

 Instituto Superior Técnico

Cglib Tutorial

Creating a simple game using cglib

Carlos Martinho

Carolina Torres

2007

Cglib Tutorial

1

Table of Contents

Introduction .. 2

Step 0: Setting up the application in VS 2005 ... 3

Step 1: Creating an empty application .. 5

Step 2: Creating a cg::Entity .. 8

Step 3: Draw the box on the screen .. 12

Step 4: Animating the box ... 16

Step 5: Create a mouse controlled bat ... 18

Step 6: Collision between bat and box ... 21

Step 7: Create more boxes .. 23

Step 8: Create an arbitrary number of boxes ... 24

Step 9: Using cg::Group to manage entities ... 28

Step 10: Application shutdown and memory leaks .. 30

Step 11: Adapting to window resizing .. 34

Glossary ... 38

References .. 39

Cglib Tutorial

2

Introduction

The following tutorial explains how to create a simple graphical application using cglib
1
, an object

oriented library that provides an abstraction over OpenGL
2
 and GLUT

3
.

Throughout this tutorial we will create a simple game by following some detailed steps. Each step will

refer a specific part of the process of creating the game, while giving reference to cglib specific

capabilities. Follows a summary of each step:

0. Creating a project in VS 2005; Description of the project’s folder structure and essential files.

1. Creating an empty application displaying an empty window.

2. Creating a random box.

3. Drawing a box on screen; Learning about notifiers and listeners.

4. Animating a box with a constant linear velocity and configuring it to rebound on screen edges.

5. Creating a mouse controlled bat.

6. Implementing collision detection between the bat and the boxes; Referencing a registered

entity; Implementing the collision effect on the box.

7. Creating more boxes.

8. Creating an arbitrary number of boxes; Using a cglib listener to create HUD
4
 (Head Up Display)

like features.

9. The cglib group classes; Creating a "box manager".

10. Debugging memory leaks using VS2005; Handling keyboard events.

11. Handling window resize.

The final result will be a game with a mouse-controlled bat and random-moving boxes that collide with

each other.

The following figure shows an example of a possible final result:

Cglib Tutorial

3

Figure 1 - An example of a final result of this tutorial.

Step 0: Setting up the application in VS 2005

On this step we will setup the "tutorial" project in VS 2005. Also, we will describe the project’s folder

structure and which files are essential.

1. Extract the workspace cglib.dev to a local folder where you wish to work.

2. Copy the “template” project and rename it “tutorial” (note that this could be any other name, as

long as you use that same name, rather than “tutorial”, on the next steps).

3. Your folder file tree should now have an appearance similar to Figure 2.

4. In the "tutorial\vs2005" folder, rename "template.vcproj" to "tutorial.vcproj".

5. Open "tutorial.vcproj" in a text editor (e.g. notepad) and replace all occurrences of "template"

by "tutorial". There should be only 2 occurrences of "template": at line 5 (Name="template")

and at line 7 (RootNamespace="template"). Save the file.

6. Open the project solution in “cglib.dev\vs2005”.

7. In VS2005, add a new project (as an existing project) to the cglib workspace. Select the

"tutorial\vs2005\tutorial.vcproj" file.

8. From now on, add your source files to the project using the VS 2005 interface. All source files

should be placed in the "tutorial\src" folder.

Cglib Tutorial

4

Figure 2 - Cglib tutorial file tree

To run the application we need to have an entry point. In any C++ application we need an int main(int

argc, char** argv) method as an entry point. In VS 2005, create a new file, named “main.cpp”, inside

“Tutorial\Source Files”. Inside this file, create the main method.

Figure 3 gives you an idea of how the solution in VS 2005 will look like after you finish:

Figure 3 - The "cglib" and "Tutorial" projects in VS 2005

Cglib Tutorial

5

Step 1: Creating an empty application

In this step we will create an empty application displaying an empty window, using cglib. To do this, we

create a subclass of the abstract class cg::Application and implement the abstract method

cg::Application::createEntities (which will be used to add entities to the application, as we will see in the

next step).

To create a subclass of cg::Application we need to add two new files to the “tutorial” project:

“MyApp.cpp” and “MyApp.h”. In C++, a .cpp file must always be accompanied by a header (.h) file.

These header files are used to declare the variables and methods of the new class, which will be defined

in the corresponding .cpp file. Defining only one class per file is suggested.

MyApp.h

In “MyApp.h” we will first define a macro MY_APP_H. This macro will be used for preventing multiple

includes that could happen, for example, when a file includes another and this other file includes the

first one, even if indirectly. We will also include the cglib header to allow us to freely use any cglib class.

In C++, all classes must be defined inside a namespace. A namespace is a context where each class name

must be unique. Its best uses include aggregating classes with the same purpose. In this tutorial all

classes will be defined in the same namespace named “tutorial”. Furthermore, all cglib classes are part

of the “cg” namespace.

Cglib Tutorial

6

As we can see in the example code, for MyApp to inherit from cg::Application we just need to refer it

after the declaration of MyApp and before the definition of its methods and variables.

Every class must have a constructor and a destructor. The constructor may or may not receive

arguments and we may have more than one constructor, as long as they receive a different number

and/or type of arguments.

To implement the method cg::Application::createEntities() we must declare it inside MyApp.

MyApp.cpp

Since all needed files (such as “cg.h”) are already included in “MyApp.h”, in “MyApp.cpp” we need only

to include its corresponding .h file. This a good practice and therefore will be used throughout the

tutorial.

Again, we implement all the methods within the “tutorial” namespace.

Cglib Tutorial

7

Now we must implement the declared constructor, destructor and abstract methods (i.e.,

MyApp::MyApp(), MyApp::~MyApp() and MyApp::createEntities()). In the example code we have an

empty implementation of these methods, i.e., they are implemented but nothing happens when they

are called.

main.cpp

To run a cg::Application all we have to do is call an instance of cg::Manager and its method runApp. To

run the application we just created, we need to pass this method an instance of MyApp and the frame

rate
5
 we want it to have. The frame rate parameter allows us to adapt the application’s performance to

the machine’s performance.

As you can observe in Figure 4 this step results in a running application showing an empty window.

Cglib Tutorial

8

Figure 4 – Result of Step 1

Summary: We created an empty application by creating a class MyApp that inherits from cg::Application.

Step 2: Creating a cg::Entity

In this step, we will learn how to create a random box and add it to MyApp.

Due to the fact that MyApp inherits from cg::Application, it also inherits its methods. These methods can

be rewritten by MyApp. By inheriting the constructor method cg::Application(const std::string

property_file), we are now able to load a configuration file when starting our application. This allows us

to define general values in that file, such as the size of a particular entity
6
, instead of hard-coding it. The

configuration file should be placed in the “tutorial/vs2005” folder.

Cglib Tutorial

9

Figure 5 - The “config.ini” configuration file

In this example we created a file named “config.ini” and it has the definition for a MIN_SIZE and a

MAX_SIZE, which we will use ahead. We will be able to access the values in this configuration file using

the methods in the cg::Properties singleton
7
 class (ex: cg::Properties::getDouble(const std::string&

name)).

The cg::Properties::getDouble(const std::string& name) method receives a parameter name, searches

the “config.ini” file for that parameter and converts it into a double type.

Another singleton class in cglib is cg::DebugFile. By keeping in a file every exception thrown, it facilitates

debugging our application. We may also instruct the program to write other useful information to that

file. To do so, we only need to use the cg::DebugFile class methods write, writeLine, newLine and

writeException. For example, in the “MyBox.cpp” code shown above you can see the size of the box we

just created being written in the debug file. The debug file is named “log.txt” and is located in the

”tutorial/vs2005” folder.

As said before, we still have no entities in our application. To do that, we need to create a new class,

MyBox, inheriting from cg::Entity. In the constructor we must provide an entity identifier, which is

necessary to the parent class, cg::Entity. All entities can be accessed through this identifier, so it must be

Cglib Tutorial

10

unique. We must also implement the abstract method cg::Entity::init, which is where the entity is given

its initial values.

The cg::Vector2d class allows us to perform vector calculus in a simple way. For example, if we wish to

determine the distance between two vectors, v0 and v1, we need only to subtract one from the other

and calculate the length of the resulting vector:

cg::Vector2d v0, v1;

v2 = v0 – v1;

distance = v2.length();

Now that we have an entity, we must add it to the application. To do that we should use the

cg::Application::addEntity method. Entities should inherit from cg::Entity so that they can be added to

the application using this method. The appropriate place to add entities will be in MyApp::createEntities.

In the example code below you can see how a MyBox entity called Box1 is being added to the

application.

Cglib Tutorial

11

As a result, a MyBox entity will be created. We can verify this by opening the”log.txt” file inside

“tutorial/vs2005”. However, we get the same output we had in Step 1. The reason is that, although the

box is being created, it is not being drawn. We will solve this issue in the next step.

Figure 6 - Result of Step 1

Summary: We created a new entity, MyBox, by creating a class that inherits from cg::Entity. MyApp uses

MyBox the same way as cg::Application uses cg::Entity. We also learned about the cg::Properties class

that allows us to receive parameters defined in an external file, and about the cg::Debug class that

allows us to write in an external file any useful information to the application.

Cglib Tutorial

12

Step 3: Draw the box on the screen

In this step we will draw MyBox on screen. Also, we will learn about notifiers and listeners.

Listeners and Notifiers

To help in event registration, distribution and management, cglib provides several listeners through

interface classes - cg::IDebugListener, cg::IDrawListener, cg::IDrawOverlayListener,

cg::IKeyboardEventListener, cg::IMouseEventListener, cg::IReshapeEventListener and

cg::IUpdateListener. When a class implements one of these listeners, it will automatically be registered

in a notifier class. The notifier class will send warning to the listener whenever a relevant event occurs.

For example, if an entity wishes to receive keyboard events, the entity’s class must implement

cg::IKeyboardEventListener.

Only one notifier of each interface class exists in the application and these notifiers are automatically

handled by cg::Application.

Events

We have two sorts of events: “synchronous” and “asynchronous”. Synchronous events – update, draw,

drawOverlay and debug – are executed in a given order. Asynchronous events - keyboardEvent,

mouseEvent and reshapeEvent – may occur at anytime during the application runtime.

The execution cycle of the synchronous listeners is shown in Figure 7.

Cglib Tutorial

13

Figure 7 - Execution cycle of the synchronous listeners

For the box to appear on the screen MyBox must implement cg::IDrawListener and its draw method.

Inside draw we will use OpenGL commands to actually draw the box. For more information about

OpenGL drawing commands, please refer to Chapter 2 of [Shreiner et al. 2005].

Cglib Tutorial

14

Even though an entity is registered in the IDrawListener notifier, it can never be seen if there is no

camera to define the way this entity is rendered. So, we must create a camera. Create another class,

MyCamera, which also inherits from cg::Entity and implements cg::IDrawListener and its draw method.

In draw we define the projection to be used when rendering the graphical entities of the application. For

more information about OpenGL viewing commands, please refer to Chapter 3 of [Shreiner et al. 2005].

Cglib Tutorial

15

Attention: In MyApp::createEntities the camera should be the first entity to be added. Otherwise, the

entities added before it may not appear on the screen, since OpenGL would not know how to “look at

them”.

Cglib Tutorial

16

Figure 8 - Result of Step 3

Summary: We drew the box on screen by creating a new class, MyCamera, which sets up the projection

parameter of the graphic pipeline and also by defining MyBox as a cg::IDrawListener. MyCamera inherits

from cg::Entity and implements cg::IDrawListener and defines the projection to be used in the

application.

Step 4: Animating the box

In this step we will animate MyBox with a constant linear velocity and configure it so that it rebounds on

screen edges.

To animate an entity, we must implement cg::IUpdateListener and its update method. This process is

very similar to implementing cg::IDrawListener and its draw method when we want that entity to be

drawn on the screen.

Cglib Tutorial

17

Cglib Tutorial

18

To make the box move, MyBox must implement cg::IUpdateListener and its update method. The update

method receives the elapsed time since the last update, allowing the simulation to run evenly on any

machine, not depending on the machine’s processor.

In Figure 9 you can observe the final result of this step: the box is moving and it rebounds on the

window’s edges.

Figure 9 - Result of Step 4

Summary: We now have an animated box. To achieve this we defined MyBox as a cg::IUpdateListener.

Step 5: Create a mouse controlled bat

In this step we will create a mouse controlled bat.

To create a mouse controlled entity we need to create a class that implements cg::IMouseEventListener

and its methods onMouse, onMouseMotion and onMousePassiveMotion. These methods are called after

events such as a mouse click, a mouse click and drag or a mouse move, correspondingly. The entity’s

behavior responding to a mouse event should be defined inside these methods.

Cglib Tutorial

19

Create a new class MyBat that inherits from cg::Entity and implements cg::IMouseEventListener and its

methods. In the example code the bat follows the mouse by setting its position equal to the mouse’s

position.

Cglib Tutorial

20

Once again, for the new entity to appear on the screen, MyBat must implement cg::IDrawEventListener

and the draw method. Also, we must add this new entity to the application in MyApp::CreateEntities.

Figure 10 - Result of Step 5

Cglib Tutorial

21

Summary: We created a mouse controlled bat. To do this, we created a new cg::Entity class, MyBat,

implementing cg::IDrawListener and cg::IMouseEventListener.

Step 6: Collision between bat and box

In this step we will implement collision detection between the bat and the boxes. We will also learn how

to get the reference to a registered entity using cg::Registry, learn about the singleton cg::Util and its

collision methods and, finally, implement the collision effect on the animation of MyBox.

In order for a box to realize it has collided with the bat, it needs to have a reference to it. We can get

that reference through the cg::Registry singleton class. This class keeps a reference to each entity

created in the application. When a cg::Entity is added to the application through the

cg::Application::addEntity method, its reference is kept by cg::Registry.

Cglib Tutorial

22

To detect the collision we create a method MyBat::isCollision that receives a box’s position and size.

Inside this method we call the already defined method cg::Util::isAABBoxCollision (Axis Aligned

Bounding Box Collision). This method receives the bottom-left and top-right vertexes of the imaginary

box surrounding each object and checks if these boxes are overlapping.

Figure 11 - Axis aligned bounding box collision detection

Creating an imaginary box around the object allows us to detect collisions between irregular objects. In

this case, the objects are already box-shaped so this volume is the perfect match.

Cglib Tutorial

23

Figure 12 - Result of Step 6

Summary: We are now able to detect collisions between the boxes and the bat. To do this, we added

MyBox a reference to MyBat and each time the bat moves we check if it collides with any box.

Step 7: Create more boxes

In this step we will create more boxes.

If we want to create more boxes we need only to call MyApp::addEntity inside MyApp::createEntities for

every box we wish to create.

Cglib Tutorial

24

However, this solution is not very extensible and is also inelegant. During the following step we will see

how to solve these problems.

Figure 13 - Result of Step 7

Summary: We now have more boxes in our application. The classes suffered no changes.

Step 8: Create an arbitrary number of boxes

In this step we will see how to create an arbitrary number of boxes without having to add them, one by

one, in MyApp::createEntities. Also, we will introduce another cglib listener, IDrawOverlayListener,

which helps us create HUD
4
 (Head Up Display) like features.

Let’s create an entity manager - MyBoxManager. This class will manage all boxes within MyApp and

keep them in a std::vector<MyBox*>. MyBoxManager will also contain a std::vector<MyBox*>::iterator,

which will allow us to iterate throughout all the boxes, simplifying the task of handling them.

Cglib Tutorial

25

How many boxes do we want the application to have? What happens if we want to change the number

of boxes in the future? As referred earlier, we can, and should, use the configuration file to define

application parameters that may be changed. Therefore, let’s define an NBOX (number of boxes)

parameter in “config.ini” (ex: NBOX = 77).

Now suppose we want to show on screen how many boxes have been created and we want it to look

like a HUD (i.e., it should be on top of all other entities). Since only the manager knows how many boxes

are being created, the string representing this information should be managed by MyBoxManager.

However, because the string is static (it does not move nor suffers changes), it makes no sense to create

an entity just for displaying the number of boxes on the screen and for MyBoxManager to keep calling

its draw method. So what we can do is to draw the string inside the MyBoxManager::drawOverlay

method. MyBoxManager can implement this method by implementing the cg::IDrawOverlayListener

class. The drawOverlay listener is the last of the synchronous listeners to be called in the cycle.

Therefore, the entities drawn in drawOverlay are drawn on top of all the others. Since we just want to

draw a string on the screen we can use the cglib method cg::Util::drawBitmapString.

C++ encourages programmers to be “ecological”, so we must destroy all objects that are not being used

anymore. In MyBoxManager’s destructor you can see that all boxes are being destroyed along with the

manager. This happens because it makes no sense for the boxes to exist without their manager.

Cglib Tutorial

26

MyBoxManager is responsible for calling the boxes’ methods, so each box’s update and draw methods

should be called inside MyBoxManager’s own update and draw methods. Notice that we are using the

std::vector<MyBox*>::iterator to access each one of the boxes. For more information on lists and

iterators please refer to [Eckel 2000] and [Eckel & Allison 2003].

Due to the fact that the manager is now responsible for handling all the boxes, they should be created

by MyBoxManager instead of by MyApp. So, we remove all MyBox entities creation from

MyApp::createEntities and place them in MyBoxManager::init. The application now needs to have a

MyBoxManager to replace the MyBox entities, so we add one using the addEntity method inside

MyApp::createEntities.

Cglib Tutorial

27

As a result, we now have plenty of boxes appearing on the screen without having to draw them one by

one.

Figure 14 - Result of Step 8

Summary: To control all the boxes in the application, we created a new class, MyBoxManager. For the

information on the number of boxes to appear on screen MyBoxManager now also implements

cg::IDrawOverlayListener.

Cglib Tutorial

28

Step 9: Using cg::Group to manage entities

In this step we will introduce the cglib group classes. We will use cg::Group to re-implement the "box

manager".

Up till now, even if an entity was being created by a manager, we had to implement each entity’s

method.

We can simplify this task by using the cg::Group class.

A cg::Group is an entity that contains other entities. It can implement the same interfaces as any entity

plus the specific group classes. These group classes automatically distribute events to the inner entities.

To do this, we modify MyBoxManager so that it inherits cg::Group instead of cg::Entity, this way giving it

immediate control on all contained entities. MyBoxManager will now also implement cg::GroupDraw

and cg::GroupUpdate instead of cg::IDrawListener and cg::IUpdateListener. The only class

implementation that will remain unchanged is cg::IDrawOverlayListener, since it deals only with the

number of boxes. We do not use cg::GroupDrawOverlay instead of cg::IDrawOverlayListener because we

Cglib Tutorial

29

want the number of boxes to be drawn only once and not by every group entity. By implementing

cg::GroupDraw we are implementing cg::IDrawListener and automatically distributing the draw event to

all inner entities. The same happens with cg::IUpdateListener.

The creation of entities in a cg::Group must be done in the createEntities method. So, MyBoxManager

now implements cg::Group::createEntities. It also implements the cg::Group::postInit method to create

the message we want to be written in the drawOverlay method.

If we run the application, the result appears to be the same. However, in the application code, the way

the boxes are being drawn is much different.

Cglib Tutorial

30

Figure 15 - Result of Step 9

Summary: To take advantage of the cg::Group capabilities, MyBoxManager now inherits from cg::Group

and implements the cg::GroupDraw, cg::GroupUpdate and cg::IDrawOverlay interface classes.

Step 10: Application shutdown and memory leaks

In this step we will learn how to debug for memory leaks using VS2005. We will also learn how to handle

keyboard events.

Memory Leaks

Memory leaks occur due to the fact that memory slots, which were occupied by objects that are no

longer being used, have not been released. VS 2005 allows us, during runtime, to check which memory

slots were not cleaned up. To use this capability, we must add the following code in “main.cpp”:

Cglib Tutorial

31

This set of instructions allows VS 2005 to detect memory leaks and write them in the output window.

Here is an example of a detected memory leak:

(output)

Detected memory leaks!

Dumping objects ->

c:\program files\microsoft visual studio 8\vc\include\crtdbg.h(1147) : {1364} normal block at

0x08AEEBA0, 140 bytes long.

 Data: <$ P bQ XQ H > 24 0A 50 00 80 62 51 10 0C 58 51 10 48 8A AE 08

c:\program files\microsoft visual studio 8\vc\include\crtdbg.h(1147) : {1363} normal block at

0x08AEEB30, 52 bytes long.

 Data: <0 0 0 > 30 EB AE 08 30 EB AE 08 30 EB AE 08 CD CD CD CD

In this case, 1363 represents the 1363
rd

 object allocated since the application started. If we want to

know when the memory was allocated we need to give the highlighted number as an argument for the

function _CrtSetBreakAlloc(long _BreakAlloc) and run the application in debug mode.

Cglib Tutorial

32

Application Shutdown and Keyboard Events

We now want to make the application shut down cleanly by pressing the “Esc” key. Additionally, we

want the boxes to appear/disappear when we press the “space” key and the application structure to be

dumped to “log.txt” when we press “F1”.

Running this tutorial’s application creates dumps of allocated memory that has not been freed. This

happens due to the fact that none of the created entities are being deleted.

We will create a new class MyController inheriting from cg::Entity and implementing the

cg::IKeyboardEventListener so it can detect the “Esc”, “space” and “F1” keys. We will implement the

onKeyPressed, onKeyReleased and onSpecialKeyReleased methods to handle the events of pressing

“Esc”, “space” and “F1”, correspondingly. Special keys are the arrow keys and the “F” keys. To finish, we

will add the new controller entity to MyApp.

Cglib Tutorial

33

As discussed earlier, we should free all allocated memory when the application shuts down. The

cg::Manager::shutDownApp method already does that work for us, by cleaning each one of the notifiers

and deleting the application itself. This way we will have no memory leaks in MyApp.

Figure 16 - Result of Step 10

Cglib Tutorial

34

Summary: To shut down the application cleanly, we created a new cg::Entity class named MyController

that implements the cg::IKeyboadEventListener, allowing it to handle keyboard events and handle

application shutdown adequately.

Step 11: Adapting to window resizing

In this step we will learn how to handle window resizing.

If we try running the application and changing the window’s size the boxes appearance will be modified

(see Figure 17). Also, the bat continues following the mouse but in a different position.

Figure 17 - MyApp's window resized

Cglib Tutorial

35

To solve these problems we will use cglib’s cg::IReshapeEventListener. Implementing this listener will

allow classes to be able to respond to window reshape events without problems such as above.

The first class we need to change is MyCamera. Entities are being deformed because the window is

being reshaped and the camera does not know that. So the camera keeps looking at the entities as if

they were inside the old window, therefore deforming their appearance. We must adjust the projection

to the new window and this is done by giving MyCamera the new window size.

Yet, we still have other problems to solve. Figure 18 shows the application window which is 640 pixels

wide and 480 pixels high. However, notice that the bat’s coordinates are different depending on

weather we are considering window coordinates (x, y) = (143, 9) or OpenGL coordinates (x, y) = (143,

471).

Figure 18 – Window coordinates and OpenGL coordinates

Cglib Tutorial

36

This happens due to the fact that window coordinates and OpenGL coordinates have a different yy axis

orientation. When reshaping the window, we must change the bat’s yy position accordingly, otherwise

the bat will appear dislocated from the mouse’s position. To do this, MyBat must also implement

cg::IReshapeEventListener.

We must also recalculate the boxes’ collision limits. This problem is solved if MyBox also implements

cg::IReshapeEventListener.

Finally, one last remark: if we need to define an initial default window size, we may do so in MyApp’s

constructor.

Cglib Tutorial

37

As you can see in Figure 19, all the problems with the boxes’ shapes, the bat’s location and the collision

limits, are now solved.

Figure 19 - Result of Step 11

Summary: For the boxes appearance and the bat’s position not to be modified when the window is

resized, MyBat, MyBox and MyCamera now implement cg::IReshapeEventListener and incorporate the

new size information in their computation.

Cglib Tutorial

38

Glossary

1
Cglib – Object oriented library which works as a layer between an application and OpenGL and GLUT. It

helps to structure and simplify code production for applications with 2D/3D graphics.

6
Entity – Subclass of cg::Entity that represents an object with its own behavior. This object may be

drawn, updated and debugged. It is a base element of the application.

5
Frame Rate – Number of frames per second (fps), i.e., number of times the application updates the

scene in a second. This parameter has an ideal value of 60 fps. In a slower machine it can be decreased

down to 30 fps. Below the value of 10 fps the animation will look segmented, therefore loosing quality.

3
GLUT (OpenGL Utility Toolkit) – Library of utilities for OpenGL programs, which primarily perform

system-level I/O with the host operating system. Functions performed include window definition,

window control, and monitoring of keyboard and mouse input.

4
HUD (Head-Up Display) - Method by which information is visually relayed to the player in computer and

video games. Many video games use HUDs to show information on top of the main image.

2
OpenGL (Open Graphics Library) – Standard specification defining a cross-language cross-platform API

for writing applications that produce 2D/3D computer graphics.

7
Singleton - Class that is supposed to have only one instance at any time, therefore it is not meant to be

freely instantiated.

Cglib Tutorial

39

References

[Eckel 2000] Eckel, B. (2000): Thinking in C++ - Volume One: Introduction to Standard C++.

[Eckel & Allison 2003] Eckel, B., & Allison, C. (2003): Thinking in C++ - Volume 2: Practical Programming.

[Shreiner et al. 2005] Shreiner, D., Woo, M., Neider, J., & Davis, T. OpenGL Programming Guide.

