of the page so that you don’t have to scroll so
much in order to see it:

#macro calcRaySphereIntersection(P, D, sphereInd)
#local V = P-Coord[sphereInd][0];
#local R = Coord[sphereInd][1].x;

#local DV = vdot(D, V);
#local D2 = vdot(D, D);
#local SQ = DV*DV-D2*(vdot(V, V)-R*R);
#if(SQ < 0) #local Result = -1;
#else
#local SQ = sqrt(SQ);
#local T1 = (-DV+SQ)/D2;
#local T2 = (-DV-SQ)/D2;
#local Result = (T1<T2 ? T1 : T2);
#end
Result
#end

The idea behind this macro is that it takes a starting point (ie. the starting point of
the ray) a direction vector (the direction where the ray is shot) and an index to the
sphere definition array defined previously. The macro returns a factor value; this value
expresses how much we have to multiply the direction vector in order to hit the sphere.

This means that if the ray hits the specified sphere, the intersection point will be located
at:
StartingPoint + Result*Direction

The return value can be negative, which means that the intersection point was actually
behind the starting point. A negative value will be just ignored, as if the ray didn't
hit anything. We can use this to make a little trick (which may seem obvious when
said, but not so obvious when you have to figure it out for yourself): If the ray actually
doesn't hit the sphere, we return just a negative value (doesn’t really matter which).

And how does the macro do it? What's the theory behind those complicated-looking
mathematical expressions?

I'll use a syntax similar to POV-Ray syntax to express mathematical formulas here
since that’s probably the easiest way of doing it.

210 Advanced Features

Let’s use the following letters:

P = Starting point of the ray
D = Direction of the ray

C = Center of the sphere

R = Radius of the sphere

The theory behind the macro is that we have to see what is the védwavhich holds
that:

vlength(P+T*D-C) = R

This means: The length of the vector between the center of the spt)eaad the
intersection pointg+T*D) is equal to the radiux}.

If we use an additional letter so that:

V = P-C

then the formula is reduced to:

vlength(T*D+V) = R

which makes our life easier. This formula can be opened as:
(T*Dy+V,)2 + (T*Dy+Vy)? + (T*D+V)2 - R?2 = 0

SolvingT from that is rather trivial math. We get a 2nd order polynomial which has two
solutions (I'll use the “·” symbol to represent the dot-product of two vectors):

T = (-D·V ± sqrt((D·V)? - D?(V?-R?))) / D?
Note: b2 means actuallp·D)

When the discriminant (ie. the expression inside the square root) is negative, the ray
does not hit the sphere and thus we can return a negative value (the macro returns -1).
We must check this in order to avoid the square root of a negative numbererror; as it

has a very logical meaning in this case, the checking is natural.

If the value is positive, there are two solutions (or just one if the value is zero, but that
doesn't really matter here), which corresponds to the two intersection points of the ray
with the sphere.

As we get two values, we have to return the one which is smaller (the closest intersec-
tion). This is what this portion of the code does:

#local Result = (T1<T2 ? T1 : T2);

Note: this is an incomplete algorithm: If one value is negative and the other positive
(this happens when the starting point is inside the sphere), we would have to return the
positive one. The way it is now results in that we will not see the inner surface of the
sphere if we put the camera inside one.

For our simple scene this is enough as we don’t put our camera inside a sphere nor we
have transparent spheres. We could add a check there which looks if one of the values
is positive and the other negative and returns the positive one. However, this has an odd
and very annoying result (you can try it if you want). This is most probably caused by

the inaccuracy of floating point numbers and happens when calculating reflections (the
starting point is exactly on the surface of the sphere). We could correct these problems

3.9 SDL tutorial: A raytracer 211

by using epsilon values to get rid of accuracy problems, but in our simple scene this
will not be necessary.

3.9.8 The Trace macro

#macro Trace(P, D, reclLev)

If the ray-sphere intersection macro was the core of the raytracer, then the Trace-macro
is practically everything else, the “body” of the raytracer.

The Trace-macro is a macro which takes the starting point of a ray, the direction of
the ray and a recursion count (which should always be 1 when calling the macro from
outside; 1 could be its default value if POV-Ray supported default values for macro
parameters). It calculates and returns a color for that ray.

This is the macro we call for each pixel we want to calculate. That is, the starting point
of the ray is our camera location and the direction is the direction of the ray starting
from there and going through the “pixel” we are calculating. The macro returns the
color of that pixel.

What the macro does is to see which sphere (if any) does the ray hit and then calcu-
lates the lighting for that intersection point (which includes calculating reflection), and
returns the color.

The Trace-macro is recursive, meaning that it calls itself. More specifically, it calls it-
self when it wants to calculate the ray reflected from the surface of a sphereecilre

value is used to stop this recursion when the maximum recursion level is reached (ie.
it calculates the reflection only ffecLev < MaxRecLev).

Let's examine this relatively long macro part by part:

Calculating the closest intersection

#local minT = MaxDist;
#local closest = ObjAmnt;

// Find closest intersection:
#local Ind = 0;
#while(Ind < ObjAmnt)
#local T = calcRaySphereIntersection(P, D, Ind);
#i£f(T>0 & T<minT)
#local minT = T;
#local closest = Ind;
#end
#local Ind = Ind+1;
#end

A ray can hit several spheres and we need the closest intersection point (and to know
which sphere does it belong to). One could think that calculating the closest intersec-
tion is rather complicated, needing things like sorting all the intersection points and
such. However, it’s quite simple, as seen in the code above.

212 Advanced Features

If we remember from the previous part, the ray-sphere intersection macro returns a
factor value which tells us how much do we have to multiply the direction vector in
order to get the intersection point. What we do is just to call the ray-sphere intersection
macro for each sphere and take the smallest returned value (which is greater than zero).

First we initialize theminT identifier, which will hold this smallest value to something

big (this is where we need thMaxDist value, although modifying this code to work
around this limitation is trivial and left to the user). Then we go through all the spheres
and call the ray-sphere intersection macro for each one. Then we look if the returned
value was greater than 0 and smaller thasr, and if so, we assign the valuenionT.

When the loop ends, we have the smallest intersection point in it.

Note: we also assign the index to the sphere which the closest intersection belongs to
in theclosest identifier.

Here we use a small trick, and it's related to its initial valogjimnt. Why did we
initialize it to that? The purpose of it was to initialize it to some value which isn’t a legal
index to a sphereopjAmnt is not a legal index as the indices go from ®tgAmnt-1);

a negative value would have worked as well, it really doesn’t matter. If the ray doesn't
hit any sphere, then this identifier is not changed and so we can see it afterwards.

If the ray doesn't hit anything

// If not found, return background color:
#if(closest = ObjAmnt)
#local Pixel = BGColor;

If the ray didn'’t hit any sphere, what we do is just to return the bacground color (defined
by theBGColor identifier).

Initializing color calculations

Now comes one of the most interesting parts of the raytracing process: How do we
calculate the color of the intersection point?

First we have to pre-calculate a couple of things:

#else
// Else calculate the color of the intersection point:
#local IP = P+minT*D;
#local R = Coord[closest][1].x;
#local Normal = (IP-Coord[closest][0])/R;

#local V = P-IP;
#local Refl = 2*Normal*(vdot(Normal, V)) - V;

Naturally we need the intersection point itself (needed to calculate the normal vector
and as the starting point of the reflected ray). This is calculated intortigentifier
with the formula which | have been repeating a few times during this tutorial.

Then we need the normal vector of the surface at the intersection point. A normal vector
is a vector perpendicular (ie. at 90 degrees) to the surface. For a sphere this is very

3.9 SDL tutorial: A raytracer 213

easy to calculate: It's just the vector from the center of the sphere to the intersection
point.

Note: we normalize it (ie. convert it into a unit vector, ie. a vector of length 1) by
dividing it by the radius of the sphere. The normal vector needs to be normalized for
lighting calculation.

Now a tricky one: We need the direction of the reflected ray. This vector is of course
needed to calculate the reflected ray, but it's also needed for specular lighting.

This is calculated into theefl identifier in the code above. What we do is to take
the vector from the intersection point to the starting pamt®) and “mirror” it with
respect to the normal vector. The formula for “mirroring” a vecatavith respect to a
unit vector (let’s call itaxis) is:

MirroredV = 2*Axis*(Axis·V) - V

(We could look at the theory behind this formula in more detail, but let's not go too
deep into math in this tutorial, shall we?)

Going through the light sources

// Lighting:
#local Pixel = AmbientLight;

#local Ind = 0;
#while(Ind < LightAmnt)
#local L = LVect[Ind][0];

Now we can calculate the lighting of the intersection point. For this we need to go
through all the light sources.

Note: Lcontains the direction vector which points towards the light source, not its
location.

We also initialize the color to be returnemi gel) with the ambient light value (given in
the global settings part). The goal is to add colors to this (the colors come fftuaali
and specular lighting, and reflection).

Shadow test

The very first thing to do for calculating the lighting for a light source is to see if the
light source is illuminating the intersection point in the first place (this is one of the
nicest features of raytracing: shadow calculations are laughably easy to do):

// Shadowtest:
#local Shadowed = false;
#local Ind2 = 0;
#while(Ind2 < ObjAmnt)
#1f(Ind2!=closest & calcRaySpherelIntersection(IP,L,nd2)>0)
#local Shadowed = true;
#local Ind2 = ObjAmnt;
#end
#local Ind2 = Ind2+1;
#end

214 Advanced Features

What we do is to go through all the spheres (we skip the current sphere although it’s
not necessary, but a little optimization is still a little optimization), take the intersection
point as starting point and the light direction as the direction vector and see if the
ray-sphere intersection test returns a positive value for any of them (and quit the loop
immediately when one is found, as we don’t need to check the rest anymore).

The result of the shadow test is put into #adowed identifier as a boolean valuerfue
if the point is shadowed).

Diffuse lighting

The dituse component of lighting is generated when a light ray hits a surface and it's
reflected equally to all directions. The brightest part of the surface is where the normal
vector points directly in the direction of the light. The lighting diminishes in relation
to the cosine of the angle between the normal vector and the light vector.

#if(!Shadowed)
// Diffuse:
#local Factor = vdot(Normal, L);
#if(Factor > 0)
#local Pixel =
Pixel + LVect[Ind][1]*Coord[closest][2]*Factor;
#end

The code for dituse lighting is surprisingly short.

There’s an extremely nice trick in mathematics to get the cosine of the angle between
two unit vectors: It's their dot-product.

What we do is to calculate the dot-product of the normal vector and the light vector
(both have been normalized previously). If the dot-product is negative it means that the
normal vector points in the opposite direction than the light vector. Thus we are only
interested in positive values.

Thus, we add to the pixel color the color of the light source multiplied by the color
of the surface of the sphere multiplied by the dot-product. This gives us fluseli
component of the lighting.

Specular lighting

The specular component of lighting comes from the fact that most surfaces do not
reflect light equally to all directions, but they reflect more light to the “reflected ray”
direction, that is, the surface has some mirror properties. The brightest part of the
surface is where the reflected ray points in the direction of the light.

Photorealistic lighting is a very complicated issue and there are lotfefelit lighting
models out there, which try to simulate real-world lighting more or less accurately. For
our simple raytracer we just use a simple Phong lighting model, whittcest more
than enough.

// Specular:
#local Factor = vdot(vnormalize(Refl), L);
#if(Factor > 0)

3.9 SDL tutorial: A raytracer 215

#local Pixel = Pixel + LVect[Ind][1]*
pow(Factor, Coord[closest][3].x)*
Coord[closest][3].y;

#end

The calculation is similar to the fliuse lighting with the following dferences:
e We don’t use the normal vector, but the reflected vector.

e The color of the surface is not taken into account (a very simple Phong lighting
model).

e We don't take the dot-product as is, but we raise it to a power given in the scene
definition (“phong size”).

e We use a brightness factor given in the scene definition to multiply the color
(“phong amount”).

Thus, the color we add to the pixel color is the color of the light source multiplied
by the dot-product (which is raised to the given power) and by the given brightness
amount.

Then we close the code blocks:

#end // if(!Shadowed)
#local Ind = Ind+1;
#end // while(Ind < LightAmnt)

Reflection Calculation

// Reflection:
#if(recLev < MaxRecLev & Coord[closest][1].y > 0)
#local Pixel =
Pixel + Trace(IP, Refl, recLev+1)*Coord[closest][1].y;
#end

Another nice aspect of raytracing is that reflection is very easy to calculate.

Here we check that the recursion level has not reached the limit and that the sphere has
a reflection component defined. If both are so, we add the reflected component (the
color of the reflected ray multiplied by the reflection factor) to the pixel color.

This is where the recursive call happens (the macro calls itself). The recursion level
(recLev) is increased by one for the next call so that somewhere down the line, the
series of Trace() calls will know to stop (preventing a ray from bouncing back and
forth forever between two mirrors). This is basically how the mracelevel global
setting works in POV-Ray.

Finally, we close the code blocks and return the pixel color from the macro:

#end // else

Pixel
#end

216 Advanced Features

3.9.9 Calculating the image

#debug "Rendering...\n\n"
#declare Image = array[ImageWidth][ImageHeight]

#declare IndY = 0;
#while(IndY < ImageHeight)
#declare CoordY = IndY/(ImageHeight-1)*2-1;
#declare IndX = 0;
#while(IndX < ImageWidth)
#declare CoordX =
(IndX/(ImageWidth-1)-.5)*2*ImageWidth/ImageHeight;
#declare Image[IndX][IndY] =
Trace(-z*3, <CoordX, CoordY, 3>, 1);
#declare IndX = IndX+1;
#end
#declare IndY = IndY+1;
#debug concat("\rDone ", str(100*IndY/ImageHeight,0,1),
"\% (line ", str(IndY,0,0)," out of ",str(ImageHeight,0,0),")")
#end
#debug "\n"

Now we just have to calculate the image into an array of colors. This array is defined
at the beginning of the code above; it's a two-dimensional array representing the final
image we are calculating.

Note how we use thedebug stream to output useful information about the rendering
process while we are calculating. This is nice because the rendering process is quite
slow and it's good to give the user some feedback about what is happening and how
long it will take. (Also note that the%” character in the string of the secotdebug
command will work ok only in the Windows version of POV-Ray; for other versions it
may be necessary to convert it te%".)

What we do here is to go through each “pixel” of the “image” (ie. the array) and for
each one calculate the camera location (fixeezt® here) and the direction of the ray
that goes through the pixel (in this code the “viewing plane” is fixed and located in the
x-y-plane and its height is fixed to 1).

What the following line:
#declare CoordY = IndY/(ImageHeight-1)*2-1;

does is to scale thedy so that it goes from -1 to 1. It's first divided by the maximum
value it gets (which igmageHeight-1) and then it's multiplied by 2 and substracted by
1. This results in a value which goes from -1 to 1.

The Coordx is calculated similarly, but it's also multiplied by the aspect ratio of the
image we are calculating (so that we don’t get a squeezed image).

3.9.10 Creating the colored mesh

If you think that these things we have been examining are advanced, then you haven't
seen anything. Now comes real hard-core advanced POV-Ray code, so be prepared.
This could be called The really advanced section.

3.9 SDL tutorial: A raytracer 217

We have now calculated the image into the array of colors. However, we still have to
show these color “pixels” on screen, that is, we have to make POV-Ray to render our
pixels so that it creates a real image.

There are several ways of doing this, all of them being more or less “kludges” (as there
is currently no way of directly creating an image map from a group of colors). One
could create colored boxes representing each pixel, or one could output to an ascii-
formatted image file (mainly PPM) and then read it as an image map. The first one
has the disadvantage of requiring huge amounts of memory and missing bilinear inter-
polation of the image; the second one has the disadvantage of requiring a temporary
file.

What we are going to do is to calculate a colored mesh2 which represents the “screen”.
As colors are interpolated between the vertices of a triangle, the bilinear interpolation
comes for free (almost).

The structure of the mesh

Although all the triangles are located in the x-y plane and they are all the same size, the
structure of the mesh is quite complicated (so complicated it deserves its own section
here).

The following image shows how the triangles are arranged for a 4x3 pixels image:

(02 a2 22 62

.5 g

(DDYU) 2(1,0) @0 (3;)
Figure 3.70: Triangle arrangement for a 4x3 image

The number pairs in parentheses represent image pixel coordinatés (@grefers to

the pixel at the lower left corner of the image agd 2) to the pixel at the upper right
corner). That is, the triangles will be colored as the image pixels at these points. The
colors will then be interpolated between them along the surface of the triangles.

The filled and non-filled circles in the image represent the vertex points of the triangles
and the lines connecting them show how the triangles are arranged. The smaller num-
bers near these circles indicate their index value (the one which will be created inside
themesh2).

We notice two things which may seem odd: Firstly there are extra vertex points outside
the mesh, and secondly, there are extra vertex points in the middle of each square.

Let’s start with the vertices in the middle of the squares: We could have just made

each square with two triangles instead of four, as we have done here. However, the
color interpolation is not nice this way, as there appears a clear diagonal line where
the triangle edges go. If we make each square with four triangles instead, then the

218 Advanced Features

diagonal lines are less apparent, and the interpolation resembles a lot better a true
bilinear interpolation. And what is the color of the middle points? Of course it’s the
average of the color of the four points in the corners.

Secondly: Yes, the extra vertex points outside the mesh are completely obsolete and
take no part in the creation of the mesh. We could perfectly create the exact same
mesh without them. However, getting rid of these extra vertex points makes our lives
more dificult when creating the triangles, as it would make the indexing of the points
more dificult. It may not be too much work to get rid of them, but they don'’t take any
considerable amount of resources and they make our lives easier, so let’s just let them
be (if you want to remove them, go ahead).

Creating the mesh

What this means is that for each pixel we create two vertex points, one at the pixel
location and one shifted by “0.5” in the x and y directions. Then we specify the color for
each vertex points: For the even vertex points it's directly the color of the correspondent
pixel; for the odd vertex points it’s the average of the four surrounding pixels.

Let's examine the creation of the mesh step by step:

Creating the vertex points

#default { finish { ambient 1 } }
#debug "Creating colored mesh to show image...\n"
mesh2
{ vertex_vectors
{ ImageWidth*ImageHeight*2,
#declare IndY = 0;
#while(IndY < ImageHeight)
#declare IndX = 0;
#while(IndX < ImageWidth)
<(IndX/(ImageWidth-1)-.5)*ImageWidth/ImageHeight*2,
IndY/(ImageHeight-1)*2-1, 0>,
<((IndX+.5)/(ImageWidth-1)-.5)*ImageWidth/ImageHeight*2,
(IndY+.5)/(ImageHeight-1)*2-1, 0>
#declare IndX = IndX+1;
#end
#declare IndY = IndY+1;
#end
}

First of all we use a nice trick in POV-Ray: Since we are not using light sources and
there’s nothing illuminating our mesh, what we do is to set the ambient value of the
mesh to 1. We do this by just making it the default with #default command, so we
don’t have to bother later.

As we saw above, what we are going to do is to create two vertex points for each
pixel. Thus we know without further thinking how many vertex vectors there will be:
ImageWidth*ImageHeight*2

3.9 SDL tutorial: A raytracer 219

That was the easy part; now we have to figure out how to create the vertex points them-
selves. Each vertex location should correspond to the pixel location it’s representing,
thus we go through each pixel index (practically the number pairs in parentheses in the
image above) and create vertex points using these index values. The location of these
pixels and vertices are the same as we assumed when we calculated the image itself (in
the previous part). Thus the y coordinate of each vertex point should go from -1 to 1
and similarly the x coordinate, but scaled with the aspect ratio.

If you look at the creation of the first vector in the code above, you'll see that it's almost
identical to the direction vector we calculated when creating the image.

The second vector should be shifted by 0.5 in both directions, and that’s exactly what
is done there. The second vector definition is identical to the first one except that the
index values are shifted by 0.5. This creates the points in the middle of the squares.

The index values of these points will be arranged as shown in the image above.

Creating the textures

texture_list
{ ImageWidth*ImageHeight*2,
#declare IndY = 0;
#while(IndY < ImageHeight)
#declare IndX = 0;
#while(IndX < ImageWidth)
texture { pigment { rgb Image[IndX][IndY] } }
#1f(IndX < ImageWidth-1 & IndY < ImageHeight-1)
texture { pigment { rgb
(Image[IndX] [IndY]+Image [IndX+1] [IndY]+
Image[IndX] [IndY+1]+Image[IndX+1] [IndY+1])/4 } }
#else
texture { pigment { rgb 0 } }
#end
#declare IndX = IndX+1;
#end
#declare IndY = IndY+1;
#end
}

Creating the textures is very similar to creating the vertex points (we could have done
both inside the same loop, but due to the syntax ofrid¥h2 we have to do it sepa-
rately).

So what we do is to go through all the pixels in the image and create textures for each
one. The first texture is just the pixel color itself. The second texture is the average of
the four surrounding pixels.

Note: we can calculate it only for the vertex points in the middle of the squares; for the
extra vertex points outside the image we just define a dummy black texture.

The textures have the same index values as the vertex points.

220 Advanced Features

Creating the triangles

This one is a bit trickier. Basically we have to create four triangles for each “square”
between pixels. How many triangles will there be?

Let's examine the creation loop first:

face_indices
{ (ImageWidth-1)*(ImageHeight-1)*4,
#declare IndY = 0;
#while(IndY < ImageHeight-1)
#declare IndX = 0;
#while(IndX < ImageWidth-1)

#declare IndX = IndX+1;
#end
#declare IndY = IndY+1;
#end
}

The number of “squares” is one less than the number of pixels in each direction. That
is, the number of squares in the x direction will be one less than the number of pixels in
the x direction. The same for the y direction. As we want four triangles for each square,
the total number of triangles will then li@mageliidth-1)* (ImageHeight-1) *4.

Then to create each square we loop the amount of pixels minus one for each direction.

Now in the inside of the loop we have to create the four triangles. Let's examine the
first one:

<IndX*2+ IndY *(ImageWidth*2),
IndX*2+2+IndY *(ImageWidth*2),
IndX*2+1+IndY *(ImageWidth*2)>,
IndX*2+ IndY *(ImageWidth*2),
IndX*2+2+IndY *(ImageWidth*2),
IndX*2+1+IndY *(ImageWidth*2),

This creates a triangle with a texture in each vertex. The first three values (the indices to
vertex points) are identical to the next three values (the indices to the textures) because
the index values were exactly the same for both.

The IndX is always multiplied by 2 because we had two vertex points for each pixel
and1IndX is basically going through the pixels. Likewisedy is always multiplied by
ImageWidth*2 because that's how long a row of index points is (ie. to get from one
row to the next at the same x coordinate we have to advangewidth*2 in the index
values).

These two things are identical in all the triangles. What decides which vertex point
is chosen is the+1" or “+2” (or “+0” when there’s nothing). Forndx “+0” is the
current pixel, “+1” chooses the point in the middle of the square ar#™chooses the
next pixel. ForindY “+1” chooses the next row of pixels.

Thus this triangle definition creates a triangle using the vertex point for the current
pixel, the one for the next pixel and the vertex point in the middle of the square.

3.10 Isosurface Object 221

The next triangle definition is likewise:

<IndX*2+ IndY *(ImageWidth*2),
IndX*2+ (IndY+1)*(ImageWidth*2),
IndX*2+1+IndY *(ImageWidth*2)>,
IndX*2+ IndY *(ImageWidth*2),
IndX*2+ (IndY+1)*(ImageWidth*2),
IndX*2+1+IndY *(ImageWidth*2),

This one defines the triangle using the current point, the point in the next row and the
point in the middle of the square.

The next two definitions define the other two triangles:

<IndX*2+ (IndY+1)*(ImageWidth*2),
IndX*2+2+(IndY+1) *(ImageWidth*2),
IndX*2+1+IndY *(ImageWidth*2)>,
IndX*2+ (IndY+1)*(ImageWidth*2),
IndX*2+2+(IndY+1) *(ImageWidth*2),
IndX*2+1+IndY *(ImageWidth*2),

<IndX*2+2+IndY *(ImageWidth*2),

IndX*2+2+(IndY+1) *(ImageWidth*2),
IndX*2+1+IndY *(ImageWidth*2)>,
IndX*2+2+IndY *(ImageWidth*2),
IndX*2+2+(IndY+1) *(ImageWidth*2),
IndX*2+1+IndY *(ImageWidth*2)

3.9.11 The Camera-setup

The only thing left is the camera definition, so that POV-Ray can calculate the image
correctly:

camera { orthographic location -z*2 look_at ® }

Why “2"? As the defaultdirection vector is<®,0,1> and the defaultp vector is
<0,1,0> and we want the up direction to cover 2 units, we have to move the camera
two units away.

3.10 Isosurface Object

An isosurface is a very versatile object. Mathematically its surface is defined by a
function. If there is a way to describe a surface with a function, it can also be rendered
as an isosurface object.

This object also allows for real deformations and surface displacements.

All points which are tested against a defined function and equal a required threshold
value, belong to the object’s surface. Itis obvious that POV-Ray couldn’t test all points
in infinite space, since it would take forever. To speed things up, points are sampled
within a defined area and within a specified accuracy range. Then the surface is created

222 Advanced Features

by interpolation between the matching points. This means that an isosurface is an ap-
proximation (accuracy depending on the settings) of the exact location of the function’s
surface. But for the vast majority of scenes this is more than accurate enough.

3.10.1 Functions in Isosurface

The functions used to define the isosurface are written ifdhetion{. . .} block.
Allowed are:

User defined functions (like equations). All float expressions and operators (see section
“User-Defined Functions”) which are legal in POV-Ray, can be used.
With the equation of a sphere“2+y~2+z"2 = Threshold” we get:

isosurface {
function {pow(x,2) + pow(y,2) + pow(z,2)}
threshold Threshold

}

Functions can be declared first (see section “Declaring Functions”) and then used in
the isosurface.

#declare Sphere = function {pow(x,2) + pow(y,2) + pow(z,2)}
isosurface {

function { Sphere(x,y,z) }

threshold Threshold

}

By default a function takes three parameters (X,y,z) and you do not have to explicitly
specify the parameter names when declaring it.

Whenusingthe identifier, the parametensustbe specified.

On the other hand, if you need more or less than three parameters when declaring a
function, you also have to explicitly specify the parameter names.

#declare Sphere = function(x,y,z,Radius) {
pow(x,2) + pow(y,2) + pow(z,2) - pow(Radius,2)
}
isosurface {
function { Sphere(x,y,z,1) }

}

To make it easier for you, POV-Ray has a large amount of pre-defined functions. These
are mainly algebraic surfaces but there is also a mesh function and noise3d function.
See section “Internal Functions” for a complete list and some explanation on the pa-
rameters to use. These internal functions can be included throughrbeions. inc
include file.

For the internal paraboloid shape, use:

#include "functions.inc"
isosurface {
function { f_paraboloid(x,y,z, -1) }

3.10 Isosurface Object 223

}

Since pigments can be declared as functions, they can also be used in isosurfaces.
They mustbe declared first. When using the identifier, you have to specify which
component of the color vector should be used. To do this, the dot notation is used:
Function(x,y,z).red

#declare FBozo = function {
pigment { bozo color_map { [® rgb 0] [1 rgb 1] }}
3

isosurface {
function { FBozo(x,y,z).gray }

}

A color vector has five components. Supported dot types to access these components
are:

e F()x—F()u—F()red
— to get the red value of the color vector
F()y —F()v — F().green

— to get the green value of the color vector
F().z— F()blue

— to get the blue value of the color vector
F().filter —F()t

— to get the filter value of the color vector

F().transmit

— to get the transmit value of the color vector

F().gray

— to get the gray value of the color vector

— gray value= Red*29.7%+ Green*58.9%+ Blue*11.4%
F()hf

— to get the heighfield value of the color vector

— hf value= (Red+ Greeri255)*0.996093

— the .hf operator is experimental and will generate a warning.
Conditional directives are allowed

#declare Rough = yes;
#include "functions.inc"
isosurface {
function { y #if(Rough=1)-f noise3d(x/0.5,y/0.3,z/0.4)*0.8 #end }

}

Loops can also be used in functions:

224 Advanced Features

#include "functions.inc"

#declare Thr = 1/1000;

#declare Ang = radians(45);

#declare Offset = 1.5;

#declare Scale = 1.2;

#declare TrSph = function { f_sphere(x-Offset,y,z,0.7%Scale) }

function {
(1-Thr)
#declare A = 0;
#while (A<8)
-pow(Thr, TrSph(x*cos(A*Ang) + y*sin(A*Ang),
y*cos(A*Ang) -x*sin(A*Ang), z))
#declare A=A+1;
#end
}

Of course functions can be combined and parameters can be substituted. Learn more
about it in the next sections

3.10.2 Transformations on Functions

Transforming an isosurface object is done like transforming any POV-Ray object. Sim-
ply use the object modifiers (scale, translate, rotate, ...).

However, when you want to transform functions within the contaibgabject, you
have to substitute parameters in the functions.

The resultsseeninverted to what you would normally expect. Here is an explanation:
Take a Sphere(x,y,z). We know it sits at the origin becaus® »When we want it at

x=2 (translating 2 units to the right) we need to write the second equation in the same
form: x-2=0

Now that both equations equal 0, we can replace parameter x with x-2

So our Sphere(x-2, y,z) moves two units to thght.

Let’s scale our Sphere 0.5 in the y direction. Default size5% fone unit). We want
y=0.5.

To get this equation in the same form as the first one, we have to multiply both sides
by two. y*2 = 0.5*2, which gives y*Z1

Now we can replace the y parameter in our sphere: Sphere(x, y*2, z). This squishes
the y-size of the sphere by half.

Well, this is the general idea of substitutions.

Here’s an overview of some useful substitutions:
Using a declared object P(x,y,z)

Scale

scale x : replacex” with “ x/scale” (idem other parameters)

scale x*2 gives P(x/2,y,2)

3.10 Isosurface Object 225

Scale Infinitely

scale x infinitely : replacex” with ” 8” (idem other parameters)

scale y infinitely gives P(x,0,z)

Translate

translate x : replacex” with " x - translation” (idem other parameters)

translate z*3 gives P(x,y,z-3)

Shear

shear in XY-plane : replacex” with " x + y*tan(radians(Angle))” (idem other pa-
rameters)

shear 45 degrees left gives P(x+y*tan(radians(45)), vy, z)

Rotate

Note: these rotation substitutions work like normal POV-rotations: they already com-
pensate for the inverse working

rotate around X
: replace ¥” with " z*sin(radians(Angle)) + y*cos(radians(Angle))”

nn

: replace 2" with ” z*cos(radians (Angle)) - y*sin(radians(Angle))”

rotate around Y
: replace %" with ” x*cos(radians(Angle)) - z*sin(radians(Angle))”
: replace 2" with ” x*sin(radians(Angle)) + z*cos(radians(Angle))”

nn

rotate around Z

: replace %" with " x*cos(radians(Angle)) + y*sin(radians(Angle))”
: replace ¥” with ” -x*sin(radians(Angle)) + y*cos(radians(Angle)) ”

rotate z*75 gives:
P(x*cos(radians(75)) + y*sin(radians(75)),
-x*sin(radians(75)) + y*cos(radians(75)), 2z)

Flip

flip X - Y : replace x” with " y” and replace " with ” -x”
flip Y - Z : replace 'y” with ” z” and replace 2" with " -y”
flip X - Z : replace x” with ” -z” and replace z” with ” x”

flip x and y gives P(y, -x, z)

226 Advanced Features

Twist

twist N turngunit aroundx

(KL

s replace ¥” with ” z*sin(x*2*pi*N) + y*cos(x*2*pi*N)”

: replace Zz” with ” z*cos (x*2*pi*N) - y*sin(x*2*pi*N)”

3.10.3 Combining Functions

CSG operations can be performed on isosurface objects since they are solid finite ob-
jects - if not finite by themselves, they are through the cross section with the container.
This is done in the usual way.

However, when CSG-like operations on functions within the contalmedbject are
needed, functions have to be combined with the appropriate operators to do so.

Here’s an overview of some useful combinations of functions:

Merge

A merge can be obtained witmin(a, B, ...)"

function{min(Function_A(x,y,z),Function_B(x,y,z))}
function{min(Function_A(x,y,z),Function_B(x,y,z),Function_C(x,y,z))}

Intersection

A way to do this ; usingfiax(a,B,...)”"

function{max(Function_A(x,y,z),Function_B(x,y,z))}
function{max(Function_A(x,y,z),Function_B(x,y,z),Function_C(x,y,z))}

Difference

A way to do this are: usingrax(A, -(B-2*Threshold))”

function{max(Function_A(x,y,z), -(Function_B(x,y,z) -2*Threshold))}
threshold Threshold

Blob

Two possible ways to do this are:
1. using "(A*B)- Blob_threshold”
2. using "(1+Blob_threshold) -Blob_threshold"A -Blob_threshold"B”

function{ (Function_A(x,y,z) * Function_B(x,y,z)) -Blob_threshold)}
function{

(1+Blob_threshold)

-pow(Blob_threshold, Function A(x,y,z))

3.10 Isosurface Object 227

-pow(Blob_threshold, Function_B(x,y,z))
}

Negative Blob

use A +(Blob_threshold “(B + Strength) " (C + Strength))”

function{Function_A + pow(Blob_threshold, (Function_B + Strength))}

Blend

use’A + B" or "A - B”
This produces a kind of blend of the two functions.

function { Function_A + Function_B }

3.10.4 Improving Isosurface Speed

Rendering speed of isosurfaces can vary considerably depending on the used settings.
Usually they render quite fast when the settings are optimized. Here are some rules to
keep in mind when designing isosurfaces:

Using Accuracy

Settingaccuracy 0.1 (default value is 0.001) is a good value to start with. You will

not see a dference on isosurfaces with a gradually changing surface but it will render
more than two times faster.

A higheraccuracy can be needed when the surface has sudden changes or a higher
frequency of changes on parts that face the camera (and whendiecy of these
details matter). You may possibly need a higheturacy when doing a trace on the
isosurface or when the surface should match the function very closely.

But usually theaccuracy can be set lower than the default with no noticeabtéedi

ences on the isosurface.

Container

Make sure youkontained_by 'object’ fits as tightly as possible. An oversized con-
tainer can sky-rocket the render time.

When the container has a lot of empty space around the actual isosurface, POV-Ray has
to do a lot of superfluous sampling: especially with complex functions this can become
very time consuming. On top of this, thex_gradient needed to get a proper surface

will also increase rapidly (almost proportional to the oversize!).

You could use a transparent copy of the container (using exactly the same transforma-
tions) to check how it fits. Getting thein_ extent andmax_extent Of the isosurface

isn’t useful because it only gives the extent of the container and not of the actual iso-
surface.

228 Advanced Features

Maximum Gradient

It is important to specify a correatax_gradient value. When it is set too high, it
slows down rendering. On the other hand, when set too low, the surface may not render
properly, showing artefacts or holes. So, find the real maximum gradientseit
POV-Ray will warn you when a bathx_gradient is used. It is usually safe to use the
measured value printed in the warning as new meadient value but itan happen

that this value is indfticient.

When you usevaluate, POV-Ray uses a dynamic calculation method fomifegradient
value. This can help to achieve a faster rendering than with a caftegiradient in

some situations. Optimizing thealuate parameters always means balancing between
artefacts and slow calculation. It requires a lot of patience and some experience to find
the best values.

Chapter 4

Questions and Tips

by Warp

This section contains answers to frequently asked questions about POV-Ray as well as
many useful tips not covered in other parts of this documentation.

While it was current at the time that this POV-Ray documentation help file was cre-
ated, it will almost certainly be out of date by the time you are reading this. So, if
you don't find an answer to your question here, please check oweuthent version
(http://www.povray.org/search/redirect?VFAQ) on the internet.

If you have some question not answered in this FAQ, don't be afraid to contact the
TAG (http://tag.povray.org/) or ask in the proper group of the POV-Ray news-server
news://news.povray.org.

4.1 Language Tips and tricks to achieve useful things

4.1.1 How do | make a visible light source?

"How do | make a visible light source?”

or: "Although | put the camera just in front of my light source, | can’t see anything.
What am | doing wrong?”

A light source in POV-Ray is only a concept. When you add a light source to the scene,
you are actually saying to POV-Ray "hey, there is light coming from this point”. As the
name says, it's a light source, not a physical light (like a light bulb or a bright spot like
a star). POV-Ray doesn’t add anything to that place where the light is coming, ie. there
is nothing there, only empty space. It's just a kind of mathematical point POV-Ray
uses to make shading calculations.

To make the light source visible, you have to put something there. Thetedgalike
keyword in thelight_source block which allows to easily attach an object to the light
source. This object implicitly doesn’t cast any shadows. You can make something like
this:

230 Questions and Tips

light_source
{ <0,0,0> color 1
looks_like
{ sphere
{ <0,0,0>,0.1
color { rgh 1 }
finish { ambient 1 }
}

}
translate <10,20,30>

}

It's a good idea to define both things, the light source and the ltik&kobject, at the
origin, and then translate them to their right place.

Note also thefinish { ambient 1 }' which makes the sphere to apparently glow (see
also the next question).

You can also get visible light sources using other techniques: Media, lens flare (avail-
able as 3rd party include file), glow patch, etc.

4.1.2 How do | make bright objects?

"How do | make bright objects, which look like they are emitting light?”

There is a simple trick to achieve this: Set the ambient value of the object to 1 or higher.
This makes POV-Ray to add a very bright illumination value to the object so the color
of the object is in practice taken as is, without darkening it due to shadows and shading.
This results in an object which seems to glow light by itself even if it’s in full darkness
(useful to make visible light sources, or small lights like leds which do not cast any
considerable light to their surroundings but can be easily seen even in the darkness).

A more sophisticated method would be using an emitting media inside the object (and
making the object itself transparent or semi-transparent).

4.1.3 How do | move the camera in a circular path?

"How do | move the camera in a circular path while looking at the origin?”

There are two ways to make this: The easy (and limited) way, and the more mathemat-
ical way.

The easy way:

camera
{ location <0,0,-10>
look_at ®
rotate <0,clock*360,0>
}

This puts the camera at 10 units in the negative Z-axis and then rotates it around the
Y-axis while looking at the origin (it makes a circle of radius 10).

The mathematical way:

4.1 Language Tips and tricks to achieve useful things 231

camera

{ location <10*sin(2*pi*clock),®,-10*cos(2*pi*clock)>
look_at ®

}

This makes exactly the same thing as the first code, but this way you can control more
precisely the path of the camera. For example you can make the path elliptical instead
of circular by changing the factors of the sine and the cosine (for example instead of
10 and 10 you can use 10 and 5 which makes an ellipse with the major radius 10 and
minor radius 5).

An easier way to do the above is to use the vrotate() function, which handles the sin()
and cos() stff for you, as well as allowing you to use more complex rotations.

camera

{ location vrotate(x*10, y*360*clock)
look_at ®

}

To get an ellipse with this method, you can just multiply the result from vrotate by a
vector, scaling the resulting circle. With the last two methods you can also control the
look_at vector (if you don’t want it looking just at the origin).

You could also do more complex transformations combining translate, scale, rotate,
and matrix transforms by replacing the vrotate() call with a call of the vtransform()
function found infunctions.inc (new in POV-Ray 3.5).

4.1.4 How do | use an image to texture my object?

The answer to this question can be easily found in the POV-Ray documentation, so |
will just quote the syntax:

pigment
{ image_map
{ gif "image.gif"
map_type 1
}
3

(Note that in order for the image to be aligned properly, either the object has to be
located at the origin when applying the pigment or the pigment has to be transformed
to align with the object. It is generally easiest to create the object at the origin, apply
the texture, then move it to wherever you want it.)

Substitute the keyworgti £ with the type of image you are using (if itisn't a Glkpa,
iff, ppm, pgm, png or sys

A map_type 0 gives the default planar mapping.

A map_type 1 gives a spherical mapping (maps the image onto a sphere).

With map_type 2 you get a cylindrical mapping (maps the image onto a cylinder).
Finally map_type 5 is a torus or donut shaped mapping (maps the image onto a torus).

See the documentation for more details.

232 Questions and Tips

4.1.5 How can | generate a spline?

"How can | generate a spline, for example for a camera path for an animation?”

POV-Ray 3.5 has a splines feature that allows you to create splines. This is covered in

the documentation and there are demo files showing examples of use. There exist also

third party include files for spline generation that have greater flexibility than the inter-

nal splines, for example the spline macros by Chris Coldftg:{/www.geocities.com/ccolefax/spline/index.htr

4.1.6 How can | simulate motion blur?

The dficial POV-Ray 3.5 doesn’t support motion blur calculations, but there are some
patched versions which do.

You can also use other tools to make this. One way to simulate motion blur is cal-
culating a small animation and then averaging the images together. This averaging
of several images can be made with third party programs, such as the Targa Averager
program bttp://iki.fi/warp/PovUtils/average/).

4.1.7 How can | find the size of a text object?

"How can | find the size of a text objettenter tex{ justify text?”

You can use tha@in_extent() andmax_extent() functions (new in POV-Ray 3.5) to

get the corners of the bounding box of any object. While this is sometimes not the
actual size of the object, for text objects this should be fairly accurate, enough to do
alignment of the text object.

4.1.8 How do | make extruded text?

POV-Ray has true type font support built in that allows you to have 3D text in your
scenes (see the documentation about the 'text’ object for more details).

There are also some outside utilities that will import true type fonts and allow user
manipulation on the text. One of these programs is called Elefont.

4.1.9 How do | make an object hollow?

This question usually means "how do | make a hollow object, like a waterglass, a jug,

etc”.

Before answering that question, let me explain some things about how POV-Ray han-
dles objects:

Although the POV-Ray documentation talks about "solid” and "hollow” objects, that's
not how it actually works. "Solid” and "hollow” are a bit misleading terms to describe
the objects. You can also make an object "hollow” with that same keyword, but it's not
that simple.

4.1 Language Tips and tricks to achieve useful things 233

Firstly: POV-Ray only handles surfaces, not solid 3D-objects. When you specify a
sphere, it's actually just a spherical surface. It's only a surface and it's not filled by
anything. This can easily be seen by putting the camera inside the sphere or by clipping
a hole to one side of the sphere with the clipgdkeyword (so you can look inside).

People often think that POV-Ray objects are solid, really 3D, with solid material filling
the entire object because they make dfé&dience’ CSG object and it seems like the
object is actually solid. What the fiierence’ CSG actually does is to cut away a part
of the object and add a new surface

in the place of the hole, which completely covers the hole, so you can't see inside the
object (this new surface is actually the part of the second object which is "inside” the
first object). Again, if you move the camera inside the object, you will see that actually
it's hollow and the object is just a surface.

So what's all this "solid” and "hollow” stff the documentation talks of, and what's the
"hollow” keyword used for?

Although objects are actually surfaces, POV-Ray handles them as if they were solid.
For example, fog and media do not go inside solid objects. If you put a glass sphere
into the fog, you will see that there’s no fog inside the sphere.

If you add the "hollow” keyword to the object, POV-Ray will no longer handle it as
solid, so fog and atmosphere will invade the inside of the object. This is the reason
why POV-Ray issues a warning when you put the camera inside a non-hollow object
(because, as it says, fog and other atmosphéiécts may not work as you expected).

If your scene does not use any atmospheftiea (fog or media) there isn’'t anyftir-
ence between a "solid” or "hollow” object.

So all the objects in POV-Ray are hollow. But the surface of the objects is always
infinitely thin, and there’s only one surface. With real world hollow objects you have
always two surfaces: an outer surface and an inner surface.

Usually people refer to these kind of objects when they ask for hollow objects. This
kind of objects are easily achieved with affégrence’ CSG operation, like this:

// A simple water glass made with a difference:
difference
{ cone { <0,0,0>,1,<0,5,0>,1.2 }

cone { <0,.1,0>,.9,<0,5.1,0>,1.1 }

texture { Glass }

}

The first cone limits the outer surface of the glass and the second cone limits the inner
surface.

4.1.10 How can I fill a glass with water or other objects?

As described in the "hollow objects” question above, hollow objects have always two
surfaces: an outer surface and an inner surface. If we take the same example, a simple
glass would be like:

// A simple water glass made with a difference:
#declare MyGlass=

234 Questions and Tips

difference

{ cone { <0,0,0>,1,<0,5,0>,1.2 }
cone { <0,.1,0>,.9,<0,5.1,0>,1.1 }
texture { Glass }

}

The first cone limits the outer surface of the glass and the second cone limits the inner
surface.

If we want to fill the glass with water, we have to make an object which coincides
with the inner surface of the glass. Note that you have to avoid the coincident surfaces
problem so you should scale the "water” object just a little bit smaller than the inner
surface of the glass. So we make something like this:

#declare MyGlassWithWater=
union
{ object { MyGlass }
cone
{ <0,.1,0>,.9,<0,5.1,0>,1.1
scale .999
texture { Water }
}
}

Now the glass is filled with water. But there’s one problem: There’s too much water.
The glass should be filled only up to certain level, which should be definable. Well,
this can be easily made with a CSG operation:

#declare MyGlassWithWater=
union
{ object { MyGlass }
intersection
{ cone { <0,.1,0>,.9,<0,5.1,0>,1.1 }
plane { y,4 }
scale .999
texture { Water }
}
}

Now the water level is at a height of 4 units.

4.1.11 How can | bend a object?

There’s no direct support for bending in POV-Ray, but you can achieve acceptable

bending with the Object Bender by Chris Colefagp://www.geocities.com/SiliconValley/Lakes/1434/bend.ht

Some objects can be "bent” by just modelling it with other objects. For example a bent
cylinder can be more easily (and accurately) achieved using the intersection of a torus
and some limiting objects.

It might be a bit strange why most renderers support bending but POV-Ray doesn't.
To understand this one has to know how other renderers (the so-called "scanline-
renderers” work):

4.2 Language Things that don’t work as one expects 235

In the so-called "scanline renders” all objects are modelled with triangle meshes (or
by primitives such as NURBS or bezier patches which can be very easily converted to
triangles). The "bending” is, in fact, achieved by moving the vertices of the triangles.

In this context the term "bending” is a bit misleading. Strictly speaking, bending a
triangle mesh would also bend the triangles themselves, not only move their vertices.
No renderer can do this. (It can be, however, simulated by splitting the triangles into
smaller triangles, and so the "bendindfext is more accurate, although not yet per-
fect.) What these renderers do is not a true bending in the strict mathematical sense,
but only an approximation achieved by moving the vertices of the triangles.

This difference might sound irrelevant, as the result of this kind of "fake” bending
usually looks as good as a true bending. However, it's not irrelevant from the point
of view of POV-Ray. This is because POV-Ray does not represent the objects with
triangles, but they are true mathematical surfaces. POV-Ray can't "fake” a bending
by moving vertices because there are no vertices to move. In practice bending (and
other non-linear transformations) would require the calculation of the intersection of
the object surface and a curve (instead of a straight line), which is pretty hard and many
times analytically not possible.

Note that isosurface objects can be modified with proper functions in order to achieve
all kinds of transformations (linear and non-linear) and thus they are not really bound to
this limitation. However, achieving the desired transformation needs some knowledge
of mathematics.

See also the variable ior question.

4.1.12 Can | get non-grainy focal blur?

"The focal blur is very grainy. Can | get rid of the graininess?”

Yes. Sewariance to O (or to a very small value, like for exampl&.00000) and choose
a high enoughlur_samples. The rendering will probably slow down quite a lot, but
the result should be very good.

4.2 Language Things that don’t work as one expects

4.2.1 Using several transparent objects makes them black?

"When | put several transparent objects one in front of another or inside another, POV-
Ray calculates a few of them, but the rest are completely black, no matter what trans-
parency values | give.”

Short answer: Try increasing thex_trace_level value in theglobal settings block
(the default is 5).

Long answer:

Raytracing has a peculiar feature: It can calculate reflection and refraction. Each time
a ray hits the surface of an object, the program looks if this surface is reflectiy@ and
refractive. If so, it shoots another ray from this point to the appropriate direction.

236 Questions and Tips

Now, imagine we have a glass sphere. Glass reflects and refracts, so when the ray hits
the sphere, two additional rays are calculated, one outside the sphere (for the reflection)
and one inside (for the refraction). Now the inside ray will hit the sphere again, so two
new rays are calculated, and so on and so on...

You can easily see that there must be a maximum number of reflecéfrastions
calculated, because otherwise POV-Ray would calculate that one pixel forever.

This number can be set with thex_trace_level option in theglobal_settings block.

The default value is 5, which is enough for most scenes. Sometimes it isn’t enough
(specially when there are lots of semitransparent objects one over another) so you have
to increase it.

So try something like:

global_settings
{

max_trace_level 10

}

4.2.2 I'm getting color banding in the image

"When | make an image with POV-Ray, it seems to use just a few colors since | get
color banding or concentric circles of colors or whatever where it shouldn’t. How can
I make POV-Ray to use more colors?”

POV-Ray always writes true color images (ie. with 16777216 colors, ie. 256 shades of
red, 256 shades of green and 256 shades of blue) (this can be changed when outputting
to PNG or to BW TGA but this is irrelevant when answering to this question).

So POV-Ray is not guilty. It always uses the maximum color resolution available in the
target image file format.

This problem usually happens when you are using windows with 16-bit colors (ie.
only 65536 colors, the so-called hicolor mode) and open the image created by POV-
Ray with a program which doesn’t dither the image. The image is still true color, but
the program is unable to show all the colors, but shows only 65536 of them (dithering is
a method that "fakes” more colors by mixing pixels of two adjacent colors to simulate
the in-between colors).

So the problem is not in POV-Ray, but in your image viewer program. Even if POV-
Ray shows a poor image while rendering because you have a resolution with too few
colors, the image file created will have full color range.

4.2.3 Rotation behaves very strangely

"When | rotate an object, it dissapears from the image or moves very strangely. Why?”
You need to understand how rotation works in POV-Ray.

Objects are alwaysrotated around the axes. When you rotate, for examp|e, 6>,
that means that you are rotating around the X-axis 20 degrees (counter-clockwise). This
is independent of the location of the object: It always rotates around the axis (what's

4.2 Language Things that don’t work as one expects 237

the center of the object anyways? how do you locate it?). This means that if the object
is not centered in the axis, it will orbit this axis like the Moon orbits the Earth (showing
always the same side to the Earth).

It's a very good practice to define all objects centered at the origin (ie. its 'center’ is
located ak®,0,0>). Then you can rotate it arbitrarily. After this you can translate it to

its proper location in the scene. It's a good idea to do this to every object even if you
don't rotate it (because you can't never say if you will rotate it some day nevertheless).

What if, after all, you have a very complex object defined, but its center is not at the

origin, and you want to rotate it around its center? Then you can just translate it to the
origin, rotate it and then translate it back to its place. Suppose that the center of the
object is located at10,20,-30>; you can rotate it this way:

translate -<10,20,-30>
rotate <whatever>
translate <10,20,-30>

4.2.4 The image gets distorted when rendering a square image

"If | tell POV-Ray to render a square image or otherwise change the aspect ratio, the
output image is distorted. What am | doing wrong?”

The problem is that the camera is set to an aspect ratiBpfvhile the picture you are
trying to render has an aspect ratio ¢f {or whatever).

You can set the aspect ratio with the right’ keyword in the camera block. The general
way to set the correct aspect ratio for your image dimensions is:

camera
{ right x*ImageWidth/ImageHeight
(other camera settings...)

}

This keyword can also be used to change the handedness of POV-Ray (see the question
about Moray and POV-Ray handedness for more details).

Note: One could think "why doesn’t POV-Ray always set automatically the aspect ratio
of the camera according to the resolution of the image?”.

There’s one thing wrong in this thought: It assumes that pixels are always square (ie.
the aspect ratio of the pixels ig1). The logic of this behaviour comes clear with an
example:

Suppose that you design a scene using a reg(Baspect ratio, as usual (like 320x240,
640x480 and so on). This image is designed to look good when viewing j8 a 4
monitor (as they all are in home computers).

Now you want to render this image for the Windows startup image. The resolution of
the Windows startup image is 320x400. This resolution has not an aspect rat® of 4
and the pixels are not square (the pixels have an aspect ratj0.6fiistead of /).

Now, when you render your image at a resolution of 320x400 with POV-Ray and show
it with the monitor set to that resolution (as it is set at windows startup when the startup
image is shown), the aspect ratio will be the correct one so the image will have the
correct proportions (and it will not be squeezed in any direction).

238 Questions and Tips

If you had changed the aspect ratio of the camera tg48®0(instead of using the
default 43) you would not only have got aftierent image (showing parts of the scene
not shown in the original or hiding parts visible in the original), but it would have
looked sqeezed when shown in the 320x400 screen resolution.

Thus, the camera aspect ratio is the aspect ratio of the final image on screen, when
viewed in the final resolution (which might not be @4esolution). Since the monitor
screen has an aspect ratio @8 4this is the default for the camera as well.

4.2.5 Why are there strange dark pixels or noise on my CSG ob-
ject?

This is the typical 'coincident surfaces problem’. This happens when two surfaces are
exactly at the same place. For example:

union

{ box { <-1,0,-1>,<1,-2,1> texture { Texturel } }
box { <-2,0,-2>,<2,-1,2> texture { Texture2 } }

}

The top surface of the first box is coincident with the top surface of the second box.
When a ray hits this area, POV-Ray has to decide which surface is closest. It can't,
since they are exactly in the same place. Which one it actually chooses depends on the
float number calculations, rounding error, initial parameters, position of the camera,
etc, and varies from pixel to pixel, causing those seemingly "random” pixels.

The solution to the problem is to decide which surface you want to be on top and
translate that surface just a bit, so it protrudes past the unwanted surface. In the example
above, if we want, for example, that the second box is at the top, we will type something
like:

union
{ box { <-1,0,-1>,<1,-2,1> texture { Texturel } }

box { <-2,0.001,-2>,<2,-1,2> texture { Texture2 } }
}

Note that a similar problem appears when a light source is exactly on a surface: POV-
Ray can't calculate accurately if it's actually inside or outside the surface, so dark
(shadowed) pixels appear on every surface that is illuminated by this light.

4.2.6 Why won'tthe textures in stars.inc work with my sky sphere?

The only thing that works with aky_sphere is pigments. Textures and finishes are not
allowed. Don't be discouraged though because you can still use the textures in stars.inc
with the following method:

Extract only the pigment statement from the declared textures. For example:

texture
{ pigment { color_map { [® rgb ...]J[.5 rgb ...]J[1.0 rgb ...] } scale ... }
finish { ... }

}

4.2 Language Things that don’t work as one expects 239

becomes:
pigment { color_map { [0 rgb ...]J[.5 rgb ...]J[1.0 rgb ...] } scale ... }

The reason for this is thaky_sphere doesn’t have a surface, it isn’'t an actual object.
Itis really just a fancy version of the background feature which extracts a color from a
pigment instead of being a flat color. Because of this, normal and finish features, which
depend on the characteristics of the surface of an object for their calculations, can't be
used. The textures isitars.inc were intended to be mapped onto a real sphere, and
can be used something like this:

sphere

{0, 1
hollow // So it doesn’t interfere with any media in the scene
texture { YourSkyTexture }
scale 100000

4.2.7 When | use filter or transmit with my .tga image map nothing
happens.

POV-Ray can only apply filter or transmit to 8 bit 256 color palleted images. Since
most .tga, .png, and .bmp images are 24bit and 16 million colors they do not work
with filter or transmit. If you must use filter or transmit with your image maps you
must reduce the color depth to a format the supports 256 colors such.ag themage
format.

You might also check the POV-Ray docs on using the alpha channghgfiles if you
need specific areas that are transparent.

4.2.8 lIsosurface not rendering properly?

"My isosurface is not rendering properly: there are holes or random noise or big parts
or even the whole isosurface just disappears.”

The most common reason for these type of phenomena with isosurfaces is a too low
max_gradient value. Usevaluate to make POV-Ray calculate a propei_gradient

for the isosurface (remember to specify a sensialegradient even when you use
evaluate Or else the result may not be correct).

Sometimes a too hightcuracy value can also cause problems even whemikeyradient
is ok. If playing with the latter doesn’t seem to help, try also loweringaiteiracy.

Remember that specifyingrax_gradient which is too high for an isosurface, although
it gives the correct result, is needlessly slow, so you should always calculate the proper
max_gradient for each isosurface you make.

Note that there are certain pathological functions whergasogradient Or accuracy

will help. These functions usually have discontinuities or similar "ill-behaving” prop-
erties. With those you just have to find a solution which gives the best gisaktyd
tradedt. Isosurfaces work best with functions which give smooth surfaces.

240 Questions and Tips

4.3 Language related things

4.3.1 How do | turn animation on?

"How do I turn animation on? | have used ttimck-variable in my scene, but POV-Ray
still only calculates one frame.”

The easiest way is to just specify the appropriate command line parameter on the com-
mand line or in the command line field in the rendering settings menu (in the Windows
version). For example, if you want to create 20 frames, type Hki&£20

This will create 20 frames with thelock variable going from 0 to 1. The other com-
mand line parameters are found in the POV-Ray documentation.

Ken Tyler has also another good solution for this:

In the directory that you installed POV-Ray into you will find a subdirectory called
scenes and another inside that called animate. You will find several example files
showing you how to write your scene to use the clock variable. You will still need
to activate POV-Ray’s animation feature by using.ani file with the correct info or

with command line switches. | personaly like to use the ini file method. If you try this
open the mastafovray . ini file from the tools menu and add the following lines:

;clock=1
;Initial_Frame=1
;Final_Frame=20
;Cyclic_Animation = on
;Subset_Start_Frame=6
;Subset_End_Frame=9

Save the file and close it. When you need to use the animation feature simply go in
and edit thepovray.ini file and uncomment out the functions you want to use. At a
minimum you will need to use thinitial frame andfinal frame option to make it

work. Once you have stopped rendering your series of frames be sure to comment out
the clock variables in the ini file. After you have rendered a series of individual frames
you will still need to compile them into the animation format that you wish to use such
as AVl or MPEG. See miinks pages (http://povray.org/links/3D_Animation _Utilities/)

for programs that can help you do this. POV-Ray has no internal ability to do this for
you except on the Macintosh platform of the program.

The Mac version normally doesn’t uséni files and lacks any command line, but uses

a completely graphical interface instead. To activate animation, choose the render set-
tings item from the Edit menu (right under "Preferences”, it will be titled "FILENAME
Settings”, where FILENAME is the name of your file), click on the Animation tab, and
enter the needed information in the text boxes.

4.3.2 Can POV-Ray use multiple processors?

Short answer: The only way to run POV-Ray on multiple processors is to run several
copies of POV-Ray.

Long answer:

4.3 Language related things 241

Making a program use multiple threads is not as trivial as it may sound. Here are some
reasons why it is quite flicult to make with POV-Ray:

e You can't do it with standard C (nor-&+), and POV-Ray is intended to be very
portable. Thisisn't just an issue of philosophy or purism, POV-Ray is really used
on a large variety of dierent platforms.

o Multithreading is a very complex issue and it's much mof&dclilt to make a bu-
gless multithreaded program than a single-threaded (there are several things in
multithreading, like mutual exclusion problems, which make the multithreaded
program very non-deterministic). It's not impossible, though, since it has been
done (there are patched versions of POV-Ray with multithreading support). How-
ever, it's far from trivial.

e Raytracing is usually thought as an easily threaded problem. You just calculate
one pixel and draw it on screen, independent of the other pixels. However, with
advanced techniques, like antialiasing and specially stochastic global illumina-
tion calculation (referred as "radiosity” in pov's documentation and syntax) this
isn't true anymore.

— To speed up antialiasing, a threshold value is used between pixels. If the
difference in color between two pixels is higher than the threshold, then
antialiasing is calculated. Of course we need info from the nearby pixels
for this.

— In globalillumination calculations lighting values are stored in a spatial tree
structure. The following pixels may use the information stored in this tree
for their illumination. This means that the pixel calculation at the upper left
corner may #ect on the color of the pixel in the lower right corner. This
is the reason why calculating a radiosity image in parts does not work very
well.

Both problems can probably be solved in some way, but as said, it's far from
trivial.

An excellent article about the issue can be foundtgi://www.acm.org/tog/resources/RTNews/html/rtnv12n2.html#art3.
Here is an answer from John M. Dlugosz with useful tips:

The POV-Ray rendering engine is a single thread of execution, so when run on a dual
Pentium Pro (running NT4) the CPU indicator only goes up to about 50%. POV doesn't
use more than half the available power on the machine.

That'’s the basic issue, though to quibble a bit it's not exactly true: the rendering engine
soaks up one whole CPU, but the editor runs on its own thread, and operating system
functions (writing to the file, updating the display, network activity, system background
tasks) run on dferent threads. This gives a little bit of a bonus, and the system uses
as much as 54% of available MIPS when watching it. More importantly, the machine
is still highly responsive, and editing or other applications continue on without being
sluggish.

But for a long render, it's annoying to have one CPU be mostly idle. What can be done
to cut rendering time in half (from 20 hours down to 10, for example)?

The simplest thing is to run two copies of POV on the machine. Have one copy render
the top half, and the other render the bottom half. Then paste the halves together in

242 Questions and Tips

your picture editor.

One thing to watch out for: don't just fire up two copies and point them at the same
INI file and image file. They will overwrite each other’s output and make a big mess.
Instead, you must make sure each is writing toffedént file.

For moderate renders, you might let one copy chug away on the long render, and use a
second copy interactivly to continue development in POV.

4.3.3 Can | get a wireframe render of my scene?

"Is there a way to generate a wireframe output image from a POV scene file?”
Short answer: No.
Long answer:

You have to understand thefiirence between a modeller like 3D-Studio and POV-
Ray in the way they handle objects. Those modellers always use triangle meshes (and
some modellers use also NURBS which can be very easily converted into triangles).
Triangle meshes are extremely simple to represent in a wireframe format: Just draw a
line for each triangle side.

However, POV-Ray handles most of the objects as mathematical entities, not triangle
meshes. When you tell POV-Ray to create a sphere, POV-Ray only handles it as a
point and a radius, nothing else (besides the possible matrix transform applied to it).
POV-Ray only has a notion of the shape of the object as a mathematical formula (it can
calculate the intersection of a line and the sphere).

For wireframe output there should be a way to convert that mathematical representation
of the object into actual triangles. This is called tesselation.

For some mathematical objects, like the sphere, the box, etc, tesselation is quite trivial.
For other entities, like CSG fierence, intersection, etc, it's morefitult (although

not impossible). For other entities it's completely impossible: infinite non-flat surfaces
like paraboloids and hyperboloids (well, actually it is possible if you limit the size of
the surface to a finite shape; still the amount of triangles that needs to be created would
be extremely high).

There have been lots of discussions about incorporating tesselation into POV-Ray. But
since POV-Ray is just a renderer, not a modeller, it doesn’'t seem to be wortfiidie e
(adding tesselation to all the primitives and CSG would beigejob).

(Of course tesselation could give some other advantages, like the ability to fake non-
uniform transformations to objects like most triangle mesh modellers do...)

If you just want fast previews of the image, you can try to use the quality parameter of
POV-Ray. For example setting quality to8q0) can give a very fast render. See also
the rendering speed question.

4.3 Language related things 243

4.3.4 Can | specify variable IOR for an object?

"Can | specify variable IOR for an object? Is there any patch that can do this? Is it
possible?”

Short answer: No.
Long answer:

There are basically two ways of defining variable IOR for an object: IOR changing on
the surface of the object and IOR changing throughout inside the object.

The first one is physically incorrect. For uniform IOR it simulates physical IOR quite
correctly since for objects with uniform density the light bends at the surface of the ob-
ject and nowhere else. However if the density of the object is not uniform but changes
throughout its volume, the light will bend inside the object, while travelling through it,
not only on the surface of the object.

This is why variable IOR on the surface of the object is incorrect and the possibility of
making this was removed in POV-Ray 3.1.

From this we can deduce that a constant IOR is kind of property of the surface of the
object while variable IOR is a property of the interior of the object (like media in POV-
Ray). Of course the physically correct interpretation of this phenomenon is that IOR
is always a property of the whole object (ie. its interior), not only its surface (and this
is why IOR is now a property of the interior of the object in POV-Ray); however, the
effect of a constant IOR hadfect only at the surface of the object and this is what
POV-Ray does when bending the rays.

The correct simulation for variable IOR, thus, would be to bend the ray inside the object
depending on the density of the interior of the object at each point.

This is much harder to do than one may think. The reasons are similar to why non-
uniform transformations are toofficult to calculate reasonably (as far as | know there
exists no renderer that calculates true non-uniform transformations; mesh modellers
just move the vertices, they don't actually transform the object; a true non-uniform
transformation would bend the triangles). Moreover: Non-uniform transformations
can be faked if the object is made of many polygons (you can move the vertices as
most mesh modellers do), but you can't fake a variable IOR in this way.

Variable IOR is (mostly) impossible to calculate analytically (ie. in a mathematically
exact way) at least in a reasonable time. The only way would be to calculate it numer-
ically (usually by super-sampling).

Media in POV-Ray works in this way. It doesn't even try to analytically solve the
color of the media, but supersamples the media along the ray and averages the result.
This can be pretty inaccurate as we can see with the media method 1 (the only one
which was supported in POV-Ray 3.1). However some tricks can be used to make the
result more accurate without having to spend too much time, for example antialiasing
(which is used by the media method 3 in POV-Ray 3.5). This is a quite easy calculation
because the ray is straight, POV-Ray knows the start and end points of the ray and it
knows that it doesn’t intersect with anything along the ray (so it doesn’t have to make
ray-object intersection calculations while supersampling).

244 Questions and Tips

Variable IOR is, however, a completelyfidirent story. Here the program would have to
shoot a LOT of rays along the path of the bending light ray. For each ray it would have
to make all the regular ray-object intersection calculations. It’'s like having hundreds or
thousands of transparent objects one inside another (withtraa&level set so high

that the ray will go through all of them). You can easily test how slow this is. It's
VERY slow.

One could think that "hey, why not just shoot a few tens of rays and then use some kind
of antialiasing to get the fine detalils, like in media method 3”.

Well, it might work (I have never seen it tested), but | don't think it will help much.
The problem is the inaccuracy of the supersampling (even when using antialiasing). In
media it's not a big problem; if a very small shadowed area in the media is not detected
by the supersampling process, the result will ndiedivery much from the correct one
(since the shadowed area was so small it would have diminished the brightness of that
ray just a bit but no more) and it will probably still look good.

With IOR this isn't anymore true. With IOR even very, very small areas may have very
strong dfect in the end result, since IOR can drastically change the direction of the ray
thus making the result completelyfidirent (even very small changes can have great
effect if the object behind the current refracting object is far away).

This can have disastrougfects. The ior may change drastically from pixel to pixel
almost at random, not to talk from frame to frame in an animation.

To get a more or less accurate result lots of rays would be needed; just a few rays is not
enough. And shooting lots of rays is an extremely slow process.

4.3.5 What is Photon Mapping?

Photon mapping uses forward raytracing (ie. sending rays from light sources) calculate
reflecting and refracting light (aka. caustics), which is a new feature in POV-Ray 3.5.

The following is from the homepage of the developer (Nathan Kopp):

"My latest fun addition to POV is the photon map. The basic goal of this implementa-
tion of the photon map is to render true reflective and refractive caustics. The photon
map was first introduced by Henrik Wann Jensen. It is a way to store light information
gathered from a backwards ray-tracing [sic] step in a data structure independent from
the geometry of a scene.”

It is surprisingly fast andféicient. How is this possible when forward raytracing is so
inefficient? For several reasons:

1. Photon mapping is only used to calculate illumination, ie. lighting values, not
to render the actual scene. Lighting values do not have to be as accurate as the
actual rendering (it doesn’t matter if your reflected light "bleeds” a bit out of
range; actually this kind of "bleeding” happens in reality as well (due to light
diffusing from air), so the result is not unrealistic at all).

2. Photon mapping is calculated only for those (user-specified) objects that need it
(ie. objects that have reflection godrefraction).

3. The rays are not shot to all directions, towards the entire scene, but only towards
those specified objects. Many rays are indeed shot in vain, without tfieatiag

4.4 File Formats 245

the final image in any way, but since the total amountof rays shot is relatively
small, the rendering time doesn’t get inacceptably longer.

4. The final image itself is rendered with regular backwards raytracing (the photon
mapping is a precalculation step done before the actual rendering). The raytracer
doesn’t need to use forward raytracing in this process (it just uses the precalcu-
lated lighting values which are stored in space).

As you have seen, for the photon mapping to work in an acceptable way, you have to
tell the program which objects you want to reffeefract light and which you don't.
This way you can optimize a lot the photon mapping step.

4.4 File Formats

4.4.1 Saving the image to disk.

"l have rendered an image with POV-Ray, but how do | save it to JPG or GIF or any
other image format?”

This is a typical problem of people using the Windows version of the program for first
time.

POV-Ray is a raytracer which has only one purpose: To read a source file describing the
scene to raytrace and then calculate it and save it to disk in a supported image format,
usually TGA (and optionally PNG, BMP, etc).

POV-Ray has always had this goal, and still has, and will (desirably) never change.
It's mostly command-line oriented. It supports non-essential things, like showing the
image while it's rendering.

A GUI doesn'’t change anything. POV-Ray is still POV-Ray, with or without GUI. It
takes a source code and calculates the image and saves it to disk. By default it shows
the image while it's raytracing it, but that's just a secondary feature, non-essential,
irrelevant. It can be turneditand POV-Ray will still make its job.

So the answer to the question is: The image is already saved
on disk.

Usually it's saved in TGA or BMP format (it depends on the settings) with the same
name as the source code (so if the source is name . Pov, the image will be named
CHAIR.TGA Or CHAIR.BMP or whatever). The location is either the same directory where
the .pov-file is or else a common directory for images (which you can set up in the
main povray.ini file).

4.4.2 Can | convert my POV-Ray scenes to another format?

(Answer by Johannes Hubert)

For POV-Ray 2.2: Try Crossroadstip://www.europa.com/ keithr/crossroads) or if
you want to convert to Moray MDL files, try POV2MDIh{tp://www.th-software.com/)
from Thomas Baier.

246 Questions and Tips

For POV-Ray 3.1 and newer: There is unfortunately not much you can do. There is no
real versatile program yet, that can read (and convert) POV-Ray 3.1 scripts (except for
POV-Ray itself :-). Your best shots would be: POV2RIt://www?9.informatik.uni-
erlangen.de/"cnvogelg/pov2rib/index.html) if you want to convert to the RIB format.

If you know how to program &+, you can get the ParPow@- library from the same

URL. It is a class-library for reading POV 3.1 scripts and converting them+e C
objects (it also has been used for POV2RIB).

3DWin from Thomas Baier (see the URL above) converts from the POB format to a lot

of other formats. POB is a special binary POV-Ray format devised by Thomas and is
written by a custom-compile version of POV-Ray 3.0 (get the POB-SDK at the same

URL): This POV-Ray version reads POV-scripts and outputs POB files, which can then
be converted by 3DWin. The drawback: Although all objects, textures etc. of the scene
are in the POB file, they are not all recognized by 3DWin. Only triangles and meshes
of triangles are recognized. Everything else in the scene is lost....

4.4.3 How can | convert my scenes from format X to POV-Ray for-
mat?

Crossroads hftp://www.europa.com/"keithr/crossroads) can convert a very limited
subset of Povray primitives (spheres and triangles work best). Particularly, it can be
used to convert unions of regular (non smooth) triangles to other formats.

Another option is 3DWin Ifttp://www.tb-software.com/.)

4.4.4 How do | import all of my textures | created in 3DS Max into
POV-Ray?

As POV-Ray 3.5 supports UV-mapping, textured objects used by renderers such as 3D-
Studio can be used by first converting them with a proper converter. You can find a list
of converters and other related softwaréngtp://www.povray.org/links/3D_Programs/Conversion_Utilities/.

4.4.5 How can | avoid artifacts and still get good JPEG compres-
sion?

(Answer by Peter J. Holzer)
First, you have to know a little bit about how a picture is stored in JPEG format.

Unlike most image formats it doesn’t store RGB values, but YUV values (1 grayscale
value and two "color dierence” values) just like they are used in a color TV signal.
Since the human eye uses mostly the gray values to detect edges, one can usually
get away with storing the color information at a lower resolution - an 800x600 JPEG
typically has only grayscale information at 800x600, but color information at 400x300.
This is called supersampling.

For each color channel separately, the picture is then divided into little squares and the
cosine transform of each square is computed. A neat feature of this transformation is
that if you throw away only a few of the values, the quality will degrade very little,

4.4 File Formats 247

but the image will compress a lot better. The percentage of values stored is called the
quality.

Finally, the data is compressed.

Most programs only let you change the quality setting. This is fine for photos and
photorealistic renderings of "natural” scenes. Generally, quality values around 75%
give be best compromise between quality and image size.

However, for images which contain very saturated colors, the lower resolution of the
color channels causes visible artifacts which are very similar to those caused by low
quality settings. They can be minimized by setting an extremely high quality (close to

100%), but this will dramatically increase the file size, and often the artifacts are still

visible.

A better method is to turnfbsupersampling. The higher resolution will cause only
a modest increase in file size, which is more théfiset by the ability to use a lower
quality setting.

The cjpeg command line utility (which should be available for all systems which have
a command line, e.g., Linux, MS-DOS, Unix, ...) has an "-sample” to set the sampling
factors for all passes.

cjpeg -sample 1x1,1x1,1x1 -quality 75 -optimize

should be good default values which have to be changed only rarely.

4.4.6 Why are there no converters from POV to other formats?

"Why are there so many converters from other 3D file formats to POV, but practically
no converters from POV to other formats?”

It's a mistake to think that a POV-Ray file is just the same kind of data file as in most
other renderers.

The file format of most renderers is just a data file containing numerical values (vertex
coordinates, triangle indices, textures, uv-coordinates, NURBS data...) describing the
scene. They usually are very little more than just numerical data containers.

However, POV-Ray files are much more than just data files. POV-Ray files are actually
source code of the POV-Ray scripting language. The POV-Ray scripting language is by
many means a full programming language (it's Turing-strong). It contains many fea-
tures typical to programming languages and non-typical to data files (such as variables,
loops, mathematical functions, macros, etc). It has many features to describe things in
a much more abstract way than just plain numbers.

This is why converting a POV-file to a data file readable by other renderers is so dif-
ficult. The converter program would actually have to "execute”, that is, interpret the
scripting language (in the exact same way as a BASIC or Perl source code is inter-
preted). Making a scripting language interpreter is a much more laborious job than just
converting numerical data from one format to another.

There’s also another problem: POV-Ray describes most of its objects as mathematical
entities while most of other renderers just handle triangles (or NURBS or similar easily
tesselable primitives). A converter would have to make some tesselation in order to

248 Questions and Tips

convert most POV-Ray primitives to other formats. This can be a quite laborious job for
a converter to make (it would have to practically implement an almost fully-qualified
POV-Ray renderer).

This is why making a full-featured converter from any POV-file to any other format is
an almost impossible task.

4.4.7 Why are triangle meshes in ASCII format?

"Why are triangle meshes in ASCII format? They are huge! A binary format would
be a lot smaller. If POV-Ray can read binary images, why couldn't it read binary mesh
data?”

It's not as simple as you may think.

You can’t compare binary mesh data with image files. Yes, images are binary data, but
there is one big dierence: Image files use integer

numbers (usually bytes, in some cases 16-bit integers), which can be easily read in any
system.

However, meshes use floating point
numbers.

It might come as a bit of surprise that it's far from easy to represent them in binary
format so that they can be read in every possible system.

It's very important to keep in mind that POV-Ray is intended to be a very portable pro-

gram, which should be compilable in virtually any system with a decent C compiler.

This is not just mumbo-jumbo; POV-Ray IS used in a wide variety of operating sys-

tems and computer architectures, including Windows, MacOS, Linux, (Sparc) Solaris,
Digital Unix and so on.

The internal representation of floating point numbers mé#gdin number of bits and
bits reserved for each part of the number inside the data typeffieretit systems.
There’s also the infamous big-enthav-endian problem (that is, although the floating
point numbers were identical in twoftBrent systems, they may be written iffdrent
byte-order when writing to a file).

If you try to make carelessly a patch which reads and writes floating point numbers
in binary format, you'll probably quickly find that your patch only works in a certain
architecture only (eg. PC) and not others.

In order to store floating point numbers so that they can be read in any system, you
have to store them in an universal format. ASCII is as good as any other.

However, you are not completely out of luck when dealing with compressing mesh
data. This has been done before. For example check:

http://www.geocities.com/ccolefax/pcm.htmi

POV-Ray 3.5 supports a new type of mesh (called mesh2) which stores the mesh data
in a more compact format (similar to the one used in the PCM format described in the
abovementioned link, but with a bit more 'syntax’ around it).

4.5 Utilities, models, etc. 249

4.5 Utilities, models, etc.

4.5.1 What is the best animation program available?

Check the POV-Ray linkshtp://povray.org/links/3D_Animation_Utilities/).

45.2 Creatingviewing MPEG-files.

"How can | creatgview mpeg-files in Window&inux/...?”

See the IRTC Animation FACh(tp://irtc.org/anims/faq.html).

4.5.3 Where can | find modelgextures?

Check the POV-Ray linkshftp://povray.org/links/POV-Ray_Include_Macro_and_Object_Files/Object_and_Scene_Files/).

4.5.4 What are the best modellers for POV-Ray?

Check the POV-Ray linkshftp://povray.org/links/3D_Programs/POV-Ray_Modelling_Programs/).

4.5.5 Any POV-Ray modellers for Mac?

(Answer by Henri Sivonen)
Yes there are. However, a text editor is still needed.

Most of the available modelers are listed on th@cal POV-Ray MacOS Info Page
(http://mac.povray.org/).

DOS, Windows and Linux i386 modelers can be used with an Intel PC emulator. With
MKLinux (http://mww.mklinux.apple.com/) or LinuxPPC bttp://www.linuxppc.org/),
Linux-compatible applications with freely available source code can be compiled and
then run natively.

4.5.6 Isthere any user gallery of POV-Ray images?

There are literaly hundreds of POV-Ray users galleries. Almost anybody that uses

POV-Ray and has a web page has some sort of picture gallery set up. Look for web page

address’s at the bottoms of the messages posted to the newsgroup comp.graphics.rendering.raytracing
and the povray newsgroups.

There are 2 placedficially supported by the Pov team. They are:
- The POV-Ray users gallery locatedhdtp://www.povray.org/

- A private news server (not connected with USENET) operated by the POV Team:
http://www.povray.org/groups.html In the povray.binaries.images newsgroup, you will

250 Questions and Tips

find many images posted from other POV-Ray users. There are also discussion groups,
and plenty of sample code and scenes.

You should also check the Internet Raytracing Competition homepégée/{(vww.irtc.org/).

4.5.7 Any good heightfield modellers?

Check the POV-Ray linksftp://povray.org/links/3D_Programs/Height_Field_Modelling_Programs_and_Utilitie

4.5.8 Any easy way of creating trees?
A program called Tree designer by Johannes Hulbéyi:(/free.prohosting.com/“jhubert/TreeDesigner/)
is an excellent modelling program for trees.

There are also a several good include files for this purpose. Check POV-Ray Include
Macro and Object Fileshftp://www.povray.org/links/POV-Ray _Include_Macro_and_Object_Files/).

4.6 Rendering speed

4.6.1 Will POV-Ray render faster with a 3D card?

"Will POV-Ray render faster if | buy the latest and fastest 3D videocard?”
No.

3D-cards are not designed for raytracing. They read polygon meshes and then scanline-
render them. Scanline rendering has very little, if anything, to do with raytracing. 3D-
cards can't calculate typical features of raytracing as reflections etc. The algorithms
used in 3D-cards have nothing to do with raytracing.

This means that you can't use a 3D-card to speed up raytracing (even if you wanted
to do so). Raytracing makes lots of float number calculations, and this is very FPU-
consuming. You will get much more speed with a very fast FPU than a 3D-card.

What raytracing does is actually this: Calculate 1 pixel color and (optionally) put it on
the screen. You will get little benefit from a fast videocard since only individual pixels
are drawn on screen.

4.6.2 How do | increase rendering speed?

This question can be divided into 2 questions:
1) What kind of hardware should | use to increase rendering speed?
(Answer by Ken Tyler)

The truth is the computations needed for rendering images are both complex and time
consuming. This is one of the few program types that will actualy put your processors
FPU to maximum use.

4.6 Rendering speed 251

The things that will most improve speed, roughly in order of appearance, are:

1.
2.
3.

CPU speed
FPU speed

Buss speed and level one and two memory cache - More is better. The faster the
buss speed the faster the processor can swap out computations into it's level 2
cache and then read them back in. Buss speed therefore can have a large impact
on both FPU and CPU calculation times. The more cache memory you have
available the faster the operation becomes because the CPU doesn’t have to rely
on the much slower system RAM to store information in.

. Memory amount, type, and speed. Faster and more is undoubtably better. Swap-

ping out to the hard drive for increasing memory should be considered the last
possible option for increasing system memory. The speed of th@anédto

disk operation is like walking compared to driving a car. Here again is were buss
speed is a major player in the fast rendering game.

. Your OS and number of applications open. Closing open applications, includ-

ing background items like system monitor, task scheduler, internet connections,
windows volume control, and all other applications people have hiding in the
background, can greatly increase rendering time by stealing cpu cycles. Open
task manager and see what you have open and then close everything but the ab-
solute necessities. Other multi-tasking OS’s have other methods of determining
open application and should be used accordingly.

. And lastly your graphics card. This may seem unlikely to you but it's true. If you

have a simple 16 bit graphics card your render times, compared to other systems
with the same processor and memory but better CG cards, will be equal. No
more no less. If you play a lot of games or watch a lot of mpeg movies on your
system then by all means own a good CG card. If it's rendering and raytracing
you want to do then invest in the best system speed and architecture your money
can buy. The graphics cards with hardware acceleration are designed to support
fast shading of simple polygons, prevalent in the gaming industry, &rd o
support for the intense mathematical number crunching that goes on inside a
renderingraytracing program like Pov-Ray, Studio Max, and Lightwave. If your
modeling program uses OpenGl shading methods then a CG card with support
for OpenGL will help increase the speed of updating the shading window but
when it comes time to render or raytrace the image it's support dissapears.

2) How should | make the POV-Ray scenes so that they will render as fast as possible?

These are some things which may speed up rendering without having to compromise
the quality of the scene:

e Bounding boxes: Sometimes POV-Ray’s automatic bounding is not perfect and

considerable speed may be achieved by bounding objects by hand. These kind
of objects are, for example, CSGfidirences and intersections, blobs and poly
objects. See also: CSG speed.

Number of light sources: Each light source slows down the rendering. If your
scene has many light sources, perhaps you should see if you can remove some
of them without loosing much quality. Also replace point light sources with
spotlights whenever possible. If a light source only lights a little part of the

252 Questions and Tips

scene, a spotlight is better than a point light, since the point light is tested for
each pixel while the spotlight is only tested when the pixel falls into the cone of
the light.

e Area lights are very slow to calculate. If you have big mediaats, they are
extremely

slow to calculate. Use as few area lights as possible. Always use adaptive area
lights unless you need very high accuracy. Use spot area lights whenever possi-
ble.

e When you have many objects with the same texture, union them and apply the
texture only once. This will decrease parse time and memory use. (Of course
supposing that it doesn’t matter if the texture doesn’t move with the object any-
more...)

e Things to do when doing fast test renderings:
— Use the quality command line parameter (ie).

— Comment out (or enclose withi f-statements) the majority of the light
sources and leave only the necessary ones to see the scene.

— Replace (with#i f-statements) slow objects (such as superellipsoids) with
faster ones (such as boxes).

— Replace complex textures with simpler ones (like uniform colors). You can
also use thquick_color statement to do this (it will work when you render
with quality 5 or lower, ie. command line parametes).

— Reflection and refraction: When an object reflects and refracts light (such
as a glass object) it usually slows down the rendering considerably. For test
renderings turning 6 one of them (reflection or refraction) or both should
greatly increase rendering speed. For example, while testing glass objects
it's usually enough to test the refraction only and add the reflection only
to the final rendering. (The problem with both reflecting and refracting
objects is that the rays will bounce inside the object until rtraxelevel
is reached, and this is very slow.)

— If you have reflectiofrefraction and a very higlax_trace_level, try set-
ting the adcbailout value to something bigger than the defay2586.

4.6.3 CSG speed

"How do the diferent kinds of CSG objects compare in speed? How can | speed them
up?”

There is a lot of misinformation about CSG speed out there. A very common allegation
is that "merge is always slower than union”. This statement is not true. Merge is
sometimes slower than union, but in some cases it's even faster. For example, consider
the following code:

global_settings { max_trace_level 40 }
camera { location -z*8 look_at O angle 35 }
light_source { <100,100,-100> 1 }

4.6 Rendering speed 253

merge
{ #declare Ind=0;
#while(Ind<20)
sphere { z*Ind,2 pigment { rgbt .9 } }
#declare Ind=Ind+1;
#end
}

There are 20 semitransparent merged spheres there. A test render took 64 seconds.
Substituting ‘'merge’ with 'union’ took 352 seconds to render (5.5 times longer). The
difference in speed is very notable.

So why is 'merge’ so much faster than 'union’ in this case? Well, the answer is prob-
ably that the number of visible surfaces play a very important role in the rendering
speed. When the spheres are unioned there are 18 inner surfaces, while when merged,
those inner surfaces are gone. POV-Ray has to calculate lighting and shading for each
one of those surfaces and that makes it so slow. When the spheres are merged, there’s
no need to perform lighting and shading calculations for those 18 surfaces.

So is 'merge’ always faster than 'union’? No. If you have completely non-transparent
objects, then 'merge’ is slightly slower than 'union’, and in that case you should always
use 'union’ instead. It makes no sense using 'merge’ with non-transparent objects.

Another common allegation is "fference is very slow; much slower than union”. This
can also be proven as a false statement. Consider the following example:

camera { location -z*12 look_at 0O angle 35 }
light_source { <100,100,-100> 1 }
difference
{ sphere { 0,2 }
sphere { <-1,0,-1>,2 }
sphere { <1,0,-1>,2 }
pigment { rgb <1,0,0> }
}

This scene took 42 seconds to render, while substituting tiferdnce’ with a 'union’
took 59 seconds (1.4 times longer).

The crucial thing here is the size of the surfaces on screen. The larger the size, the
slower to render (because POV-Ray has to do more lighting and shading calculations).

But the second statement is much closer to the truth than the first ofieredces

are usually slow to render, specially when the member objects of fferatice are

very much bigger than the resulting CSG object. This is because POV-Ray’s automatic
bounding is not perfect. A few words about bounding:

Suppose you have hundreds of objects (like spheres or whatever) forming a bigger CSG
object, but this object is rather small on screen (like a little house for example). It would
be really slow to test ray-object intersection for each one of those objects for each pixel
of the screen. This is speeded up by bounding the CSG object with a bounding shape
(such as a box). Ray-object intersections are first tested for this bounding box, and
it is tested for the objects inside the box only if it hits the box. This speeds rendering
considerably since the tests are performed only in the area of the screen where the CSG
object is located and nowhere else.

254 Questions and Tips

Since it's rather easy to automatically calculate a proper bounding box for a given
object, POV-Ray does this and thus you don’t have to do it by yourself.

But this automatic bounding is not perfect. There are situations where a perfect au-
tomatic bounding is very hard to calculate. One situation is tlfierdince and the
intersection CSG operations. POV-Ray does what it can, but sometimes it makes a
pretty poor job. This can be specially seen when the resulting CSG object is very small
compared to the CSG member objects. For example:

intersection

{ sphere { <-1000,0,0>,1001 }
sphere { <1000,0,0>,1001 }

}

(This is the same as making dfgrence with the second sphere inversed)

In this example the member objects extend fror2001,-1001,-1001 to <2001,1001,1004
although the resulting CSG object is a pretty small lens-shaped object which is only 2
units wide in the x direction and perhaps 10 or 20 or something wide in the y and z
directions. As you can see, it's veryfiii¢ult to calculate the actual dimensions of the
object (but not impossible).

In this type of cases POV-Ray makes a huge bounding box which is useless. You should
bound this kind of objects by hand (specially when the it has lots of member objects).
This can be done with the boundég keyword.

Here is an example:

camera { location -z*80 look_at O angle 35 }
light_source { <100,200,-150> 1 }
#declare test =
difference
{ union
{ cylinder {<-2, -20, 0>, <-2, 20, 0>, 1}
cylinder {<2, -20, 0>, <2, 20, 0>, 1}
}
box {<-10, 1, -10>, <10, 30, 10>}
box {<-10, -1, -10>, <10, -30, 10>}
pigment {rgb <1, .5, .5>}
bounded_by { box {<-3.1, -1.1, -1.1>, <3.1, 1.1, 1.1>} }
}

#declare copy = 0;

#while (copy < 40)
object {test translate -20*x translate copy*x}
#declare copy = copy + 3;

#end

This took 51 seconds to render. Commenting out the 'boutigédine increased the
rendering time to 231 seconds (4.5 times slower).

4.6.4 Does POV-Ray support 3DNow?

No, and most likely never will.

4.7 Miscellaneous questions 255

There are several good reasons for this:

e 3DNow uses single precision numbers while POV-Ray needs (yes, it needs) dou-
ble precision numbers. Single precision is not enough (this has been tested in
practice).

(To better understand theffirence between single and double precision hum-
bers, imagine that you could represent values between 0 and 1000 with single
precision numbers. With double precision numbers you don't get a scale from 0
to 2000 (as one might think), but from 0 to 1000000. THheedéence is enormous

and single precision is not precise enough for what POV-Ray does.)

e Adding support for 3DNow (or any other CPU-specific feature) to POV-Ray
would make it platform-dependant and not portable. Of course one could make
a separate binary for AMD supporting 3DNow, but there are only two ways of
doing this:

1. Compiling POV-Ray with a compiler which automatically can make 3DNow
code from C. As far as | know, no such compiler exists which converts dou-
ble precision math used in POV-Ray to single precision math needed by
3DNow. | don’t event know if there’s any compiler that supports 3DNow
at all.

2. Changing the source code by hand in order to use 3DNow instructions.
This is a whole lot of work (specially because you'll probably have to use
inline assembler). The source code of POV-Ray is not very small. Would it
be worth the &orts?

Note: There are a few things in POV-Ray that use single precision math (such as color
handling). This is one field where some optimization might be possible without de-
grading the image quality.

4.7 Miscellaneous questions

4.7.1 Where do | suggest new features?

"I would like to suggest some new features for the program. Who should | talk to?”

This is best discussed on the Pov news groups (news.povray.org) in both the general
news group and the windows news group. The Pov team does skim through the mes-
sage posted there and occasionaly impliment ideas that have been posted by users.

You may also contact any of the POV-Ray T.A.G. members with suggestions, com-
ments, or ideas for improvements to POV-Ray. To learn more about the POV-Ray
T.A.G. and their contact information go hettgtp://tag.povray.org/.

4.7.2 I'm getting a "lllegal grid value in dda _traversal()”

"When | render a height field | get lots of warning messages saying "lllegal grid value
in ddatraversal()”. How can | correct that?”

(Answer by Jerry Anning)

256 Questions and Tips

Basically, you have a ray going "between the cracks” of the height field due to an
arithmetic accuracy problem. Sometimes it does no harm. Sometime you get black
dot or line artifacts. 1 know of no successful patch so far. | also know no completely
reliable workaround. The best bet is to slightly joggle the camera positigntaanle.

4.7.3 No beep when finished?

"How can | get rid of the beep after POV-Ray has calculated the image”

Usually using the P command-line option should help (POV-Ray will not pause after
it has calculated the image). If you are using the windows version of POV-Ray, you
can try Render> On Completion > Remove [v] in front of "Beep”.

4.7.4 POV-Ray viruses?

"Are there any POV-Ray viruses out there? Can one be done?”

At the time of writing this documentation, no known viruses or trojans made with the
POV-Ray Scene Description Language (SDL) are known to exist.

Due to the properties of the POV-Ray SDL, writing a working virus (that is, a piece of
code which spreads, without the user knowing, by copying itself to non-infected files)
is very dfficult, if not impossible to do. The main obstacle in making a POV-Ray virus
is that there’s no way for the SDL code to reside in memory, infecting files when it sees
them; another problem is that there’s no way to get file listings in the POV-Ray SDL,
so the code can’t infect other .pov files at parse time.

However, trojans (i.e. a malicious piece of code which attempts to harm the system,
but won't infect other files) are much more likely. It is possible with the POV-Ray SDL
to open a file and write practically anything to it. This can be used to cause severe
damage to an unprotected file system.

Note, however, that in POV-Ray 3.5 the concept /@ testrictions was introduced

in order to protect the user from these kinds of malicious scripts. SettingG@heet
strictions properly will prevent the SDL from being able to open files for writing (and
optionally even for reading). You should check that your copy of POV-Ray 3.5 has
these restrictions properly set, especially if you render files not made by you. Note,
however, that not all versions of POV-Ray 3.5 foffdient platforms may have these
restrictions implemented. Consult section 1 of the POV-Ray 3.5 documentation for
more details about théQ restrictions.

Regardless of this, it's always a good idea to run only scripts which you have received
from trusted sources. This is particularly true if you are using a version of POV-Ray
older than 3.5.

The POV-Ray community consists mostly of benevolent people and it is generally safe
to try POV-Ray scripts made by them. However, it is often better to be safe than to be
sorry.

4.8 The shadow line artifact 257

4.7.5 GUI for Unix POV-Ray?

"Does POV-Ray for Unix have a GUI like in Windows?”
No.

POV-Ray has always been a command-line utility. Even the core code of POV-Ray for
Windows is exactly the same as the generic command-line POV-Ray. The graphical
interfaces of the Windows and Mac versions of POV-Ray are exclusive to them (and
non-portable). They are much like separate "add-ons”.

There’s no dhicial GUI done for the Unix version of POV-Ray. Some third-parties have
tried to make some GUIs for it (and you might find them fromthp://povray.org/links/

page) but it seems to be a general phenomenon that Unix people like to use just the
command-line version with a proper and powerful text editor (such as Emacs).

I'm sorry but there’s no advice right now here about how to configure Emacs in order
to smoothly handle POV-Ray file editing, but | might write a page about that some day,
when | have the time.

4.8 The shadow line artifact

4.8.1 What s the problem?

People often find an annoying problem when applying normal modifier patterns to
objects. Itis said that one image tells more than a thousand words, and this saying also
applies here. This image shows two cases where the problem appears:

Figure 4.1: Sometimes odd shadow lines appear on certain objects
e The object in the left of the image is just a regular POV-Ray sphere with a normal
modifier made with the bump pattern.
e The object in right of the image is a mesh of smooth triangles.

As you notice, there are two clear artifacts in the image. The sphere has a straight
shadow line which seems unnatural and the mesh has a non-straight shadow line when
it's supposed to have a straight one.

258 Questions and Tips

Although the artifacts look quite fierent in nature, they are, in fact caused by the exact
same problem.

Figure 4.2: The image one would expect.

What one could expect would be something like this image (don’t mind about the bright
part under the triangle mesh; this is explained later).

4.8.2 What causes the problem?

Let’s start with the sphere with the perturbed normal, since it’s easier to explain.

Swface
" 1 Perturbed

intersects surface
here

Figure 4.3: Shadow line test with modified normals

This image shows graphically what happens.

The problem happens in the "dark side” of the object, that is, the side which doesn’t
"see” the light source.

Although the surface normal points away from the light source (ie. its angi@dsie-
grees from the light source), the perturbed normal points towards it (ie. its ard@ is

4.8 The shadow line artifact 259

degrees) and thus, according to the normal vector, the light source should illuminate
the point in question.

However, when doing the shadow-ray test, POV-Ray sees that the test ray intersects
with a surface (in this case the surface of the same sphere, but at the "other side”).
Thus it decides that the surface in question is shadowing the current point and thus the
light source does not illuminate it.

This is what causes the straight shadow exactly where the (non-perturbed) surface nor-
mal is exactly at 90 degrees from the light source.

The problem with the mesh of smooth triangles is a bit moficdit, although very
similar (and caused by the exact same problem).

Interpolated Wertex
WV arten normal normal

normal 4

-

Shadomr ray
intersects surface
here

Shad o ray
test

Figure 4.4: Shadow test of a triangle mesh

This image shows graphically what happens.

Although there’s no explicit normal perturbation, the fact that the surface is a mesh of
smooth triangles means that there’s an implicit normal perturbation.

In order to get a smooth appearance, each vertex has a normal vector and the normal
vector at any point in the surface of the triangle is calculated by interpolating the normal
vectors of the vertices.

Here the problem happens when the shadow line should pass across a triangle and the
unperturbed normal vector of that triangle points away from the light source. As seen
in the figure, a triangle that is closer to the light source will shadow the point in the
current triangle (it's not necessarily the adjacent triangle, but if the mesh is closed,
some triangle will surely shadow the point in question).

This means that this unfortunate triangle will be completely shadowed, thus causing a
triangular artifact in the shadow line of the mesh.

The image on the left shows more clearly why the shadow line of the smooth triangle
mesh is like it appeared in the first image of this page.

260 Questions and Tips

Figure 4.5: The shadow line corresponds to the non-smooth mesh.

The object at the left is the same triangle mesh, but with flat triangles, and the object at
the right is the same object as in the image at the beginning of this page.

Notice how the shadowed triangles of the flat mesh correspond exactly to the artifacts
in the shadow line of the smooth mesh. The reason for this was explained in the figure
above.

4.8.3 Can this problem be solved?

And how did | correct the problem in the second image at the beginning of this page?

Firstly, don't think that it is a bug in POV-Ray. Itisn’t a bug, but a real problem caused
be the lighting model used in the renderer engine that is quiieult to surpass. It's

not a problem in POV-Ray in particular, but a problem in raytracing in general. Every
raytracer will have this same problem when using perturbed surface normals (unless
there’s some fix coded into it).

Perturbed surface normals are used, in fact, to simulate the perturbation of the surface
itself. When calculating the lighting of the object, the surface normal perturbation
will give the impression that the surface itself is perturbed (eg. in the images at the
beginning of this page the sphere looks like it has a bumpy surface).

In triangle meshes the normal interpolation is used to simulate curvature of the surface
(a curvature which actually isn't there).

However, since the normal vector perturbation doesfiéca the surface itself in any
way, this kind of artifact will be the price to pay (another one is that although the
surface looks bumpy or smooth, its silhouette will still look straight or polygonized,
but this usually is not such a big problem).

This is areal problem that happens even to the best. For example, chd&dti&in-
ner image (http://oz.irtc.org/ftp/pub/stills/1998-10-31/running.jpg). Notice the straight
shadow lines on the rocks (specially in the closest rock)?

However, there are certain things that can be done to alleviate the problem.

4.8 The shadow line artifact 261

4.8.4 Possible solutions?

1) So what did | do to get the second image at the beginning of this page?

| just made the objects shadowless. This gets rid of the problem of the surface shadow-
ing the wrong point.

This, of course, has severe problems. Since the object doesn’t cast shadows anymore,
it probably can’t be used in any real scene (although making the rocks shadowless in
the IRTC winning image mentioned above would have perhaps helped the image a lot
without making it too unrealistic).

With smooth triangle meshes it also introduces another artifact, which can be seen in
the second image at the beginning of the page. | don’t know the exact mechanism of
this artifact but it's a direct consequence of the mesh being shadowless (it may have
something to do with the fact that smooth triangles are double-illuminated in POV-
Ray).

2) Perhaps a future version of POV-Ray or one of its patches may introduce a way to
stop self-shadowing (while still casting shadows on other objects).

This would alleviate the problem of the completely shadowless object since this object
could be used in real scenes and they will cast shadows on other objects and they will
not have the shadow line artifact.

However, this solution applies only to a few range of objects (mainly convex objects).
Objects where self-shadowing is essential (imaginefieecup, for example) will still
have problems.

3) | have proposed this sophisticated algorithm to get rid of the problem:
When doing shadow ray tests, do the following:

1. Make the regular shadow ray test, which gets all the intersections of the ray with
all the surfaces that are between the current point and the light source.

2. Look if in the current point the unperturbed normal vector points away from the
light source and the perturbed normal vector points towards the light source.

3. If so, check if the closest intersection point of the shadow ray belongs to the
current object.

4. If so, remove that intersection point from the list.

If we want to be more sure, we could also check if we are hitting the "inside” of
the surface at this closest intersection point and only then remove it. This might be
necessary for non-closed surfaces.

This algorithm will eliminate the shadowline artifact without eliminating shadowing
and self-shadowing of the object.

It has its defects, though:

1. For example, if the camera is inside the object in question (and all the light
sources are outside), we would expect to get a completely shadowed view of
the surface. However, if the surface has perturbed normal, we will see some
illuminated parts of the surface. However, | think that this problem is quite

262 Questions and Tips

irrelevant in the vast majority of scenes (and it should be possible to turn the fix
off anyways).

2. It has several problems which can happen with non-convex objects (thanks to
Ron Parker to pointing this out). The object can shadow itself with more than
one surface. If it shadows itself from the outside (eg. femcup), there's
no problem, but if it "shadows itself” from the inside (eg. afee cup upside
down) this shadow will be seen in an unrealistic way in the outermost surface of
the object. There might not be any easy way to detect, which one is the case.

3. Another problem similar to the above is that if there’s another object inside this
object we are calculating, that another object will itself also "cast a shadow” on
the surface (this might be possible to fix by ignoring all the objects inside the
current object; this is possible to do in a rather simple way; however, it's doesn’t
work in all cases).

4. We still get the same artifact in triangle meshes as is shown in the second image
at the beginning of the page. However, I'm sure that this problem could be fixed
as well (although I may be wrong, of course).

4.9 Smooth triangle artifact

4.9.1 Whatis the problem?

There is a peculiar problem with smooth triangles which shows as a lighting artifact
in certain cases. This can happen in individual smooth triangles, meshes with smooth
triangles and smooth heightfields. The problem also manifests itself when using the
slope pattern in the same situation. This image shows the two cases:

- A
Ry

Figure 4.6: Lighting and slope pattern artifacts in a smooth triangle

The source code of this image is the following:

camera { right x*4 location <®,1,-5> look_at ® angle 35 }
light_source { y*100, 1 }
light_source { -y*100, x }

smooth_triangle

{ <-.5,0,-1>,<-1,1,-1>, <.5,0,-1>,<1,1,-1>, <0,0,1>,<0,1,1>
pigment { rgb 1 }
translate -x*.6

}

smooth_triangle

{ <-.5,0,-1>,<-1,1,-1>, <.5,0,-1>,<1,1,-1>, <0,0,1>,<0,1,1>
pigment { slope y color_map { [0 rgb z][1 rgb x+y] } }

4.9 Smooth triangle artifact 263

finish { ambient 1 }
translate x*.6

}

The triangle at the left is a regular smooth triangle which is illuminated by a white light
source from above. There’s also a red light source illuminating the triangle from below.
As you can see, the farther part of the triangle is wrongly illuminated as red. No part
of the triangle should be illuminated by the red light source because the upper side of
the triangle is nowhere facing down.

The triangle at the right is the same smooth triangle with a slope pattern applied to it,
which goes from blue (in the negative y direction) to yellow (in the positive y direction).
Lighting has been eliminated by specifying a high ambient. As all the parts of the upper
side of the triangle are pointing upwards, the whole triangle should be colored with
shades of yellow, but as you can see, the same farther part is wrongly colored blue.

(If you guessed that the problem happens when the normal vector of the triangle is
pointing away from the camera, then you guessed right.)

4.9.2 What causes the problem?

The problem is caused by the rendering algorithm used in POV-Ray. The following text
is quite technical, so if you just want to read about possible solutions to this problem,
you can skip to the next subsection.

The problem is that the rendering engine assumes that objects return the true

normal vector for the given point in their surface. For an object to render correctly, it
must

give the exact normal vector (ie. a vector which is exactly perpendicular to the surface
at that point).

Smooth meshes and heightfields don’t do this. They return normal vectors which are
not perpendicular to the actual surface. This causes errors in the rendering.

What happens is that when the rendering engine shoots a ray and it hits the surface of
an object, the engine asks the object "what’s the normal vector at this point in your
surface?”. Now, if the angle between the returned normal vector and the ray vector is
less than 90 degrees (that is, the normal vector points away from the point of view of
the starting point of the ray), then the engine reverses the returned normal vector. This
is essential for the lighting to work properly (if the normal is not reversed in this case,
you would get all kind of errors in lighting, ie. surfaces which are illuminated from
behind when they shouldn’t, or surface which are not illuminated even though they are
facing a light source).

This assumes that the normal vector returned by the object is a true
normal vector, and it works perfectly when this is so.

However, if the object returns an erroneous normal vector, ie. a vector which is not
perpendicular to the surface, rendering errors can occur.

Smooth triangles and heightfields do this, and the price to pay are the artifacts in the
lighting in certain situations.

264 Questions and Tips

The artifact is produced when the true normal vector would have an angle larger than
90 degrees with the ray, but the the actual vector returned by the object has an angle
smaller than 90 degrees with the ray. In this case the rendering engine reverses the
normal vector even though it shouldn't. This is because it assumes that it’s the true
normal vector when in fact it isn't.

This problem could be solved by making the decision of inverting the returned normal
vector according to the true normal vector of the surface instead of the returned vector.
However, due to the internal implementation of the rendering engine in the current
POV-Ray 3.5, doing this is not trivial. It may be fixed in POV-Ray 4.0, where the
rendering engine will be written again and this kind of things can be taken into account
from the very beginning.

4.9.3 Can this problem be solved?

You can get rid of the lighting artifact by applyiniguble_illuminate to the objectin
qguestion. When a surface is double illuminated, it doesn’t matter which way its normal
points - it will always be illuminated regardless of which side the light source is. Of
course it shouldn’t matter that the object is now illuminated from both sides. If this is
a problem, then the problem is not easily solvable.

Note that in the example given at the beginning of this section this solution does not
work: It would illuminate the whole triangle with both light sources! However, this
solution works well with closed triangle meshes, where the inner side of the mesh is
shadowed by the mesh itself. However, if you are usiaghadow in the object (for
example to get rid of shadow line artifacts), new problems can arise in the lighting
(such as bright parts in places where there shouldn’t be any; these are all cause by this
same problem).

The slope pattern is more problematic and there is no generic solution which will work
in all cases. Fortunately the most common use of the slope pattern is in heightfields,
and there a solution is possible:

If you are having this problem in a smooth heightfield, the solution is to mirror the
color_map (or whatever map you are using) around 0.5. This way it doesn’t matter if
the normal is reversed. That is, if you had something like this in a heightfield:

slope y color_map

{ [0.50 rgb <.5,.5,.5>] // rock
[0.75 rgb <.8,.4,.1>] // ground
[1.00 rgb <.4,1,.4>] // grass

}

you simply have to mirror the map around 0.5, ie. add the values from 0 to 0.5 in
reverse order:

slope y color_map
{ [0.00 rgb <.4,1,.4>] // grass

[0.25 rgb <.8,.4,.1>] // ground
[0.50 rgb <.5,.5,.5>] // rock
[0.75 rgb <.8,.4,.1>] // ground
[1.00 rgb <.4,1,.4>] // grass

4.10 Setting POV-Ray Options 265

Besides this you should, of course, apgdyble_illuminate to the heightfield in order
to get the proper lighting.

4.10 Setting POV-Ray Options

There are two distinct ways of setting POV-Ray options (other than through the GUI
interface, if applicable) : command line switches and INI file keywords. Both are
explained in detail in the following sections.

4.10.1 Command Line Switches

Command line switches consist ofrgplus) or - (minus) sign, followed by one or
more alphabetic characters and possibly a numeric value. Here is a typical command
line with switches.

POVRAY +Isimple.pov +V +W80 +H60

povray is the name of the program and it is followed by several switches. Each switch
begins with a plus or minus sign. Thel switch with the filename tells POV-Ray what
scene file it should use as input ardtells the program to output its status to the text
screen as it's working. Thei and +H switches set the width and height of the image
in pixels. This image will be 80 pixels wide by 60 pixels high.

In switches which toggle a feature, the plus turns it on and minus turn. itFor
example +p turns on thepause for keypress when finishagtion while-p turns it df.

Other switches are used to specify values and do not toggle a feature. Either plus or
minus may be used in that instance. For exampko sets the width to 320 pixels.

You could also use-w320 and get the same results.

Switches may be specified in upper or lower case. They are read left to right but in
general may be specified in any order. If you specify a switch more than once, the
previous value is generally overwritten with the last specification. The only exception
is the+L switch for setting library paths. Up to ten unique paths may be specified.

Almost all + or - switches have an equivalent option which can be used in an INI file
which is described in the next section. A detailed description of each switch is given in
the option reference section.

4.10.2 Using INI Files

Note: although the term 'INI file’ is used by POV-Ray, this was implemented before
the widespread acceptance of Microsoft Windows, and while POV-Ray’s INI files are
almost identical to those of Windows, there are some miniderdinces (the foremost
being that it is legal to have multiple instances of the same item in a section). INI files
are used on all platform versions of POV-Ray, not just on the Windows platform.

Because it is dficult to set more than a few options on a command line, you have the
ability to put multiple options in one or more text files. These initialization files or INI
files have .ini as their default extension. Previous versions of POV-Ray called them

266 Questions and Tips

default files or DEF files. You may still use existing DEF files with this version of
POV-Ray.

The majority of options you use will be stored in INI files. The command line switches
are recommended for options which you will turfi or on frequently as you perform
test renderings of a scene you are developing. The fideray.ini is automatically
read if present. You may specify additional INI files on the command-line by simply
typing the file name on the command line. For example:

POVRAY MYOPTS.INI

If no extension is given, thenini is assumed. POV-Ray knows this is not a switch
because it is not preceded by a plus or minus.

You may have multiple INI files on the command line along with switches. For exam-
ple:

POVRAY MYOPTS +V OTHER

This reads options fromyopts.ini, then sets the+v switch, then reads options from
other.ini.

An INI file is a plain ASCII text file with options of the form...
Option_keyword=VALUE ; Text after semicolon is a comment

For example the INI equivalent of the switehsimple.pov is...
Input_File_Name=simple.pov

Options are read top to bottom in the file but in general may be specified in any order.
If you specify an option more than once, the previous values are generally overwritten
with the last specification. The only exception is tHeérary Path=path options. Up

to 25 unique paths may be specified.

Almost all INI-style options have equivalemtor - switches. The option reference
section gives a detailed description of all POV-Ray options. It includes both the INI-
style settings and thg/- switches.

The INI keywords are not case sensitive. Only one INI option is permitted per line of
text. You may also include switches in your INI file if they are easier for you. You may

have multiple switches per line but you should not mix switches and INI options on the
same line. You may nest INI files by simply putting the file name on a line by itself

with no equals sign after it. Nesting may occur up to ten levels deep. For example:

; This is a sample INI file. This entire line is a comment.
; Blank lines are permitted.

Input_File_Name=simple.pov ;This sets the input file name
+W80® +H60 ; Traditional +/- switches are permitted too
MOREOPT ; Read MOREOPT.INI and continue with next line
+V ; Another switch

; That’s all folks!

INI files may have labeled sections so that more than one set of options may be stored
in a single file. Each section begins with a label in [] brackets. For example:

; RES.INI
; This sample INI file is used to set resolution.
+W120 +H100 ; This section has no label.

4.10 Setting POV-Ray Options 267

; Select it with "RES"

[Low]

+W80 +H60 ; This section has a label.
; Select it with "RES[Low]"

[Med]

+W320 +H200 ; This section has a label.
; Select it with "RES[Med]"
[High]
+W640 +H480 ; Labels are not case sensitive.
; "RESThigh]" works
[Really High]
+W800 +H600 ; Labels may contain blanks

When you specify the INI file you should follow it with the section label in brackets.
For example...

POVRAY RES[Med] +Imyfile.pov

POV-Ray readses.ini and skips all options until it finds the lalidd. It processes
options after that label until it finds another label and then it skips. If no label is
specified on the command line then only the unlabeled area at the top of the file is read.
If a label is specified, the unlabeled area is ignored.

If a file or path contains blanks the whole file and path specification has to be put in
guotes. You may either use a double-quote oir a single-quote, but you have to use the
same at the beginning and end. For example:

+I"my file.pov"
+I'my file.pov’
Input_File="my file.pov"
Input_File="my file.pov’

By using either single or double quotes it is possible to specify files whose name or
path contains either as part of the name. For example:

+I"file’s.pov"

+I’'my "big" file.pov’
Input_File="file’s.pov"
Input_File="my "big" file.pov’

4.10.3 Using the POVINI Environment Variable

The environment variable POVINI is used to specify the location and name of a default
INI file that is read every time POV-Ray is executed. If POVINI is not specified, or

if your computer platform does not use environment variables, a default INI file may
be read. If the specified file does not exist, a warning message is printed. To set
the environment variable under MS-DOS you might put the following line in your
autoexec.bat file...

set POVINI=c:\povray3\default.ini
On most operating systems the sequence of reading options is as follows:

1. Read options from default INI file specified by the POVINI environment variable
or platform specific INI file.

268 Questions and Tips

2. Read switches from command line (this includes reading any specifigdHERI
files).

The POVRAYOPT environment variable supported by previous POV-Ray versions is
no longer available.

Chapter 5

1TBD

5.1 POV-Ray Legal Document

POV-Ray Legal Document

GENERAL LICENSE AGREEMENT
Persistence of VisidMRay Tracer (POV-R&§)
Version 3.5 License and

Terms & Conditions of Use

14 April 2002

(also known as POVLEGAL.DOC)

PLEASE READ THROUGH THE TERMS AND CONDITIONS OF THIS LI-
CENSE CAREFULLY. YOUR ATTENTION IS PARTICULARLY DRAWN TO
THE DISCLAIMER OF WARRANTY AND NO LIABILITY AND INDEMNITY
PROVISIONS. TO USE AND/OR DISTRIBUTE PERSISTENCE OF VISION ™RAY
TRACER ("POV-RAY ™”) YOU MUST AGREE TO BE BOUND BY THE TERMS
AND CONDITIONS SET OUT IN THIS DOCUMENT. IF YOU DO NOT AGREE
TO ALL THE TERMS AND CONDITIONS OF USE OF POV-RAY ™SET OUT
IN THIS LICENSE AGREEMENT, OR IF SUCH TERMS AND CONDITIONS
ARE NOT BINDING ON YOU IN YOUR JURISDICTION, THEN YOU MAY
NOT USE AND/OR DISTRIBUTE POV- RAY ™IN ANY MANNER. THIS GEN-
ERAL LICENSE AGREEMENT MUST ACCOMPANY ALL PERSISTENCE
OF VISION FILES WHETHER IN THEIR OFFICIAL OR CUSTOM VERSION
FORM. IT MAY NOT BE REMOVED OR MODIFIED. THIS GENERAL LI-
CENSE AGREEMENT GOVERNS THE USE OF PERSISTENCE OF VISION
WORLDWIDE. THIS DOCUMENT SUPERSEDES AND REPLACES ALL PRE-
VIOUS GENERAL LICENSES OR DISTRIBUTION POLICIES. ANY INDI-
VIDUALS, COMPANIES OR GROUPS WHO HAVE BEEN GRANTED LICENSES
FOR EARLIER VERSIONS MAY CONTINUE TO DISTRIBUTE THEM BUT
MUST RE-APPLY FOR VERSION 3.5 OR LATER VERSIONS.

INTRODUCTION

This document pertains to the use and distribution of the Persistence of WiRian

270 TBD

Tracer a.k.a POV-R&}and known in this document as POV-R¥gr 'the Software’.

It applies to all POV- RajMprogram source files, executable (binary) files, scene files,
documentation files, help file, bitmaps and INI files containediicial POV-TearfiMarchives.

All of these are referred to here as "the Software”. The POV-Téagserves the right

to revise these rules in future versions and to make additional rules to address new
circumstances at any time. Such rules, when made, will be posted in a revised POVLE-

GAL.DOC, the latest version of which is available from our websitetat//www.povray.org/poviegal.html.
The POV-TearfMare the programmers and assistants from time to time who work as

part of the "POV-Team” in the development, modification amdistribution of the

Software.

INTENT OF THIS LICENSE

The intent of this license is to allow the free and legal distribution of POVIR&youghout

the community, and to permit users to freely enjoy its benefits. The POWdayelopers,

past and present, have donated their time and in some cases considerable amounts of
their own money towards the development of this software package, which we provide
for no charge (within the constraints of this license) to the public at large.

The POV-RajMdevelopers decided, long ago (about 1990), that they did not want the
free nature of this package to be sullied by unscrupulous third parties who wanted to
make a quick buck from the developer’s hard work. This decision was made after some
practical experience with just such activity. We have strong objections to end-users
having to pay for this software when they could have received it for free had they only
known better.

Though this may seem an unlikely scenario for those used to the internet and aware
of the free availability of POV-R&, this in fact does to this day still happen. As
this updated POVLEGAL is being written (in 2001) there is at least one CD that we
know of - being sold both on the internet and in stores - that is presented to potential
purchasers as a 3D rendering product, with nothing present on the exterior that would
lead the buyer to believe that the renderer inside is in fact a free program (namely,
POV-Ray™).

Therefore, the intent of this license is to encourage free distribution and use, while
severely restricting non-free distribution and use. Some of the more wordy sections
below dealing with third-party distribution have only become so because some com-
mercial vendors found some fairly imaginative ways to avoid the intent of this license.
If your intended use of the Software seems to conflict with this basic intent, you should
contact us before proceeding with your plans (but read the rest of this document before
you write).

WHY ISN'T POV-RAY OPEN SOURCE ?

While this explanation doesn'’t really belong in this document, we are asked it often
enough that we have decided to put it here. While the POVPRaurce code is freely
available, itisn’t 'open’ according to the currently popular definition of the term (mean-
ing that it isn’t available to create derivative works). The reasons for this are historical.
Primarily, at the time that POV-R&Ywas originally developed (starting in about 1990),

on Compuserve, it was aftitrent environment than today. Virtually none of the de-
velopers had internet access and there wasn't a great awareness of things like the GPL.
The team at that time rolled their own license - one that allowed free use of the software
but attempted to prevent people taking unfair advantage of it.

5.1 POV-Ray Legal Document 271

As people contributed code to POV-R¥pver the years - and there have been many
instances of this - they contributed it to us on the understanding that it would be cov-
ered by the POV-R&Yllicense, as it stood at the time. Now, in 2001, we find that in
many cases we don’t know who wrote what part of the code, or that the author is un-
contactable. We simply don'’t have the right to arbitrarily change the terms under which
their source code is distributed. Even though it was contributed to us, we feel that we
must honor the terms under which it was given. Therefore, POVl remain on

this existing license until we do a full re-write (which is intended for v4), at which time

a new license will be instituted that is far more liberal in terms of reuse.

COPYRIGHT

Copyright ©, POV-Teat11991-2002. Copyright subsists in the Software which
is protected by Australian and international copyright laws. Although it is distributed
as freeware, it is NOT PUBLIC DOMAIN. You acknowledge that any and all intel-
lectual property rights including all rights of copyright used or embodied in or in con-
nection with the Software are and will remain the sole property of the POV-TFfeam
You shall not question or dispute the ownership of such rights at any time. Nothing
in this document shall give you any rights in respect of the intellectual property of the
POV-TeamMand you acknowledge that you do not acquire any rights in respect of such
intellectual property rights. If you use, modify or distribute the Software for unautho-
rized purposes or in an unauthorized manner, you will be liable to the POVITéam

any damages it may fier (and which you acknowledge it mayfkar) and you may
also be liable to criminal prosecution. You indemnify the POV-T&&or every single
consequence flowing from your unauthorized use of the Software.

DISCLAIMER OF WARRANTY

This Software is provided on an "AS IS” basis, without warranty of any kind, express or
implied, including without limitation, the implied warranties of merchantability, fithess
for a particular purpose and non-infringement of intellectual property of any third party.
This Software has inherent limitations including design faults and programming bugs.
As the program is free, the entire risk as to the quality and performance of the Software
is borne by you, and it is your responsibility to ensure that it does what you intend
it to do prior to using it for any purpose other than testing it. Should the Software
prove defective, you and not the POV-Téator anyone associated with them assume
the entire cost of any service and repair. This disclaimer of warranty constitutes an
essential and material term of this agreement.

NO LIABILITY AND INDEMNITY

When you use the Software you acknowledge and accept that you do so at your sole
risk. You agree that under no circumstances shall you have any claim against the
POV-TeamMor anyone associated directly or indirectly with the POV-T8&rhether

as employee, subcontractor, agent, representative, consultant, licensee or otherwise
("POV-Teant™associates”) for any loss, damages, harm, injury, expense, work stop-
page, loss of business information, business interruption, computer failure or malfunc-
tion which may be sfiiered by you or by any third party from any cause whatsoever,
howsoever arising, in connection with your use /andlistribution of the Software

even where the POV-TedMwere aware, or ought to have been aware, of the potential
of such loss. Damages shall include direct, indirect, general, special, incidental, puni-
tive andor consequential. If you do not accept this no liability condition, you must not
use this Software.

272 TBD

You indemnify the POV-TeafiMand the POV-Teaftassociates and hold them harm-
less against any claims which may arise from any loss, damages, harm, injury, expense,
work stoppage, loss of business information, business interruption, computer failure or
malfunction, which may be siered by you, your spouse, dependants or any other third
party whatsoever as a consequence of any act or omission of the POWegesafor

the POV-TearfMassociates, whether negligent or not, arising out of your usgpand
distribution of the Software, or from any other cause whatsoever, howsoever arising
in connection with the Software. These provisions are binding on your estate, heirs,
executors, administrators, parents /andjuardians.

HIGH RISK ACTIVITIES

This Software and the output produced by this Software is not fault-tolerant and is not
designed, manufactured or intended for use or resale as on-line control equipment in
hazardous environments requiring fail-safe performance, in which the failure of the
Software could lead directly to death, personal injury, or severe physical or environ-
mental damage ("High Risk Activities”). The POV-Team specifically disclaim any
express or implied warranty of fithess for High Risk Activities.

USAGE PROVISIONS

Subject to the terms and conditions of this agreement, permission is granted to the user
to use the Software and associated files in this package to create and render images.
The use of this Software for the purpose of creating images is completely free. The
creator of a scene file retains all rights to the scene file they created, and any image
generated by the Software from them.

The user is also granted the right to use the scene files, fonts, bitmaps, and include files
distributed in the INCLUDE and SCENEBNCDEMO sub-directories in their own
scenes. Such permission does not extend to any other files in the SCENES directory
or its sub-directories. The SCENES files are for your enjoyment and education but
may not be the basis of any derivative works unless the file in question explicitly grants
permission to do such.

ACCEPTANCE OF LICENSE

Some jurisdictions deem licenses that have not been physically signed by the person
or legal entity using the software which is the subject of the license to have not been
accepted in a legal sense. However, since you have not paid for this Software, nothing
else other than acceptance of this license in full grants you the right to use, modify,
or distribute it or any derivative works made from it. By using, modifying, making a
derivative work, or distributing any part or version of the Software, you indicate your
acceptance of this License and all of its terms and conditions. If you have not accepted
the license such actions would be illegal.

DISTRIBUTION AND /OR MODIFICATION

This copyrighted package may ONLY be distributed/ananodified according to the
terms and conditions contained in this License Agreement.

The permission to distribute this Software, under certain very specific conditions, is
granted in advance, provided that the following conditions are met. If your distribution,
or intended distribution, does not meet these conditions, you may not distribute the
Software.

5.1 POV-Ray Legal Document 273

Anyone intending to distribute this Software must ensure that they comply with our li-
cense at all times. If you are intending to distribute POV"®Rapnd are not reading the
master copy of this license found on our web sitietet://www.povray.org/povlegal.html,

you should instead read that version, as it may have changed since the copy that you
are reading was written.

The Software must not be distributed commercially (where 'commercially’ means any
distribution that would qualify under the terms of the 'CONDITIONS FOR COMMER-
CIAL BUNDLING' section which appears later in this document) without the express
written permission of the POV-Team. This restriction applies not only to this Software
but also to any derivative of it or any part of it.

You may not distribute (or continue to distribute if you have already started) the Soft-
ware if you have been or are in breach of any of the conditions of this license, or if you
or your legal representatives have been notified by us or our authorized representatives
(via telephone, email, fax, or physical mail to the last known contact point for that
communication method) that you may not.

The Software must not be distributed in a fornftelient from the ficial distribution
without the express, prior, written permission of the POV-Tearithe dficial distri-

bution are thosefticial versions which appear on our website from time to time. You
may rename the distribution files only to meet the file name conventions of your system
or to avoid file name duplications. The POV-Téats willing to make exceptions in
certain circumstances (e.g. to allow Linux vendors to use RPM), but these are on a
case-by-case basis. Please write us if you would like to do this.

You must distribute a FULL PACKAGE of files as defined under "DEFINITION OF
FULL PACKAGE” below, in the next section. No portion of this package may be
separated from the package and distributed separately other than under the conditions
specified in the provisions given below.

Any physical distribution (that is, by any means other than online download) of POV-
Ray™by any person or organisation, for any purpose other than personal sharing of
the software, must include full contact details of the distributor. This includes at the
very least a valid physical mailing address (including country), a telephone number if
the distributor provides that for any of its other products, and a working, manned email
address if the distributor has an internet presence of any sort. If the distributor has a
web site then its URL must also be included.

Only non-commercial distribution in which no money or compensation is charged
(such as a user copying the Software for a personal friend or colleague) is permitted.
No other restrictions may be placed on the distribution of the Software.

Internet distribution of our fdicial archives on web or FTP sites is permitted, provided

that no charge is made for downloading or accessing the files (other than the normal
fees the user pays to access the internet), and that the versions distributed are the latest
available (or that, in the case of a web page, a clearly positioned link is provided to the
latest version, and in the case of an FTP site, that the latest version is present in the
same subdirectory).

Teachers and educational institutions may also distribute the material to students for
free or they may charge minimal copying costs if the Software is to be used in a course.

Any other distribution for which money or any other compensation is asked for or

274 TBD

received must meet the terms and conditions set out below.

CONDITIONS FOR CD-ROM DISTRIBUTION
CONDITIONS FOR SHAREWARE /FREEWARE DISTRIBUTION

A 'shareware and freeware distributor’, for the purpose of this document, is one which
CLEARLY IDENTIFIES itself as such to anyone dealing with it or its resellers, both in
general, and also with respect to the interior and exterior packaging of any products it
sells. If there is any possibility that a person, prior to or after performing a purchase of
any shareware or freeware product from the distributor or any reseller of the distributor,
would not be aware that they are receiving shareware or freeware software, then that
distributor is NOT considered a 'shareware or freeware distributor’ by this license, and
the following grant of permission does not apply to them.

Additionally, the following only applies to distributors of collected programs; any-
one wishing to bundle the package with a shareware product must use the commercial
bundling rules set out below under "CONDITIONS FOR COMMERCIAL BUNDLING".
Also, a distribution that would otherwise have qualified under the 'shargineaware
distributor’ terms, but which is constructed in such a way that it would be of little

or no practical use without POV-R&Y, is considered commercial and must use the
commercial bundling rules.

Shareware and freeware distribution companies may distribute the Software included
in software- only compilations using media such as, but not limited to, floppy disk,
CD-ROM, tape backup, optical disks, hard disks, or memory cards.

Distribution on CD-ROM or high capacity media such as backup tape is permitted if
the total cost to the user is no more than two (2) U.S. cents per megabyte of data. For
example a CD-ROM with 600 meg could cost no more than US$12.00 at any point
of sale, including the point of sale to the consumer. Companies or individuals that
distribute to resellers hereby agree that they will be in breach of this license if any
of their resellers breach this license and such companies or individuals indemnify the
POV-TeamMaccordingly.

Any bundling with books, magazines or other print media must have the prior written
approval of the POV-Tea. If we do approve of such publication, you must provide

us with two (2) copies of the publication in question as soon as it is released. In the
case of magazines, we normally approve such requests, subject to the conditions in this
document.

For floppy disk distribution, no more than one US dollar (US$1.00) can be charged per
disk for the copying of this Software and the media it is provided on. Space on each
disk must be used as fully as possible. You may not spread the files over more disks
than are necessary.

The users to whom you wish to distribute the Software must also agree to be bound
by the terms and conditions of this License Agreement. You indemnify the POV-
Teant™from any loss or harm which it may gar as a result of your failure to ensure
that the users to whom you are distributing the Software have agreed to be bound by
the terms and conditions of this License Agreement. ONLINE OR REMOTE EXE-
CUTION OF POV-RAY Some internet sites have been set up so that remote users can
actually run POV-Ra¥Msoftware on the internet server. Other companies sell CPU
time for running POV-RaiMsoftware on workstations or high-speed computers. Such
use of POV-RaijMsoftware is permitted under the following conditions.

5.1 POV-Ray Legal Document 275

Fees or charges, if any, for such services must be for connect time, storage or processor
usage ONLY. No premium charges may be assessed for use of POViegpnd that
charged for use of other software. Users must be clearly notified that they are being
charged for use of the computer and not for use of POVIRsgftware.

Users must be prominently informed that they are using POVPRaftware, that such
software is free, and where they can finti@al POV-RayMsoftware. Any attempt to
obscure the fact that the user is running POV-Rigg/expressly prohibited.

All files normally available in a full package distribution, especially a copy of this li-
cense and full documentation must be available for download or readable online so that
users of an online executable have access to all of the material of a full user package.
The full user package is the entire distribution for a given platform excluding the actual
program files. The distributor must also ensure that the users have agreed to be bound
by the terms and conditions of this license, failing which such users may not download
or view or use the Software.

If the POV-RayMsoftware has been modified in any way, it must also comply with the
provisions for custom versions set out under "CONDITIONS FOR DISTRIBUTION
OF CUSTOM VERSIONS” below.

DEFINITION OF "FULL PACKAGE”

A "full package” contains an executable program, documentation, and sample scenes.
For generic Unix platforms, there are no executables available so the source code must
be included instead of the executable program, unless you choose to build one (in which
case you must comply with the terms for difiwial versions, found below).

POV-RayMis officially distributed for Windows 9®8/NT; Linux for Intel x86 series;
and Apple PowerPC. Other systems may be added in the future.

Distributors need not support all platforms but for each platform you support you must
distribute a full package. For example a Macintosh only CD-ROM need not distribute
the Windows versions.

This Software may ONLY be bundled with other software packages according to the
conditions specified under "CONDITIONS FOR COMMERCIAL BUNDLING” be-
low.

PERMITTED MODIFICATION AND CUSTOM VERSIONS

Although the full source code for POV-R&4{is distributed, there are strict rules for the
use of the source code. The source distribution is provided to; 1) promote the porting of
POV-RayMto hardware and operating systems which the POV-T8aannot support,

2) promote experimentation and development of new features to the core code which
might eventually be incorporated into théioial version, and 3) provide insight into

the inner workings of the program for educational purposes.

These license provisions have been established to promote the growth of PO\&RAyY
prevent dificulties for users and developers alike. Please follow them carefully for the
benefit of all concerned when creating a custom version.

The user is granted the privilege to modify and compile the source code for their own
personal use in any fashion they see fit.

276 TBD

However strict conditions and restrictions are imposed if the user wishes to distribute
a modified version of the Software, documentation or other parts of the package (here-
after referred to as a "custom version”). This includes any translation of the documen-
tation into other languages or other file formats.

A "custom version” is defined as a fully functional version of POV-Réyith all exist-

ing features, copyright notices, author attributions, this License Agreement, etc., intact.
ANY OTHER USE OF ANY POV-RAY SOURCE CODE IS EXPRESSLY PROHIB-
ITED. The POV-TearfMdoes not license source code for any use outside POW™Ray

No portion of the POV-Raysource code may be, under any circumstances, incor-
porated into another program unless it is clearly a custom version of POWRay
includes all of the functions of the POV-R&yrenderer.

All executables, documentation, modified files and descriptions of the same must clearly
identify themselves as a modified and @imal version of POV-RaiM. Any attempt to
obscure the fact that the user is running POV-Riay to obscure that it is an ufficial
version is expressly prohibited.

POV-RayMmay not be linked into other software either at compile-time using an object

code linker nor at run-time as a DLL, ActiveX, or other system. Such linkage can tend
to blur the end- user’s perception of which program provides which functions and thus
qualifies as an attempt to obscure what is running.

To allow POV-RayMto communicate with outside programs, th@adal versions of
POV-RayMmay include internal communication "hooks” for it to call other tasks, often
called an Application Programming Interface, or API. For example: the generic part of
POV-RayMprovides operating system shell-out APl commands. The Windows version
has a GUI-extension API and the ability to replace the text editor. Modification to these
APIs or other dficially supported communication mechanisms to increase functionality
beyond that of theféicial version, or to avoid the intent of this license, is EXPRESSLY
PROHIBITED.

CONDITIONS FOR DISTRIBUTION OF CUSTOM VERSIONS

If your re-compiled version meets all requirements for custom versions listed above
under "PERMITTED MODIFICATION AND CUSTOM VERSIONS”, the following
additional conditions apply to its distribution:

You must provide all support for all users who use your custom version. You must
provide information so that users may contact you for support for your custom ver-
sion. The POV-RaMTeam is not obligated to provide you or your users any technical
support.

You must include contact information in the DISTRIBUTIONESSAGE macros in

the source file OPTOUT.H and insure that the program prominently displays this in-
formation. You must ensure that your version displays all copyright notices and credit
screens for theficial version, though they must be clearly marked adfirial.

The purpose of this next requirement is to allow tlfidctal POV-RayMto detect scene

files that are incompatible with it by testing the #version declaration. It can then tell the
user why the given scene file will not work, rather than issue what could be confusing
syntax errors or perform erroneous rendering. This results in a better experience for
the end users of this Software.

5.1 POV-Ray Legal Document 277

If your custom version contains any feature that would cause a POWRegne source

file that works on your version to fail or otherwise work incorrectly on either the current
official version of POV-Ra&¥M, or on the dficial version that was built from the version

of the source that you are using for your custom version, you must include code that
checks that the scene source file has a #version directive that includes teciaho
token, and you must only activate your changes (including, but not limited to, new
keywords) if that #version directive is present. If it is not present your custom version
must work in the same way as the standard POV!Rimat it is built from. An example

of a correct 'undficial’ #version declaration is '#version ufiizial megapov 0.7 ;.

Custom versions may only be distributed as freeware and under terms no less restric-
tive than this license. You must make all of your modifications to POV!Rfagely

and publicly available with FULL SOURCE CODE to the modified portions of POV-
Ray™and must freely distribute full source to any new parts of the custom version.
The goal is that users must be able to re-compile the program themselves using readily
available compilers and run-time libraries and to be able to further improve the program
with their own modifications.

You must provide documentation for any and all modifications that you have made to
the program that you are distributing and include clear and obvious information on how
to obtain the @icial POV-RayM.

The user is encouraged to send enhancements and bug fixes to the POW; Tiaatm

the team is in no way required to utilize these enhancements or fixes. By sending
material to the team, the contributor asserts and warrants that he owns the materials or
has the right to distribute these materials. He authorizes the team to use the materials
any way they like. The contributor still retains rights to the donated material, but by
donating, grants, and warrants that he is entitled to grant unrestricted, irrevocable usage
and distribution rights to the POV-Tedkland indemnifies them against any claims of
unauthorized use of the donated software or any technology contained or expressed
within it. The team doesn’t have to use the material, but if it does, you do not acquire
any rights related to POV-R&y. The team may give you credit as the creator of new
code if applicable.

You must include a copy of the latest version of this document as obtained from
http://www.povray.org/povlegal.html, and ensure that the user has agreed to be bound
by the terms and conditions of use as set out in this License Agreement. You indemnify
the POV-Team for any harm or loss which they maffesuas a result of your failure to

do so.

CONDITIONS FOR COMMERCIAL BUNDLING

Vendors wishing to bundle POV-R&¥(or any software that is derived from it or any
part of it) with commercial software (including shareware) or any other use or distribu-
tion not already expressly allowed above must first obtain express written permission
from the POV-TearfM. The POV-TearfMwill, in its sole discretion, decide if such use

will be allowed on a case-by-case basis and may impose whatever conditions it sees fit.

For commercial distribution, the minimum terms are given below. Other conditions
may be imposed.

The product must be an existing product that has proven itself as commercially viable
without POV-RayMincluded, unless the POV-Team expressly grants exception to this

278 TBD

rule. Such exceptions will not be granted unless it can be demonstrated that POV-Ray
or the POV-Ray community would somehow benefit from allowing such an exception.

The inclusion of POV-R&¥should be promoted only as a free bonus and not as a
feature designed to encourage customers to purchase or upgrade solely for the POV-
Ray™capability.

Purchasers of your product must not be led to believe that they are paying for POV-
Ray™. Any mention of the POV-R&)bundle on the box, in advertising or in instruc-
tion manuals must be clearly marked with a disclaimer that POVPRayree software

and can be obtained for free or nominal cost from various sources.

You must include clear and obvious information on how to obtain POVERag our
official distribution points.

You must provide all POV-R&y'support for all users who acquired POV-Réthrough
your product. The POV-Teatis not obligated to provide you or your customers any
technical support.

You must include a credit page or pages in your documentation for POWRay

If you modify any portion of POV-Rafor use with your hardware or software, you
must follow the custom version rules in addition to these rules.

You must include contact and support information for your product.

You must include a full user package as described in "ONLINE OR REMOTE EX-
ECUTION OF POV-RAY” above , including the License Agreement which the user
must agree to be bound by.

POV-TEAM ENDORSEMENT PROHIBITION

On rare occasions, the POV-Te&fandorses distributions in which POV-TeBfmembers
are compensated participants and to which the POV-Téhas given approval.

Without specific approval, distributors (whether free or commercial) must not claim or
imply in any way that the POV-TedMofficially endorses or supports the distributor or
the product (such as CD, book, or magazine) associated with the distribution.

You may not claim or imply that the POV-TeaMderives any benefit from your distri-
bution.

If you wish to emphasize that your distribution is legal, you may use this language
"This distribution of the dficial version of POV-RaiMis permitted under the terms of
the General License in the file POVLEGAL.DOC. The POV-T&4does not endorse

the distributor or its products. The POV-TeRfreceives no compensation for this dis-
tribution.”

RETAIL VALUE OF THIS SOFTWARE

Although POV-RajMis, when distributed within the terms of this agreement, free of
charge, the retail value (or price) of this program is determined as US$30.00 per copy
distributed or copied. If the Software is distributed or copied without authorization the
person(s) or entity(ies) responsible or involved are each legally liable to the maximum
extent permitted by law for the full amount of this debt to the copyright holder, or any
other person or organization delegated by the copyright holder for the collection of this
debt.

5.1 POV-Ray Legal Document 279

However, the above paragraph in no way constitutes permission to distribute this Soft-
ware outside of the terms of this agreement. In particular, the conditions and debt
mentioned above (whether paid or unpaid) do not allow you to avoid statutory dam-
ages or other legal penalties and does not constitute any agreement that would allow
you to avoid such other legal remedies as are available to the copyright holder.

Put simply, POV-RaiMis only free if you comply with our distribution conditions; it is

not free otherwise. The copyright holder of this Software chooses to give it away free
under these and only these conditions. If you distribute this Software in violation of
this license, what you are doing is ndférent than if you took a copy of a commercial
software product and distributed it without the permission of the copyright holder of
that product.

For the purpose of copyright regulations gdstatutory damages provisions, the retail
value of this Software is US$30.00 per copy.

USE OF THE POV-RAY SCENE LANGUAGE

The team permits and encourages the creation of programs, including commercial
packages, which import, export or translate files in the POVIR&gene Description
Language. Subject to the requirement in the following paragraph, there are no restric-
tions on the use of the language itself (this does not include the source code that we use
to implement the language).

The POV-TearfMreserves the right to add or remove or change any part of the lan-
guage. Prior to using the POV-R&4scene language, you agree that you will not hold

the POV-TearfM, or anyone associated with it, or the contributor or author or initia-
tor of any such change, in any way responsible for whatever happens to you or your
product, program, or whatever use you put the scene language to, as a direct or indirect
result of any such change or changes. This explicitly includes, but is not limited to, any
lost compatibility, lost profits, bugs, extra development or maintenance, public or pri-
vate embarrassment or public relations problems. Your attention is drawn to the "NO
LIABILITY AND INDEMNITY ” provisions above to which you agree to be bound.

TRADEMARKS

"POV-Ray™”, "Persistence of Vision”, "POV-Tea” and "POV-Help” are trade-
marks of the POV-Teaf¥. Any other trademarks referred to herein are the property
of their respective holders. You undertake not to use, apply for, or register anywhere
in the world, any word, name, trade mark or device which is substantially identical or
deceptively or confusingly similar to any of the POV- Teaftsade marks.

REVOCATION OF LICENSE

VIOLATION OF THIS LICENSE IS A VIOLATION OF COPYRIGHT LAWS. IT
WILL RESULT IN REVOCATION OF ALL PRIVILEGES GRANTED BY IT AND
MAY RESULT IN CIVIL OR CRIMINAL LIABILITY .

Violators who are prohibited from distribution may from time to time be identified in
this document.

In this regard, "PC Format”, a magazine published at the time by Future Publishing,
Ltd. in the United Kingdom, distributed incomplete versions of POV ®R&)0 in vio-
lation of the license which was irffect at the time. They later attempted to distribute
POV-RayM2.2 without prior permission of the POV-Te&"in violation of the license

280 TBD

which was in &ect at the time. After the POV-TedMwas made aware of their intent,
they were contacted and were granted permission in return for certain promises they
made. They subsequently failed to honor these promises.

There is evidence that other Future Publishing companies have also violated our terms.
PC Format’s actions, particularly in relation to the incomplete v1.0 distribution (which
simply didn’t work properly due to files that had been deleted to fit on the magazine’s
cover floppy disk - causing many users to blame us for the faults and complain to us in
email) caused us un-needed stress and support headaches.

Therefore "PC Format”, and any other magazine, book, CD-ROM, or any other type of
publication owned in whole or part by, or related in any other way, to Future Publishing
is expressly prohibited from any distribution of POV-Rdgoftware.

MISCELLANEOUS

This Agreement constitutes the complete agreement concerning this license. Any
changes to this agreement must be in writing and may take the form of notifications
by the POV-TeartMto you, or through posting notifications on our website. The use
of this Software by any person is expressly made conditional on their acceptance of
the terms set forth herein. If any provision of this Agreement is found to be invalid or
unenforceable, the invalidity or unenforceability of such provision shall fiettthe

other provisions of this agreement and all provisions fi@céed by such invalidity or
unenforceability shall remain in full force anéfect. You agree to attempt to substitute

for invalid or unenforceable provision a valid or enforceable provision which achieves
to the greatest extent possible, the objectives and intention of the invalid or unenforce-
able provision. The validity and interpretation of this agreement will be governed by
the laws of Australia in the state of Victoria (except for conflict of law provisions).

CONTACT INFORMATION

License inquiries can be made via email; please check the POWRapsite and the
online copy of this document &itttp://www.povray.org/povlegal.html for the current

email address of the team leader. (Unfortunately we cannot include it here as we have
to change it from time to time due to spam email being sent to the address).

The following postal address is only foffiwial license business and only if email is
impossible.

We do not provide technical support. We will not mail you disks with updated ver-

sions. Please do not send money. If you want to know how to support us, please see
http://www.povray.org/supporting-povray.html.

5.2 The POV-Team

Following is a list in alphabetic order of all people who have ever worked on the POV-
Ray Team or who have made a note-worthy contribution.

5.2 The POV-Team 281

NAME PARTICIPATION

Thomas Baier 3.1 team member, tester

Chris Cason Member 1993-, Team leader 1999-, windows version author,
other contributions

Dale C. Brodin Alpha & Beta tester, forum support

Alexander Enz- POV-Ray 1.02.(0/3.0 developer

mann

Thorsten Froehlich Mac developer

Mark Gordon Unix developer

Alan Kong Alpha & Beta tester, forum support

Nathan Kopp Photons/wmapping, other contributions.

Lutz Kretzschmar Moray author, MS-Dos 24-bit VGA, part of the anti-aliasing
code

Ron Parker Core code, jack-of-all-trades

Anton Raves Alpha & Beta tester, Mac contributor

Erkki Sondergaard Alpha & Beta tester, 3.0 Scene files
Timothy Wegner Fractal objects, PNG support

Table 5.1: Current POV-Team Members

5.2.1 Contacting the Authors

The POV-Team is a collection of volunteer programmers, designers, animators and
artists meeting via the internet at hffp:ww.povray.org. The POV-Team’s goal is to
create freely distributable, high quality rendering and animation software written in
C that can be easily ported to manyfdrent computers. If you have any questions
about POV-Ray, please visit our web site for the latest contact information, or see the
online version of POVLEGAL (http://www.povray.org/povlegal.html) for the current

team coordinators address (this changes from time to time whenever too many email
spammers harvest the address).

If you have a question regarding commercial use or distribution of POV-Ray, please
contact Chris Cason, the development team coordinator, via the above method. Please
don’t email us directly for technical support; we no longer give support via email as
too many people abused the privilege.

See oumveb site (http://www.povray.org/) and particularly ounews server (http://www.povray.org/groups.html)
for online peer support. The news server has a moderated bug reporting hewsgroup;

please however discuss the issue ingbvray.general (news://news.povray.org/povray.general)

newsgroup prior to lodging a bug report as we may already know of the issue (or it

might not even be a bug). Also, there are several FAQ’s on the POV web site, and in

general the folks in the newsgroups think rather poorly of users who post complaints

without reading the FAQ’s first.

Finally, there is also a dedicated Technical Assistance Group consisting of a number of
trusted, experienced POV-Ray users.

282 TBD
NAME PARTICIPATION
Claire Amundsen Tutorials for the POV-Ray User Guide
Steve Anger POV-Ray 2/8.0 developer
Randy Antler MS-Dos display code enhancements
John Baily RLE targa code
Eric Barish Ground fog code

Dieter Bayer
Kendall Bennett

Steve Bennett
David Buck

Aaron Collins

Chris Dailey

Steve Demlow
Andreas Dilger
Joris van Drunen
Littel

Dan Farmer

Charles Fusner

David Harr
Jimmy Hoeks
Terry Kanakis
Kari Kivisalo
Charles Marslett
Pascal Massimino
Jim McElhiney
Robert A. Mick-
elsen

Mike Miller
Douglas Muir
Joel Newkirk

Jim Nitchals

Paul Novak
Dave Park
Redaelli Paolo
David Payne
Bill Pulver

Dan Richardson
Tim Rowley
Eduard Schwan
Robert Skinner
Zsolt Szalavari
Scott Taylor
Drew Wells
Chris Young

Wrote sor, lathe, prism, media and many other features

PMODE library support, paletted display code in Windows
version

GIF support

Original author of DKBTrace, POV-Ray 1.0 developer
Co-author of DKBTrace 2.12, POV-Ray 1.0 developer
POV-Ray 3.0 developer

POV-Ray 3.0 developer

Former Unix coordinator, Linux developer, PNG support
Mac beta tester

POV-Ray 1/P.(0J3.0 developer, author of many features,
sample scenes, and textures
Blob, lathe and prism tutorial tutorials for the POV-Ray User
Guide
Mac balloon help and palette code
Original Help file for v3.0 Windows user interface
Camera fix
Ground fog code
MS-Dos display code
Fractal objects
POV-Ray 3.0 developer
Artist, 3.0 docs contributor

Artist, scene files, stones.inc
Bump maps, height fields
Former Amiga developer
Mac version, scene files (Jim - famous also for his anti-spam
crusades passed away on 5 June 1998 but his contribu-
tions to POV-Ray and responsible use of the internet will not
be forgotten)
Texture contributions
Amiga support, AGA video code
Former Amiga developer
RLE targa code
Time code
3.0 Docs
PPM and Windows-specific BMP image format support
Former Mac version coordinator, mosaic preview, docs
Noise functions
Halo code which was later turned into media
Leopard and onion textures
POV-Ray 1.0 developer, POV-Ray 1.0 team coordinator
Team leader 1992-1999, parser code, other contributions too
numerous to list here

Table 5.2: Past POV-Team Members and other contributors

5.3 What to do if you don’t have POV-Ray 283

5.2.2 The TAG

Established by the POV-Team in late 1999, the TAG (Technical Assistance Group) is
made up of selected members of the POV-Ray user community. The purpose of the
TAG is to aid the POV-Team in supporting users of POV-Ray around the world, using
the collective knowledge of the group to answer users’ POV-Ray questions and to bring
POV-Ray related matters to the attention of the POV-Team as required.

With their range of experiences in particular areas of computing and graphics, TAG
members will always try to provide an answer to users’ POV-Ray questions as best
they can. If members of the TAG feel a question or suggestion merits the attention of
the POV-Team, they will redirect queries to the appropriate members of the Team for
consideration.

TAG members are not members of the POV-Team. But they are, howeveffical o
conduit between us and the outside world. They have direct access to all members of
the POV-Team. They have the right to speak on our behalf on the POV-Ray news server
and on any f6icial mailing lists that we set up for this purpose. Not everything they
say will be dficial; only when they sign it as such. They can still act as 'themselves’
and have their own opinions at all other times.

The TAG has its own website http://tag.povray.org/.

NAME MAIL
Chris Colefax chris.colefax@tag.povray.org
Chris HUut chris.huff@tag.povray.org

Ingo Janssen ingo@tag.povray.org

Juha Nieminen warp@tag.povray.org

Peter Popov peter.popov@tag.povray.org
Margus Ramst margus.ramst@tag.povray.org
Gilles Tran gilles.tran@tag.povray.org
Ken Tyler ken.tyler@tag.povray.org

Table 5.3: Technical Assistance Group members

5.2.3 POV-Ray 3.5 Development

Main 3.5 developers:
e Chris Cason
e Thorsten Froehlich
e Nathan Kopp

e Ron Parker

5.3 Whatto do if you don’t have POV-Ray

This documentation assumes you already have POV-Ray installed and running however
the POV-Team does distribute this file by itself in various formats including online on

284 TBD

NAME CONTRIBUTION

Ryoichi Suzuki Isosurfaces

Ansgar Philippsen Smooth color triangle

Daniel Skarda Implicit and parametric surfaces

Thomas Bily Implicit and parametric surfaces

Juha Nieminen Fractal patterns

Chris HUt Object pattern, Interior texture, inverse transform

Wolfgang Ortmann Splines

Daniel Fenner Splines

Mark Wagner Splines

Daren Scot Wilson Dispersion

JérômeMapping warps

Grimbert

Hans-Detlev Fink Slope pattern

Eric Brown naimage, nareflection, orient and circular ardight

Matthew Corey pigment function, warps

Brown

Mike Hough Spherical camera, Media method 2,mapping for bicu-
bic_patch

Jochen Lippert Sphereweep

Edward Cdrey Fadecolor

John VanSickle Cells pattern

Yvo & Clock & Imagesize keywords

Renéé

Smellenbergh

Wilodzimierz Various fixes for POV-Ray 3.51, uv-mapping for parametric

'ABX’ Skiba and torus

Massimo Valentini ~ Various fixes for POV-Ray 3.51

Table 5.4: Contributors of patches in POV-Ray 3.5

NAME MAIL

Juha Nieminen warp@tag.povray.org

Ken Tyler ken.tyler@tag.povray.org
Chris HUt chris.huff@tag.povray.org

Peter Popov peter.popov@tag.povray.org
Margus Ramst margus.ramst@tag.povray.org
Chris Colefax chris.colefax@tag.povray.org

Table 5.5: POV-Ray 3.5 Alpha testers, scene files and documentation

5.3 What to do if you don’t have POV-Ray 285

Major Contributors (in no particular order of importance)

NAME MAIL

Bob Hughes inversez@aol.com
Gilles Tran tran@inapg.inra. fr
Ingo Janssen ingo@tag.povray.org
Greg M. Johnson pterandon@yahoo. com
Rune S. Johansen rune@runevision.com
Christoph Hormann chris_hormann@gmx.de
Anthony Bennett bennett@catholic.org
Mark Wagner mark.wagner17@gte.net
Kari Kivisalo rayalist@engineer.com
Fabien Mosen fabien.mosen@skynet.be
Yvo & René Smellenbergh smellenbergh@skynet.be
Tor Olav Kristensen tor_olav k@hotmail.com
Michael Hazelgrove mick@mhazelgrove.fsnet.co.uk

Table 5.6: POV-Ray 3.5 Pre-Beta testers, scene files and documentation

NAME MAIL

Vahur Krouverk vahur@aetec.ee

David Fontaine davidf@faricy.net

Joshua English english@spiritone.com

H.E. Day TheMan@heday . freeservers. com

Table 5.7: Other Contributors

the internet. If you don’t have POV-Ray or aren’t sure you have fhieial version or
the latest version, then the following sections will tell you what to get and where to get
it.

5.3.1 Which Version of POV-Ray should you use?

POV-Ray can be used under Windows/[9%/2000, Apple Power PC, x86 Linux,
UNIX and other platforms. The latest versions of the necessary files are available
on our web site attp://www.povray.org/ and through various CD distributions. See
section "Where to Find POV-Ray Files” for more info. Dos, Windows 3.1, Windows
for Workgroups, SunOS and Amiga are no longer supported. If your platform is not
supported and you are proficient in compiling source code programs writteCivC

then you may like to retrieve the source for POV-Ray from our website and attempt
to built it yourself. Note that the POV-Team provides absolutely no support for build-
ing POV-Ray from the source code, especially on platforms that we dofficiaty
support.

Microsoft Windows 9x/NT/200QXP

The Windows version runs under Windows 95, Windows 98, NT, 2000 and XP or
newer. Required hardware and software: Minimum -/486 with 16mb RAM and
Windows 95. Disk space - 20 megabytes

286 TBD

Required POV-Ray files: User archive POVWIN35.EXE - a self-extracting archive
containing the program, sample scenes, standard include files and documentation. This
file may be split into smaller files for easier downloading. Check the directory of your
download or ftp site to see if other files are needed.

Recommended: Pentium 200 or Pentium Il with 32mb and Windows 95 or NT4. SVGA
display preferably with high color or true color ability and drivers installed.

Note: accelerated graphics hardware will not improve performance. Nor will MMX or
3D Now. These technologies are not aimed at raytracing.

Optional: The source code is not needed to use POV-Ray. It is provided for the curious
and adventurous. POVWIUS.ZIP — The ¢C++ source code for POV-Ray for Win-
dows, contains generic parts and Windows specific parts. It does not include sample
scenes, standard include files and documentation so you should also get the executable
archive as well. POV-Ray can only be compiled usif@-€+ compilers that create 32-

bit Windows applications. We used to support Watcom 10.5a or higher, and Borland
4.52/5.0 compilers. We currently only support W& v6 and the Intel @+ Compiler
versions 5 and 5. Due to the former support of Borf&vatcom, it is possible that with

a little effort you could get the code to compile under them (the Windows code uses no
MFC). Note that no matter which compiler you use, you will need to obtain the HTML
Help API toolkit from Microsoft's web site (unless you already have it installed). This
toolkit contains header files and libraries required to compile POV-Ray for Windows.

Linux for Intel x86

Required hardware and software: A 386 or better CPU and at least 8 meg of RAM.
About 6 meg disk space to install and 2-10 meg or more beyond that for working
space. A text editor capable of editing plain ASCII text files. Graphic file viewer
capable of viewing PPM, TGA or PNG formats. Any recent (1994 onwards) Linux
kernel and support for ELF format binaries. POV-Ray for Linux is not in a.out-format.
ELF libraries libc.s0.5, libm.so0.5 and one or both of libX11.s0.6 or libvga.so.1.

Required POV-Ray files: POVLINUX.TGZ or POVLINUX.TAR.GZ - archive contain-
ing an dficial binary for each SVGALIib and X-Windows modes. Also contains sample
scenes, standard include files and documentation in plain ASCII text.

Recommended: Pentium 200 or Pentium Il (faster the better) 32 meg or more RAM.
SVGA display preferably with VESA interface and high color or true color ability. If
you want display, you'll need either SVGALIib or X-Windows.

Note: accelerated graphics hardware will not improve performance.

Optional: The source code is not needed to use POV-Ray. It is provided for the curious
and adventurous. POVUNS.TAR.GZ or POVUNIS.TGZ - The @QC++ source code

for POV-Ray for Linux. Contains generic parts and Linux specific parts. It does not
include sample scenes, standard include files and documentation so you should also get
the executable archive as well. Requires the GNG4G- compiler and (optionally)

the X include files and libraries.

5.3 What to do if you don’t have POV-Ray 287

Apple Macintosh

The Macintosh version runs under Apple’s Mac OS operating system version 8.6 (it
may run on 8.1 and 8.5 as well, but we do not support POV-Ray 3.5 running on Mac OS
8.1 and 8.5) or newer with CarbonLib 1.0.4 or newer installed. Note that we no longer
support 68K based Macintosh computers. POV-Ray 3.5 requires a Power Macintosh!

A Power Macintosh is any iMac, iBook, Mac G3, Mac G4, Mac G5, Cube, any older
Mac with a four digit model number (i.e. 5200, 6300, 7200, 8100, 9600) and any third
party computer running Mac OS 8.1 or later. Mac OS X 10.2 or later are supported but
for maximum render speed it is not recommended to use Mac OS X.

Required hardware and software: Power Macintosh computer with at least 16 MB of
free RAM. Mac OS 8.6 or newer with CarbonLib 1.0.4 or newer installed CarbonLib
1.0.4. About 20 MB free disk space to install and an additional 5-10 MB free space for
your own creations (scenes and images). Graphic file viewer utility capable of viewing
Mac PICT, GIF and perhaps TGA and PNG formats (the shareware GraphicConverter
applications is good.)

Required POV-Ray files: POVPMAC.SIT or POVPMAC.HQX - a fBifuarchive con-
taining the native Power Macintosh application, sample scenes, standard include files
and documentation.

Recommended: Power Macintosh G3 with 64 MB or more of free RAM. Mac OS 9.0.4
or newer with CarbonLib 1.6 (works with Mac OS 8.6 or newer) to access all features
of the Mac frontend. CarbonLib 1.6 is available for free download from Apple in the
software update section of the Apple website. Color monitor with millions of colors.

Optional: The source code is not needed to use POV-Ray. It is provided for the curious
and adventurous. POV-Ray can be compiled using Metrowerks CodeWarrior Pro 7.2
(for other compilers no project or make files are provided). Read the file "How to
compile!” before compiling. There is no other support or help for compiling the source
code! POVMACS.SIT or POVMACS.HQX - The full C source code for POV-Ray for
Macintosh. Contains generic parts and Macintosh specific parts. It does not include
sample scenes, standard include files and documentation so you should also get the
executable archive as well.

Generic Unix

Because Unix runs on a wide variety of hardware and CPUs, the POV-Team cannot
provide executable versions for every type of Unix. We distribute generic Unix source
code in portable ANSI {C++ source code. You will need a/C++ compiler and (op-
tionally) the X include files and libraries and knowledge of how to use it. Although
we provide source code for generic Unix systems, we do not provide technical support
on how to compile the program. Required: POVUSITGZ or POVUNIS.TAR.GZ -

The GC++ source code for POV-Ray for UNIX. Contains generic parts and AUimixx
specific parts. It does not include sample scenes, standard include files and docu-
mentation so you should also get an executable archive for another platform or get
POVUNI_D.TGZ or POVUNLD.TAR.GZ which contains the sample scenes, standard
include files and documentation. AC++ compiler for your computer and KNOWL-
EDGE OF HOW TO USE IT. Graphic file viewer capable of viewing PPM, TGA or

288 TBD

PNG formats. A text editor capable of editing plain ASCII text files.
Recommended: Math co-processor. 8 meg or more RAM.

Optional: X Windows if you want to be able to display as you render. You will need
the X-Windows include files as well. If you're not familiar with compiling programs
for X-Windows you may need some help from someone who is knowledgeable at your
installation because the X include files and libraries are not always in a standard place.

All Versions

Each executable archive includes full documentation for POV-Ray itself as well as
specific instructions for using POV-Ray with your type of platform. All versions of
the program share the same ray-tracing features like shapes, lighting and textures. In
other words, an MS-Dos-PC can create the same pictures as a Cray supercomputer
as long as it has enough memory. The user will want to get the executable that best
matches their computer hardware. In addition to the files listed above, the POV-Team
also distributes the user documentation in two alternate forms. Note this is the same
documentation distributed in other archives but in fiedent format. This may be
especially useful for MS-Dos or Unix users because their documentation is plain ASCII
text only. POVUSER.PDF - Tutorial and Reference documentation in Adobe Acrobat
PDF format. Requires Adobe Acrobat Reader available for Windows 3.x, Windows
9598 NT, Mac and some Unix systems. POVHTML.ZIP - Archive containing Tutorial
and Reference documentation in HTML for viewing with any internet browser.

See the section "Where to Find POV-Ray Files” for where to find these files. You can
contact those sources to find out what the best version is for you and your computer.

5.3.2 Where to Find POV-Ray Files

The latest versions of the POV-Ray software are available from the following sources.

World Wide Website www.povray.org

The internet home of POV-Ray is reachable on the World Wide Web via the address
http://www.povray.org and via ftp adtp:/ftp.povray.org/. Please stop by often for the
latest files, utilities, news and images from tligaial POV-Ray internet site. The POV-
Team operates its own news server on the internet with several news groups related to
POV-Ray and other interesting programs. For more information about the server see
httpy/www.povray.orggroups.html.

Books, Magazines and CD-ROMs

Unfortunately all English language books on POV-Ray are out of print and there are
no plans to reprint them. However there are now several POV-Ray books available in
Japanese. Many popular computer magazines have been authorized to distribute POV-
Ray on cover CDs. Note that such distributions of tfiéc@al version of POV-Ray is
permitted under the terms of the General License in the file POVLEGAL.DOC. The

5.4 Suggested Reading 289

POV-Team does not endorse the distributor or its products. The POV-Team receives
no compensation for this distribution. The POV-Team does endorse some CD-ROMs
containing POV-Ray which are prepared by team members. A portion of the proceeds
from these CDs support our internet sites and other team activities. You can always
find the latest information on what is available at our web site www.povray.org.

5.4 Suggested Reading

Beside the POV-Ray material mentioned in "Books, Magazines and CD-ROMSs” there
are several good books or periodicals that you should be able to locate in your local
computer book store or your local university library.

1. "An Introduction to Ray tracing” Andrew S. Glassner (editor)
ISBN 0-12-286160-4; Academic Press; 1989

2. "Realistic Image Synthesis Using Photon Mapping” Henrik Wann Jensen
ISBN: 1568811470; AK Peters; July 2001

3. "3D Artist” Newsletter, "The Only Newsletter aboutfisrdable PC 3D Tools
and Techniques”)
Publisher: Bill Allen; P.O. Box 4787; Santa Fe, NM 87502-4787; (505) 982-
3532

4. "Image Synthesis: Theory and Practice” Nadia Magnenat-Thalman and Daniel
Thalmann;
Springer-Verlag; 1987

5. "The RenderMan Companion” Steve Upstill;
Addison Wesley; 1989

6. "Graphics Gems” Andrew S. Glassner (editor);
Academic Press; 1990

7. "Fundamentals of Interactive Computer Graphics” J. D. Foley and A. Van Dam;
ISBN 0-201-14468-9; Addison-Wesley 1983

8. "Computer Graphics: Principles and Practice (2nd Ed.)” J. D. Foley, A. van Dam,
J. F. Hughes;
ISBN 0-201-12110-7; Addison-Wesley; 1990

9. "Computers, Pattern, Chaos, and BeautytiGid Pickover;
St.Martin’s Press;

10. "SIGGRAPH Conference Proceedings”;
Association for Computing Machinery Special Interest Group on Computer Graph-
ics

11. "IEEE Computer Graphics and Applications”; The Computer Society;
10662, Los Vaqueros Circle; Los Alamitos, CA 90720

The POV-Teanmo longer recommendsooks from CRC Press. Goltp://mathworld.wolfram.com/erics_commentary.htn

to find out why.

Index

accuracy
isosurface, 227
Ambient
using, 138
ambientlight
tutorial, 47
Animation
clock variable, 182
INI file settings for, 187
multi-stage, 184

not using jitter or crand with, 187

Area Light Source
the, 46
Atmospheric Eects
using, 157
average
tutorial, 147

Background

tutorial, 157
bicubic patch

tutorial, 82
blend

isosurface, 227
blob

isosurface, 226
Blob Constructs

complex, 104
box

tutorial, 30
Bumpiness

adding, 50

Camera
adding, 28
using the, 53
Clouds
adding, 160
Color List Pigments
using, 130
Color Maps, 51

Color Patterns

creating, 51
color-map
tutorial, 51

Command-line Options, 60
cone
tutorial, 31

Constructive Solid Geometry, 38

Coordinate System

understanding, 25
crand

in animations, 187
CSG

what is, 38
cubicspline

tutorial, 76
cylinder

tutorial, 31
Cylindrical Light Source

the, 45

Difference
CSG, 40
difference
isosurface, 226
tutorial, 40

Environment variables
POVINI, 63, 267
POVRAYOPT, 63, 267

Fading Light, 49
final_clock

ini-option, tutorial, 187
final_frame

ini-option, tutorial, 187
finish

tutorial, 138
Focal Blur

using, 53
focus, 53

INDEX

201

Fog
adding, 162
adding turbulence, 165
constant, 162
filtering, 164
ground, 165
hollow objects, 167

setting minimum translucency, 163
using multiple layers of, 166

fog
tutorial, 162
frequency
tutorial, 131

Ground Fog
using, 165

heightfield

tutorial, 106
Highlights, 140
Hollow Objects

fog inside, 167

INI files

using, 61, 265
initial _clock

ini-option, tutorial, 187
initial _frame

ini-option, tutorial, 187
Interference, 142
Intersection

CSG, 39
intersection

isosurface, 226

tutorial, 39
Irid

using, 142
isosurface, 221

tutorial, 107
isosurface tutorial, 107

jitter
in animations, 187

keyword:#include, 27

lambda

tutorial, 131
lathe

tutorial, 65
Layered Textures

another example, 150
declaring, 149
using, 132
working with, 148
Left-Handed coordinate system, 25
License, 269
Light Fading
using, 49
Light Source
assigning an object to, 48
the, 42
Light Sources
special, 48
light_source
arealight, tutorial, 46
cylinder, tutorial, 45
defining, 29
fade power, tutorial, 49
looks like, tutorial, 48
shadowless, tutorial, 48
spotlight, tutorial, 44
tutorial, 42
List Textures
working with, 146

materialmap
tutor, 154
Merge
CSG, 41
merge
isosurface, 226
tutorial, 41
mesh
tutorial, 91
Metallic
using, 141

Negative Strength
blob, 104
New Features
component types, 103
Normal Maps
working with, 144
Normal Modifiers
using, 135
normalmap
tutorial, 136
using, 144
Normals
blending, 136

292

INDEX

Normals and Radiosity, 181

Object
adding texture to, 28
describing, 28
Object Lights, 48
octaves
tutorial, 131
omega
tutorial, 131
Options, 60
command-line, 60, 265
ini file, 61, 265
POVINI environment variable, 63,
267
setting, 60

Pattern Modifiers

using, 131
Patterns, 51
phase

tutorial, 185
phong

tutorial, 140
pigment

tutorial, 130
Pigment and Patterns

using, 131
Pigment Maps

using, 134

working with, 143
pigmentmap

tutorial, 134
Pitfalls

CSG, 42
plane

tutorial, 31
Pointlight Source

the, 43
poly

tutorial, 120
polygon

tutorial, 99
pov-ray license, 269
POVINI environment variable, 63, 267
POVLEGAL, 269
POVLEGAL.DOC, 269

POVRAYOPT environment variable, 63,

267
prism

tutorial, 75

Radiosity
with conventional lighting, 172
without conventional lighting, 176
Radiosity performance considerations,
182
Rainbow
increasing translucency of, 169
simple, 167
the, 167
using an arc, 170
rainbow
tutorial, 167
Ray-Tracing
what is, 14
Reflection
using, 141
Right-Handed coordinate system, 26

scale

isosurface, 224
Shadowless Lights

using, 48
Shapes

basic, 30

other, 101

polygon based, 91

spline based, 65
Sky

with a color gradient, 158
Sky Sphere

the, 158
sky_sphere

tutorial, 158
sor

tutorial, 74
Special Textures

limitations of, 156
spheresweep

tutorial, 81
Spline

new tricks, 76
Splines

understanding the concept of, 67
Spotlight Source

the, 44
Standard Include Files

adding, 27
superellipsoid

INDEX 293

tutorial, 126
Surface Highlights

using, 140
Surfaces

co-incident, 42
Switches

command-line, 60, 265

Tapering Conic Sweeps, 79
text
tutorial, 87
Texture Maps
working with, 145
Texture Options
advanced, 129
simple, 50
texturemap
tutorial, 145
Textures
pre-defined, 52
The Left-Handed coordinate system, 25
Thin-Film Interference, 142
Tiles
what about, 147
torus
tutorial, 32
Transparent Pigments
using, 132
turbulence
tutorial, 131

Union

CSG, 38
union

tutorial, 38

